用户名: 密码: 验证码:
若干非线性数学物理问题的解析和数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在线性理论日臻完善的今天,非线性数学物理问题愈发为科学家所关注。无论是基础科学还是工程技术领域,研究者面对的大多是复杂的非线性问题。如何处理这些问题是对数学家和物理学家的重大挑战。本论文的主要工作沿两条线索展开:一方面,充分利用一些现有的数学工具研究几个重要的非线性模型,得到一些新颖的结果;另一方面,根据对一些已有严格解方法和近似方法的总结和反思,提出一种研究非线性数学物理问题的新型近似方法
     本文第一章作为绪论部分概括地介绍了非线性科学的内涵、意义和研究现状,重点介绍了本论文涉及的一些非线性问题和非线性方程的数学及物理背景,概述了研究非线性数学物理问题的主要数学工具及其发展历程,同时阐明了本论文的主要工作
     第二章从流体力学的基本模型β面上的无辐散正压位涡方程出发,推导出变系数KdV方程及变系数mKdV方程;从另一个研究分层流体的基本方程二层流体模型出发,推导出耦合变系数mKdV方程,然后通过构造这些变系数方程的严格解充分阐释了大气系统中一种重要的非线性现象—大气阻塞产生、发展和衰减的动力学机理。在这一章里,基于多重尺度展开法,我们提出了一个新的推导变系数近似方程的系统方法。同时,为了严格求解推导出的变系数方程,我们发展了一种在变系数方程和相应的常系数方程之间建立Backlund变换的直接方法。该直接方法作为求解变系数方程的一个基本方法还将应用于本论文的其他章节。
     第三章通过施加四个合理化条件(单涡旋的局域性、短程相互作用、两体相互作用以及多涡旋的完整性),将β面上的无辐散正压位涡方程转化为一个多涡旋相互作用模型。我们充分讨论了该模型的经典李对称和守恒律,给出了模型的几种严格解,包括涡旋源解和Bessel涡旋解。利用该模型,结合孤立子理论以及数值模拟方法,我们解释了大气系统中热带气旋之间一些重要的相互作用特征,包括气旋间互旋、两个气旋在临界距离处的合并或分离、强气旋对弱气旋的吸收,以及台风对副热带高压的环绕运动。
     第四章利用本论文第一章发展的构造变系数方程与相应常系数方程之间Backlund变换的直接方法,严格求解了一个变系数3+1维NLS方程和一个耦合变系数1+1维NLS方程,给出了前者的孤波解和后者的向量孤波解,同时给出了这些严格解存在时变系数之间所要满足的关系。这两类方程在玻色一爱因斯坦凝聚和非线性光学领域都有重要的理论意义。同时,在这一章里,我们还利用经典李群法研究了一种和NLS方程相关的新型非线性方程一共振DS方程的对称性,并且得到了该方程的三类严格解。
     与第二、三、四章主要处理具体非线性问题不同,第五章则花一章的篇幅着力于方法的研究。通过对现有非线性方程研究中经常使用的一些严格解方法及近似方法进行总结和提炼,我们在同伦分析方法的基础上提出了一种新的近似方法一不敏感性同伦方法。该方法通过建立线性或非线性同伦,将难以直接求解的原始模型和一个有严格解的简化模型联系起来,并且引入控制收敛的辅助参数,从而不依赖小的微扰参量即可得到原始模型的高精度近似解。与同伦分析法相比,一方面,该方法突破了线性同伦的局限,展示出完全可以用非线性同伦连接原始模型和简化模型;另一方面,明确给出了一个指导确定合理辅助参数的原则——不敏感性原理,并且通过构造不敏感量,给出了确定辅助参数以提高近似解精度的具体步骤。该方法的有效性通过非线性微分方程的求解和非简谐振子能量本征值的计算得到了检验,它既可以作为近似求解非线性方程的工具,也可作为物理学中一种有效的非微扰方法来使用。
     第六章对论文的主要内容进行了总结和讨论,并且对未来工作可能的新发展和新方向做了展望。
Nonlinear problems in mathematics and physics are arousing great interests from scientists as the theories on linear problems have been well developed. Most of the problems in both basic science and engineering-oriented fields are nonlin-ear, and how to handle these complicated problems is a significant challenge for mathematicians and physicists. In this dissertation, two topics are discussed. On one hand, we study a few important nonlinear problems and obtain some meaningful results by using some known mathematical tools. On the other hand, we also propose a new approximate approach for nonlinear problems by abstract-ing and summarizing the basic idea which underlies some well-known exact and approximate mathematical methods.
     Chapter 1 is an introduction which is devoted to reviewing the mathematical and physical backgrounds of some important nonlinear equations discussed in this dissertation. The significance and development of the nonlinear science are reviewed, too. The mathematical tools involved are introduced in this chapter, and wre also briefly report the main wrorks of this dissertation.
     In chapter 2, we derive a variable coefficient KdV equation and a variable coefficient modified KdV(mKdV) equation from a nonlinear inviscid nondissipa-tive and equivalent barotropic vorticity equation in a beta plane. We also derive a coupled variable coefficient mKdV system from a two-layer model of stratified fluid. By constructing exact solutions of these derived equations, we explain a crucial nonlinear phenomena in atmospheric system, that is. the evolution of atmospheric blocking life cycles thoroughly. Based on the multiple scale expan-sion method, we propose a systemic approach for deriving variable coefficient equations from the original models. We also develop a direct method to con-struct Backlund transformations which connect the derived variable coefficient equations with their corresponding constant coefficient ones. Then taking ad-vantages of the Backlund transformations and the known results of the constant coefficient nonlinear equations, the solutions of the variable coefficient nonlinear systems can be generated. This direct method is also used in other chapters in this dissertation as a fundamental way to solve variable coefficient nonlinear equations.
     In chapter 3, we derive a multiple vortex interaction model from the (2+1)-dimensional nonlinear inviscid nondissipative and equivalent barotropic vorticity equation in a beta plane by supposing four reasonable constraints (vortex local-ity, short range interaction, one-one interaction and total system). The classical Lie symmetries and conservation laws of the model are discussed. Exact so-lutions such as the vortex sources and Bessel vortex solutions are given, too. Furthermore, we numerically simulate the vortex interactions in the atmospheric systems without rotation based on the vortex interaction model. It is found that this model can generate several interaction patterns such as merging, separation, mutual orbiting and absorption. The results of these numerical simulations are well consistent with some known experiments and meteorologic observations. The model is also used to explain the interaction between a typhoon and a subtropical high.
     In chapter 4, the direct method developed in chapter 2 is used to solve a (3+1)-dimensional variable coefficient nonlinear Schrodinger(NLS) equation and a coupled (1+1)-dimensional variable coefficient NLS system via constructing the Backlund transformations between the variable coefficient equations and the constant variable ones. Solitary wave solution and vector solitary wave solution are obtained for the two variable coefficient equations respectively, and the rela-tions between those variable coefficients under which the exact solutions exist are also revealed. These two variable coefficient nonlinear equations are theoretically meaningful in Bose-Einstein condensation and nonlinear optics. We also study a novel nonlinear equation, the resonant Davey-Stewartson(DS) equation, which is related to the NLS equation, and three types of exact solutions of the resonant DS equation are constructed via the classical Lie group theory.
     Different with chapter 2,3 and 4, chapter 5 is devoted to developing a novel approximate method, nonsensitive homotopy approach, which is based on the homotopy analysis method. The nonsensitive homotopy approach builds linear or nonlinear homotopy relations between the hard-to-solve original model and a simplified model which has exact solutions, while some auxiliary parameters are also introduced to generate highly accurate approximate solutions. This ap-proach does not rely on small perturbation parameters. Compared with the known liomotopy analysis method, the nonsensitive homotopy approach shows that it is possible to introduce nonlinear homotopy relations, and it gives a non-sensitive principle to chose the reasonable auxiliary parameters. Furthermore, by constructing the nonsensitive quantities, an explicit process for choosing aux-iliary parameters is given. The nonsensitive homotopy approach is used to solve two nonlinear differential equations and to calculate the energy levels of several quantum anharmonic oscillators. The results of the calculations and the error analysis show the validity of the nonsensitive homotopy approach. This approach can be used to solve nonlinear differential equations approximately, and can also be used as an effective nonperturbative technique in physics.
     The last chapter concerns the summary and discussion for the whole disser-tation, and the prospect for the further work is also discussed in this chapter.
引文
[1]冯长根,李后强,祖元刚,非线性科学的理论,方法和应用,科学出版社1997.
    [2]楼森岳,唐晓艳,非线性数学物理方法,科学出版社,2006.
    [3]Zabusky N. and Kruskal M., "Interaction of" solitons" in a collisionles plasma and the recurrence of initial states", Physical Review Letters,1965, 15(6),240-243.
    [4]Ablowitz M.J. and Clarkson P.A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (LMS Lect. Notes Math.149), Cambridge:Cam-bridge University Press,1991.
    [5]Lorenz E.N., "Deterministic Nonperiodic Flow", Journal of Atmospheric Sciences,1963,20(2),130-148.
    [6]Lorenz E.N., "The mechanics of vacillation", Journal of the Atmospheric Sciences,1963,20(5),448-465.
    [7]Li T.Y. and Yorke J.A., "Period three implies chaos", American mathe-matical monthly,1975,985-992.
    [8]Mandelbrot B., "How long is the coast of Britain? Statistical self-similarity and fractional dimension", Science,1967,156(3775),636.
    [9]Mandelbrot B. and Taylor H.M., "On the distribution of stock price differ-ences", Operations research,1967,15(6),1057-1062.
    [10]Mandelbrot B., "The variation of some other speculative prices". The Jour-nal of Business,1967,40(4),393-413.
    [11]Wolfram S., "Statistical mechanics of cellular automata", Reviews of Mod-ern Physics,1983,55(3),601-644.
    [12]Wolfram S.,"Universality and complexity in cellular automata",Physica D:Nonlincar Phenomena,1984,10(1-2),1-35.
    [13]Carlson J.M.and Doyle J.,"Highly optimized tolerance:Robustness and design in comples systems",Physical Review Letters,2000,84(11),2529-2532.
    [14]Chowdhury D.,Santen L.,and Schadschneider A.,"Statistical physics of vehicular traffic and some related systems",Physics Reports,2000,329, 199-329.
    [15]Russell J.S.,"Report on waves",14th meeting of the British Association for the Advancement of Science,1844,311-390.
    [16]Korteweg D.J.and De Vries C.,"XLI.On the change of form of long waves advancing in a rectangular canal,and on a new type of long stationary waves",Philosophical Magazine Series 5,1895,39(240),422-443.
    [17]倪皖荪,魏荣爵.水槽中的孤波.上海科技教育出版礼,1997.
    [18]Fermi E.,Pasta J.,and Ulam S., "Studies of nonlinear problems",Los Alamos Report LA-1940,1955,5.
    [19]Toda M.,"Vibration of a chain with nonlincar interaction",Journal of the Physical Society of Japan,1967,22,431.
    [20]Benney D.J.,"Long non-linear waves in fluid flows (Long finite amplitude wave motions and interactions in inviseid fluid flows)".Journal of Mathe-matics and Physics,1966.45.52-63.
    [21]Redekopp L.G.,"On the theory of solitary Rossby waves",Journal of Fluid Mechanics,1977,82,725-745.
    [22]罗德海.大气中大尺度包络孤立子理论与阻塞环流.气象出版社,北京,1999.
    [23]Hurdis D.A.and Pao H.P.,"Experimental observation of internal solitary waves in a stratified fluid",Physics of Fluids,1975,18,385.
    [24]Ikezi H., Taylor R.J., and Baker D.R., "Formation and Interaction of Ion-Acoustic Solitions", Physical Review Letters,1970,25(1),11-14.
    [25]Madruga S., Riecke H., and Pesch W., "Defect chaos and bursts:Hexagonal rotating convection and the complex ginzburg-landau equation", Physical review letters,2006,96(7),74501.
    [26]Li Y., "A lax pair for the two dimensional euler equation". Journal of Mathematical Physics,2001,42(8),3552-3553.
    [27]Li Y. and Yurov A.V., "Lax pairs and Darboux transformations for Euler equations", Studies in Applied Mathematics,2003,111(1),101.
    [28]Lou S.Y., Jia M., Tang X.Y., et al., "Vortices, circumfluence, symme-try groups, and Darboux transformations of the (2+1)-dimensional Euler equation", Physical Review E,2007,75(5),56318.
    [29]Lamb H., Hydrodynamics (sixth edn), Dover Publications, New York,1945.
    [30]Yurov A.V. and Yurova A.A., "One method for constructing exact solutions of equations of two-dimensional hydrodynamics of an incompressible fluid" Theoretical and Mathematical Physics,2006,147(1),501-508.
    [31]Zakharov V.E., "Stability of periodic waves of finite amplitude on the sur-face of a deep fluid". Journal of Applied Mechanics and Technical Physics 1968,9(2),190-194.
    [32]Bose S.N., "Plancks Gesetz und Lichtquantenhypothese", Zeitschrift fur Physik A Hadrons and Nuclei,1924,26,178-181.
    [33]Einstein A., "Quantentheorie des einatomigen idealen Gases", Sitzungs-ber.Klg.Preuss.Akad.,1924,261-267.
    [34]Einstein A., "Zur quantentheorie des idealen gases", Sitzungsberichte. Preussische Akademie der Wissenschaften, Bericht,1925,3,18.
    [35]Anderson M.H., Ens her J.R., Matthews M.R., et al., "Observation of Bose-Einstein condensation in a dilute atomic vapor", Science,1995,269(5221), 198-201.
    [36]Bradley C.C., Sackett C.A., Tollett J.J., et al., "Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions", Physical Re view Letters,1995,75(9),1687-1690.
    [37]Davis K.B., Mewes M.O., Andrews M.R., et al., "Bose-Einstein conden-sation in a gas of sodium atoms", Physical Review Letters,1995,75(22), 3969-3973.
    [38]Dalfovo F., Giorgini S., Pitaevskii L.P., et al., "Theory of Bose-Einstein condensation in trapped gases", Reviews of Modern Physics,1999,71(3), 463-512.
    [39]Denschlag J., Simsarian J.E., Feder D.L., et al., "Generating solitons by phase engineering of a Bose-Einstein condensate", Science,2000, 287(5450),97.
    [40]Al Khawaja U., Stoof H.T.C., Hulet R.G., et al., "Bright solilon trains of trapped Bose-Einstein condensates", Physical review letters,2002,89(20). 200404.
    [41]Burger S., Bongs K., Dettmer S., et al., "Dark solitons in Bose-Einstein condensates", Physical Review Letters,1999,83(25),5198-5201.
    [42]Abdullaev F.K., Kamchatnov A.M., Konotop V., et al., "Adiabatic dynam-ics of periodic waves in Bose-Einstein condensates with time dependent atomic scattering length", Physical review letters,2003,90(23),230402.
    [43]Matthews M.R., Anderson B.P., Haljan P.C., etal., "Vortices in a Bose-Einstein condensate", Physical Review Letters,1999,83(13),2498-2501.
    [44]Anderson B.P., Haljan P.C., Regal C.A., et al., "Witching dark solitons decay into vortex rings in a Bose-Einstein condensate", Physical review letters,2001,86(14),2926-2929.
    [45]Castin Y. and Dum R., "Bose-Einstein condensates in time dependent traps", Physical review letters,1996,77(27),5315-5319.
    [46]Inouye S., Andrews M.R., Stenger J., et al., "Observation of Eeshbach reso-nances in a Bose-Einstein condensate". Nature,1998,392(6672),151-154.
    [47]Saito H. and Ueda M.,"Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate", Physical review letters,2003, 90(4).40403.
    [48]Belmonte-Beitia J., Perez-Garcia V.M., Vekslerchik V., et al., "Lie sym-metries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities", Physical review letters,2007,98(6),64102.
    [49]Hall D.S., Matthews M.R., Wieman C.E., et al., "Measurements of rela-tive phase in two-component Bose-Einstein condensates", Physical Review Letters,1998,81(8),1543-1546.
    [50]Hasegawa A. and Tappert F., "Transmission of stationary nonlinear opti-cal pulses in dispersive dielectric fibers, i. anomalous dispersion". Applied Physics Letters,1973,23(3),142-144.
    [51]Hasegawa A. and Tappert F., "Transmission of stationary nonlinear op-tical pulses in dispersive dielectric fibers. Ⅱ. Normal dispersion", Applied Physics Letters,1973,23,171.
    [52]Hasegawa A., Kodama Y., and Maruta A., "Recent progress in dispersion-managed soliton transmission technologies", Optical Fiber Technology, 1997,3(3),197-213.
    [53]Pelinovsky D.E., Kevrekidis P.G., and Frantzeskakis D.J., "Averaging for solitons with nonlinearity management", Physical review letters,2003, 91(24),240201.
    [54]Serkin V.N. and Hasegawa A., "Soliton management in the nonlinear Schrodinger equation model with varying dispersion, nonlinearity, and gain", JETP Letters,2000,72(2),89-92.
    [55]Gabitov I. and Lushnikov P., "Nonlincarity management in a dispersion-managed system", Optics letters.2002,27(2),113-115.
    [56]Eiermann B., Treutlein P., Anker T., et al., "Dispersion management for atomic matter waves", Physical review letters,2003,91(6),60402.
    [57]Serkin V.N.and Hasegawa A.,"Novel soliton solutions of the nonlinear Schrodinger equation model",Physical Review Letters,2000,85(21),4502-4505.
    [58]Serkin V.N.,Hasegawa A.,and Belyaeva T.L.,"Nonautonmous solitons in external potentials",Physical review letters,2007,98(7),74102.
    [59]Davey A.and Stewartson K., "On three-dimensional packets of surface waves",Proceedings of the Royal Society of London.Series A,Mathemat-ical and Physical Sciences,1974,338(1613),101-110.
    [60]Huang G.,Makarov V.A.,and Velarde M.G.,"Two-dimensional solitons in Bose-Einstein condensates with a disk-shaped trap",Physical Review A, 2003,67(2),23604.
    [61]Huang G.,Dellg L.,and Hang C.,"Davey-Stewartson deseription of two-dimensional nonlinear excitations in Bose-Einstein condensates",Physical Review E,2005,72(3),36621.
    [62]Xue J.K., "Modulation of magnetized multidimensional waves in dusty plasma",Physics of Plasmas,2005,12,062313.
    [63]Gardner C.S.,Greene J.M.,Kruskal M.D.,et al.,"Method for solving the Korteweg-deVries equation",Physical Review Letters,1967,19(19),1095-1097.
    [64]Rogers C.and Schief W.K.,Backlund and Darboux transformations:ge-ometry and modern applications in soliton theory,Cambridge University Press,2002.
    [65]Hirota R.,"Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons",Physical Review Letters,1971,27(18),1192-1194.
    [66]Bluman G.W.and Kumei S.,Symmetries and Differential Equations(Ap-plied Mathematical Sciences vol 81),Springer-Verlag,Berlin,1989.
    [67]Olver P.J.,Applications of Lie groups to differential equations,volume 107 of Graduate Texts in Mathematics,Springer-Verlag,New York,1993.
    [68]Clarkson P.A. and Kruskal M.D., "New similarity reductions of the Boussi-riesq equation", Journal of Mathematical Physics,1989,30,2201.
    [69]Lou S.Y. and Ni G.J., "The relations among a special type of solutions in some (I)+1)-dimensional nonlinear equations", Journal of Mathematical Physics,1989.30,1614.
    [70]Hereman W., Banerjee P.P., Korpel A., et al., "Exact solitary wave solu-tions of nonlinear evolution and wave equations using a direct algebraic method", Journal of Physics A:Mathematical and General,1986,19,607-628.
    [71]Doyle P.W., "Separation of variables for scalar evolution equations in one space dimension", Journal of Physics A:Mathematical and General,1996, 29,7581-7595.
    [72]Weiss J., Tabor M., and Carnevale G., "The Painleve property for partial differential equations". Journal of Mathematical Physics,1983,24.522.
    [73]Huang G.X., Luo S.Y., and Dai X.X., "Exact and explicit solitary wave solutions to a model equation for water waves", Physics Letters A,1989, 139,373-374.
    [74]Fokas A.S. and Zakharov V.E., "The dressing method and nonlocal Riemann-Hilbert problems", Journal of Nonlinear Science,1992,2(1),109-134.
    [75]Lie S., "Uber die Integration durch bestimmte Integrate von einer Klasse linear partieller Differentialgleichung", Arch, fur Math,1881,6,328-368.
    [76]Lie S., Vorlesungen uber Differentialgleichungen mit bekannten Infinitesi-malen Transformation en. BG Teubner,1891.
    [77]Noether A.E., "Invariante variations probleme", Nachr Akad Wiss Gottingen Math. Phys. KI.1918,2,235-257.
    [78]Anderson R.L. and Ibragimov N.H., Lie-Backlund transformations in ap-plications, SIAM Philadelphia,1979.
    [79]Bluman G.W. and Cole J.D.,"The general similarity solution of the heat equation (Transformation groups used to find similarity solutions for partial differential equations and heat equation)", Journal of Mathematics and Mechanics,1969,18,1025-1042.
    [80]Levit D. and Winternitz P., "Nonclassical symmetry reduction:example of the Boussinesq equation", Journal of Physics A:.Mathematical and General, 1989,22.2915-2924.
    [81]Vorob'ev E.M., "Symmetries of compatibility conditions for systems of dif-ferential equations", Acta Applicandae Mathematicae,1992,26(1),61-86.
    [82]Olver P.J. and Rosenau P., "The construction of special solutions to partial differential equations", Physics Letters A,1986,114(3),107-112.
    [83]Olver P.J. and Rosenau P., "Group-Invariant Solutions of Differential Equa tions", SIAM Journal on Applied Mathematics,1987,47,263.
    [84]Olver P.J.. "Evolution equations possessing infinitely many symmetric Journal of Mathematical Physics,1977,18,1212.
    [85]Fuchssteiner B. and Fokas A.S., "Symplectic structures, their Backlund transformations and hereditary symmetries". Physica D:Nonlinear Phe-nomena,1981.4(1),47-66.
    [86]Chen H.H., Lee Y.C., and Lin J.E., Advances in Nonlinear Waves, Volume Ⅱ, Boston, MA:Pitman Advanced Publishing Program,1982.
    [87]李翊神,朱国城,“一个谱可变演化方程的对称”,科学通报,1986,31(19),1449-1453.
    [88]李翊神,朱国城,“可积方程新的对称,李代数受谱可变演化方程(1)”,中国科学A辑,1987,30,235.
    [89]李翊神,““c可积”非线性方程的代数性质(Ⅰ)Burger方程和Calogero方程”,中国科学A辑,1989,32,1133.
    [90]田畴Burgers方程的新的强对称、对称和李代数”,中国科学A辑,1987,30,1009.
    [91]Zhu G.C. and Chen H.H., "Symmetries and integrability of the cylindrical Korteweg-de Vries equation", Journal of Mathematical Physics,1986,27, 100.
    [92]Lou S.Y.,"Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation", Physics Letters A,1993,175(1),23-26.
    [93]Lou S.Y. and Chen W.Z.,"Inverse recursion operator of the AKNS hierar-chy", Physics letters A,1993,179(4-5),271-274.
    [94]Lou S.Y., "Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations", Journal of Mathematical Physics,1994, 35(5),2390.
    [95]Li Y.S. and Zhu G.C., "New set of symmetries of the integrable equations Lie algebra and non-isospectral evolution equations. Ⅱ. AKNS system" Journal of Physics A:Mathematical and General,1986,19,3713-3725.
    [96]Ma W.X., "K symmetries and tau symmetries of evolution equations and their Lie algebras", Journal of Physics A:Mathematical and General,1990, 23,2707-2716.
    [97]Lou S.Y., "Symmetries of the Kadointsev-Petviashvili equation", Journal of Physics A:Mathematical and General,1993,26,4387-4394.
    [98]Lou S.Y., "Generalized symmetries and W∞ algebras in three-dimensional Toda field theory", Physical Review Letters,1993,71(25),4099-4102.
    [99]Qian X.M. and Lou S.Y., "Formal Series Symmetry Approach for a Gener-alized Type of High Dimensional Models", Communications in Theoretical Physics,1995,24.171-176.
    [100]Radha R. and Lakshmanan M., "Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations Journal of Mathematical Physics,1994,35,4746.
    [101]Lou S.Y., "Generalized dromion solutions of the (2+1)-dimensional KdV equation", Journal of Physics A:Mathematical and General,1995,28, 7227-7232.
    [102]Zhang J.F., "Abundant dromion-like structures to the (2+1) dimensional KdV equation", Chinese Physics,2000,9(1),1-4.
    [103]Lou S.Y. and Ruan H.Y., "Revisitation of the localized excitations of the (2+1)-dimensional KdV equation", Journal of Physics A:Mathematical and General,2001,34(2),305-316.
    [104]Ludlow D.K., Similarity reductions and their applications to equations of fluid dynamics. Ph.D. thesis. University of Exeter,1994.
    [105]Clarkson P.A., Ludlow D.K., and Priestley T.J., "The classical, direct, and nonclassical methods for symmetry reductions of nonlinear partial differen-tial equations", Methods and Applications of Analysis,1997,4,173-195.
    [106]Pucci E., "Similarity reductions of partial differential equations", Journal of Physics A:Mathematical and General,1992,25(9),2631-2640.
    [107]Arrigo D.J., Broadbridge P., and Hill J.M., "Nonclassical symmetry solu-tions and the methods of Bluman Cole and Clarkson Kruskal", Journal of Mathematical Physics,1993,34,4692.
    [108]Clarkson P.A., "Nonclassical symmetry reductions of the Boussinesq equa tion", Chaos, Solitons& Fractals,1995,5(12),2261-2301.
    [109]Lou S.Y., "A note on the new similarity reductions of the Boussinesq equa tion", Physics Letters A.1990.151,133-135.
    [110]Wahlquist H.D. and Estabrook F.B., "Backlund transformation for solu-tions of the Korteweg-de Vries equation", Physical review letters,1973, 31(23),1386-1390.
    [111]Wahlquist H.D. and Estabrook F.B., "Prolongation structures of nonlinear evolution equations", Journal of Mathematical Physics,1975,16(1),1-7.
    [112]Estabrook F.B. and Wahlquist H.D., "Prolongation structures of nonlinear evolution equations, ii", Journal of-Mathematical Physics,1976,17(7), 1293-1297.
    [113]Jia M.and Lou S.Y., "New deformation relation and exact solutions of the high-dimensional Φ6 field model",Physics Letters A,2006,353(5), 407-415.
    [114]Kuo Y.H.,"On the Flow of an Incompressible Viscous Fluid Past a Flat Plate at Moderate Reynolds Numbers".Journal of Mathematical Physics. 1953,32,83-101.
    [115]Tsien H.S.,"The Poincare-Lighthill-Kuo method".Advances in Applined Mechanics.1956,4,281-349.
    [116]钱伟长,奇异摄动理论及其在力学中的应用.科学出版社.1981.
    [117]Nayfeh A.H.,Perturbation Methods,Wiley-Interscience,1973.
    [118]Kevorkian J.and Cole J.D.,Perturbation methods in applied mathematics Applied Mathcmatical Sciences,Vol.1981.
    [119]Kevorkian.J.and Cole J.D.,Multiple Scale and Singular Perturbation Meth-ods,Springer,1996.
    [120]Lyapunov A.M.,"The general problem of the stability of motion",Inter-national Journal of Control,1992,55(3),531-534.
    [121]Karmishin A.V.,Zhukov A.I.,and Kolosov V.C.,Methods of Dynam-ics Calculation and Testing for Thin-Walled Structures,Mashinostroyenie Moscow,1990.
    [122]Adomian G.,"Nonlinear stochastic differential equations",Journal of Mathematical Analysis and Applications,1976,55(3),441-452.
    [123]Adomian G.and Adomian G.E.,"A global method for solution of complex systems",Mathematical Modelling,1984,5,521-568.
    [124]Adomian G.,Solving Frontier Problems of Physics:The Decomposition Method,London:Kluwer Academic Publishers,1994.
    [125]Liao S.J.,Beyond Perturbation:Introduction to the Homotopy Analysis Method,Boca Raton:Chapman &Hall/CRC Press,2004.
    [126]Rex D.F.,"Blocking action in the middle troposphere and its effect upon regional climate.T.An aerological study of blocking action",Tellus,1950, 2(3),196-211.
    [127]Rex D.F.,"Blocking action in the middle troposphere and its effect upon regional climate.Ⅱ.The climatology of blocking action",Tellus,1950,2(4), 275-301.
    [128]罗德海,纪立人,“大气中偶极子阻塞的观测研究”.大气科学,1991,15(004).52-57.
    [129]Yeh T.C.,"On energy dispersion in the atmosphere",Journal of Meteorol-ogy,1949,6(1),1-16.
    [130]Rossby C.G.,"On the dynamics of certain types of blocking waves",Journal of the Chinese Geophysical Society,1950,2,1-13.
    [131]Long R.R.,"Solitary waves in the Westerlics",Journal of the Atmospheric Sciences,1964,21(2),197-200.
    [132]Egger J.,"Dynamics of blocking highs",Journal of the Atmospheric Sci ences,1978.35(10),1788-1801.
    [133]Charney,J.G. and DeVore J.G.,"Multiple flow equilibria in the atmosphere and blocking",Journal of the Atmospheric Sciences,1979,36(7),1205-1216.
    [134]McWilliams J.,"An application of equivalent modons to atmospheric block-ing".Dynamics of Atmospheres and Oceans,1980,5.43-66.
    [135]Luo D.and Ji L.,"Algebraic Rossby solitary wave and blocking in the atmosphere",Advances in Atmospheric Sciences,1988,5,445-454.
    [136]罗德海,纪立人.“大气中阻塞形成的一个理论”,中国科学:B辑,1989,(001).103-112.
    [137]Huang F.,Tang X.Y.,Lou S.Y.,et al.,"Evolution of dipole-type blocking life cycles:Analytical diagnoses and observations",Journal of the Atmo-spherie Sciences,2007,64(1),52-73.
    [138]Pedlosky J., Geophysics Fluid Dynamics, Springer-Verlag. New York,1979.
    [139]Lou S.Y.. Tong B., Hu H.C., et al., "Coupled KdV equations derived from two-layer fluids", Journal of Physics A:Mathematical and General.2006, 39,513-527.
    [140]Clarkson P.A. and Winternitz P., "Nonclassical symmetry reductions for the Kadomtsev-Petviashvili equation". Physica D Nonlinear Phenomena, 1991,49,257-272.
    [141]Gu C.H., Hu H.S., and Zhou Z.X., Darboux trans formation in soliton theory and its geometric applications, Shanghai Science and Technical Publishers Shanghai,1999.
    [142]Lou S.Y.,"Symmetry analysis and exact solutions of the 2+1 dimensional sine-Gordon system". Journal of Mathematical Physics,2000,41.6509.
    [143]Saffman P.G., Vortex Dynamics, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York,1992.
    [144]Dahl E.K.. Babaev E., and Sudbo A.,"Unusual States of Vortex Matter in Mixtures of Bose-Einstein Condensates on Rotating Optical Lattices Physical review letters,2008,101(25).255301.
    [145]Efremidis N.K., Hizanidis K., Malomed B.A., et al.,"Three-dimensional vortex solitons in self-defocusing media", Physical review letters,2007. 98(11),113901.
    [146]Li H., Friend J.R., and Yeo L.Y., "Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation", Physical Review Letters,2008,101(8),84502.
    [147]Jukes T.N. and Choi K.S., "Long Lasting Modifications to Vortex Shedding Using a Short Plasma Excitation", Physical Review Letters,2009.102(25), 254501.
    [148]Penzev A., Yasuta Y., and Kubota M., "ac Vortex-Dependent Torsional Oscillation Response and Onset Temperature T0 in Solid 4He", Physical Review Letters,2008,101(6),65301.
    [149]Dyudina U.A., Ingersoll A.P., Ewald S.P., et al., "Dynamics of Saturn's south polar vortex", Science,2008,319(5871),1801.
    [150]Dong K. and Neumann C.J., "On the relative motion of binary tropical cyclones", Monthly Weather Review,1983,111(5),945-953.
    [151]Fujiwhara S.,"The natural tendency towards symmetry of motion and its application as a principle in meteorology", Quarterly Journal of the Royal Meteorological Society,1921,47.287-293.
    [152]Lander M. and Holland G.J.,"On the interaction of tropical-cyclone-scale vortices. I:Observations", Quarterly Journal of the Royal Meteorological Society.1993.119,1347-1361.
    [153]Fine K.S., Driscoll C.F., Malmberg J.H.. etal., "Measurements of symmet-ric vortex merger", Physical review letters,1991,67(5),588-591.
    [154]Mitchell T.B. and Driscoll C.F., "Electron vortex orbits and merger" Physics of Fluids,1996,8(7),1828-1841.
    [155]Driscoll C.F. and Fine K.S., "Experiments on vortex dynamics in pure electron plasmas", Physics of Fluids B:Plasma Physics,1990,2(6),1359-1366.
    [156]Dritschel D.G., "Vortex properties of two-dimensional turbulence", Physics of Fluids A:Fluid Dynamics,1993,5(4),984-997.
    [157]Hopfingcr E.J. and Heijst G., "Vortices in rotating fluids", Annual Review of Fluid Mechanics,1993,25(1),241-289.
    [158]Dritschel D.G. and Waugh D.W., "Quantification of the inelastic interac tion of unequal vortices in two-dimensional vortex dynamics", Physics of Fluids A:Fluid Dynamics,1992,4(8),1737-1744.
    [159]Rasmussen J., Nielsen A.H., and Naulin V., "Dynamics of Vortex Interac tions in Two-Dimensional Flows", Physica Scripta,2002,98,29-33.
    [160]Sutyrin G.G., Hesthaven J.S., Lynov J.P., et al., "Dynamical properties of vortical structures on the beta-plane", Journal of Fluid Mechanics,1994, 268,103-132.
    [161]任素玲,刘屹岷,吴国雄,“西太甲洋副热带高压和台风相互作用的数值试验研究”.气象学报,2007,65(003),329-340.
    [162]Matuszewski M., Infeld E., Malomed B.A., et al., "Fully three dimensional breather solitons can be created using Feshbach resonances", Physical re-view letters,2005,95(5),50403.
    [163]Theocharis G., Frantzeskakis D.J., Kevrekidis P.G., etal., "Ring dark soli-tons and vortex necklaces in Bose-Einstein condensates", Physical review letters,2003,90(12),120403.
    [164]Kalmykov Y.P., Coffey W.T., and Titov S.V., "Inertial effects in the frac-tional translational diffusion of a Brownian particle in a double-well poten-tial", Physical Review E,2007,75(3),31101.
    [165]Ananikian D. and Bergeman T., "Gross-Pitaevskii equation for Bose par-ticles in a double-well potential:Two-mode models and beyond". Physical Review A,2006,73(1),13604.
    [166]Burrows B.L. and Cohen M., "Exact time-dependent solutions for a double-well model", Journal of Physics A:Mathematical and General,2003. 36(46),11643-11653.
    [167]Della Valle G., Ornigotti M., Cianci E., etal., "Visualization of coherent destruction of tunneling in an optical double well system", Physical review letters,2007,98(26),263601.
    [168]Rogers C. and Schief W.K., "The resonant nonlinear Schrodinger equation via an integrable capillarity model", Nuovo Cimento B Serie,1999,114, 1409.
    [169]Pashaev O.K. and Lee J.H., "Resonance solitons as black holes in Madelung fluid", Modern Physics Letters. A,2002,17(24),1601-1619.
    [170]Lee J.H.. Pashaev O.K., Rogers C. et al., "The resonant nonlinear schrodinger equation in cold plasma physics, application of backlund-darboux transformations and superposition principles", Journal of Plasma Physics,2007,73(2),257-272.
    [171]Tang X.Y., Chow K.W., and Rogers C., "Propagating wave patterns for the'resonant' Davey-Stewartson system", Chaos, Solitons and Fractals, 2009,42(5),2707-2712.
    [172]Liao S.J., "Homotopy analysis method:a new analytic method for nonlin-ear problems", Applied Mathematics and Mechanics,1998,19(10),957-962.
    [173]Bender C.M. and Wu T.T., "Anharmonic oscillator", Physical Review, 1969,184(5),1231-1260.
    [174]Bender C.M. and Wu T.T., "Large-order behavior of perturbation theory Physical Review Letters,1971,27(7),461-465.
    [175]Bender C.M. and Wu T.T., "Anharmonic oscillator.Ⅱ. A study of pertur-bation theory in large order", Physical Review D,1973,7(6),1620-1636.
    [176]Meiβner H. and Steinborn E.O., "Quartic, sextic, and octic anharmonic oscillators:Precise energies of ground state and excited states by an iter-ative method based on the generalized Bloch equation", Physical Review A,1997,56(2),1189-1200.
    [177]Vinette F. and Cizek J., "Upper and lower bounds of the ground state en-ergy of anharmonic oscillators using renormalized inner projection", Jour-nal of Mathematical Physics,1991,32.3392.
    [178]Banerjee K., "General anharmonic oscillators". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1978, 364(1717),265-275.
    [179]Okopinska A., "Nonstandard expansion techniques for the effective poten-tial in λφ4 quantum field theory", Physical Review D,1987,35(6),1835-1847.
    [180]Buckley I.R.C., Duncan A., and Jones H.F., "Proof of the convergence of the linear δ expansion:Zero dimensions", Physical Review D,1993,47(6), 2554-2559.
    [181]Duncan A. and Jones H.F., "Convergence proof for optimized δ expansion: Anharamonic oscillator", Physical Review D,1998,47(6),2560-2572.
    [182]Guida R., Konishi K., and Suzuki H., "Improved Convergence Proof of the Delta Expansion and Order Dependent Mappings", Annals of Physics, 1996,249(1),109-145.
    [183]Lou S.Y. and Ni G.J., "Autonomous λφ4 theory in a time-dependent space-time", Physical Review D.1988,37(12),3770-3773.
    [184]Cai W.R. and Lou S.Y., "The Physics of Elementary Particles and Fields-Post-Gaussian Effective Potential of Double sine-Gordon Field", Commu-nications in Theoretical Physics,2005,43(6),1075-1082.
    [185]Halliday I.G. and Suranyi P., "Anharmonic oscillator:A new approach" Physical Review D,1980,21(6),1529-1587.
    [186]Janke W. and Kleinert H., "Convergent strong-coupling expansions from di-vergent weak-coupling perturbation theory", Physical review letters,1995, 75(15),2787-2791.
    [187]Kleinert H., Path integrals in quantum, mechanics, statistics, polymer physics, and financial markets (3rd ed.), World Scientific, Singapore,2004.
    [188]Stevenson P.M., "Optimized perturbation theory", Physical Review D, 1981,23(12),2916-2944.
    [189]Bender C.M. and Boettcher S., "Real spectra in non-Hermitian Hamilloni-ans having PT symmetry", Physical Review Letters,1998,80(24),5243-5246.
    [190]Bender C.M. and Dunne G.V., "Large-order perturbation theory for a non-Hermitian PT-symmctric Hamiltonian", Journal of Mathematical Physics, 1999,40,4616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700