用户名: 密码: 验证码:
Cu-MOF及ZIFs类金属有机骨架材料的合成及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属有机骨架材料(MOFs,也称为金属有机分子筛)是一种类似沸石分子筛的轻质材料,其具有自组装的活性中心、较大的比表面积和孔隙率及其结构的可调控性、高渗透性等特性,可满足催化、分离、能量储藏与释放的需要。目前关于这一材料的催化性能研究正处于探索阶段,相关报道还较少。本文选择了多种金属有机骨架材料——Cu_3(BTC)_2、ZIF-68、ZIF-60、ZIF-61、ZIF-62为催化剂或载体,多种金属为活性组分,制备了系列的负载型MOFs材料,采用XRD、N_2吸附、ICP和SEM等手段对制备的材料进行了表征,并系统地研究了所制备材料的催化性能。1)Cu_3(BTC)_2的制备、表征及催化性能
     在不同的温度下制备了Cu_3(BTC)_2,考察其对苯甲醇氧化反应的催化性能,结果表明合成温度对Cu_3(BTC)_2的催化氧化性能有很大的影响。低温有利于抑制活性Cu~(2+)中心的还原,也正是由于这些活性Cu~(2+)中心的存在,使得低温下合成的Cu_3(BTC)_2(383K)在苯甲醇氧化反应中表现出高于高温条件下合成的Cu_3(BTC)_2(423K)的催化特性。所以选择低温下制备的Cu_3(BTC)_2(383K)做催化剂及催化剂载体,并制备了多种活性金属M/Cu_3(BTC)_2材料。
     低温下制备的Cu_3(BTC)_2能有效地催化苯甲醇氧化反应,在相同的反应条件下其活性远高于Cu/Y,且其催化活性与反应温度、反应时间、反应溶剂、催化剂的制备温度等因素有密切的关系。经反应后的Cu_3(BTC)_2催化剂虽形貌、结构等发生了一定变化但仍然能保持其原有的催化活性,甚至高于第一次使用时的催化活性,可回收和重复利用。
     2)M/Cu_3(BTC)_2的制备、表征及催化性能(M= Cr、Pd、Mn and Co)
     制备了不同的M/Cu_3(BTC)_2催化剂,考察其对苯甲醇氧化反应的催化性能,结果表明金属元素的性质对M/Cu_3(BTC)_2催化剂的催化性能有很大影响。选择Cr为活性组分,以Cu_3(BTC)_2为载体制备的催化剂,其催化氧化活性好于选择Co、Mn、Pd用相同载体制得的样品,而Pd/ Cu_3(BTC)_2的催化活性最弱。
     3) Pd/ ZIF-68的制备、表征及催化性能
     选择加氢反应常用的活性金属钯作为活性组分,以及结构稳定的ZIF-68作为载体,制备负载型催化剂Pd/ZIF-68,测试其对苯乙烯加氢反应的催化性能。实验结果表明,Pd/ ZIF-68能有效的催化苯乙烯加氢反应:
     a金属钯的负载量影响着催化剂的催化性能,随着金属钯负载量的增加,催化加氢的反应活性随之增加;
     b反应压力、反应温度、反应时间同时影响着催化剂的催化活性;
     c选择喹啉、噻吩作为毒性原料,选择Pd/ ZIF-68作为催化剂,测试Pd/ ZIF-68在苯乙烯加氢反应中的抗氮、抗硫性能。结果表明,骨架中含有大量氮元素的ZIF-68,有较好的抗氮性能。
     4)Pd/ZIFs的制备、表征及催化性能(ZIFs = ZIF-68、ZIF-60、ZIF-61、ZIF-62)
     选择活性金属钯,以及不同的咪唑类金属有机骨架材料作为载体,制备了Pd/ ZIF-68、Pd/ZIF-60、Pd/ZIF-61、Pd/ZIF-62,考察其对苯乙烯加氢反应的催化性能。实验结果表明催化剂的活性与载体的结构和化学组成有着密切的关系。
     总之,本文主要研究了金属有机骨架材料和金属/金属有机骨架材料型固载催化剂的催化性能,详细考察了活性金属离子、金属有机骨架载体以及不同的反应条件对其催化性能的影响。通过对本课题的研究,较系统地了解了金属有机骨架材料的催化性能,对开发新型非均相催化剂有重要意义。
Metal–organic frameworks (MOFs or Metallo-organic molecular sieve) are zeolite analogues with self-organization active centres, high apparent surface areas, geometrically well-defined structure and selective uptake of small molecules. Owing to these unique characteristics, MOFs are promising materials for sensor application, gas storage, catalysis and energy storage. At present, the mumber of catalytic studies using MOFs as the catalysts is limited. In this paper, various prepared MOFs, such as Cu_3(BTC)_2, ZIF-68, ZIF-60, ZIF-61, ZIF-62 were prepared and characterized by XRD, N_2 adsorption, ICP and SEM. And their catalytic performance as catalysts or catalyst supports was investigated in different reactions.
     1) Preparation, characterization and catalytic performance of Cu_3(BTC)_2
     Cu_3(BTC)_2 was prepared under different temperatures and used as catalysts for benzyl alcohol oxidation. The catalytic results show that the preparation tempreture have great influence on the catalytic oxidation activity. Cu_3(BTC)_2 synthesized under 383K exhibits much higher catalytic activity than Cu_3(BTC)_2 synthesized under 423K. The lower synthesis temperature can avoide the formation of Cu2O resulted from reduction of the Cu~(2+) ions.
     Cu_3(BTC)_2 synthesized at 383K could effectively catalyze benzyl alcohol oxidation and exhibited higher catalytic activity than Cu(II)-exchanged zeolite Y under the identical reaction conditions. The natures of reaction solvents had great influence on the catalytic activity and stability of Cu_3(BTC)_2. The XRD and SEM results showed that a structural and morphological change was observed during the reaction, but the reused catalyst still kept its original catalytic activity and even had higher activity than that of the fresh sample in acetone solvent.
     2) Preparation, characterization and catalytic performance of M/Cu_3(BTC)_2 (M= Cr,Pd,Mn and Co)
     Cu_3(BTC)_2 was utilized as support for preparing supported metal catalysts. The catalytic results of the prepared M/Cu_3(BTC)_2 in benzyl alcohol oxidation showed that the properties of metal ions had great influence on the benzyl alcohol oxidation activity. Among the selected metal ions, Cr/Cu_3(BTC)_2 exhibited the highest catalytic activity, while Pd/Cu_3(BTC)_2 exhibited the lowest activity.
     In order to investigate the catalytic performance of this new class of porous materials thoroughly, Pd/Cu_3(BTC)_2 was used as catalysts for styrene hydrogenation. XRD measurement indicated the structure of Cu_3(BTC)_2 was partly destroyed in the reduction process of Pd/Cu_3(BTC)_2, which resulted in lower catalytic hydrogenation activity.
     3)Preparation, characterization and catalytic performance of Pd/ZIF-68
     ZIF-68 was selected as support for preparing Pd/ZIF-68. The catalytic hydrogenation results showed that Pd/ ZIF-68 could effectively catalyze styrene hydrogenation and exhibited high catalytic activity.
     a. The Pd loading have great influence on the catalytic hydrogenation activity, and with the increase of Pd loading, the catalytic hydrogenation activity also increased.
     b. Reaction conditions, including H2 pressure, reaction tempreture, reaction time had great influence on the catalytic hydrogenation activity of the catalyst.
     c. Quinoline and thiophene acted as poison feed for investigating the sufur and nitrogen resistance of catalyst Pd/ZIF-68. The catalytic hydrogenation tests showed that Pd/ZIF-68 has higher nitrogen resistance, because of the large mount of nitrogen on the framework.
     4)Preparation, characterization and catalytic performance of Pd/ZIFs(ZIFs= ZIF-68 , ZIF-60, ZIF-61 and ZIF-62)
     ZIFs, including ZIF-68、ZIF-60、ZIF-61 and ZIF-62 were used as supports for preparing Pd supported catalysts. The styrene catalytic hydrogenation tests showed that the catalytic hydrogenation activity of the catalysts was also related to the support structures and composition.
     In a summary, this paper is mainly concentrated on catalytic properties of MOFs as catalyst and catalyst support. From above research, we acquired comprehensive and systematic knowledge about catalytic properties of MOFs, which is very helpful for development and design of novel catalysts.
引文
[1]林之恩,杨国昱.多孔材料化学:从无机微孔化合物到金属有机多孔骨架[J].结构化学,2004,23(12):1388-1398.
    [2]方健.水热条件下金属—有机配位聚合物的合成[D].天津:天津大学,2006.
    [3] Eddaoudi M., Kim J., Rosi N., etc..Systrmatic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science, 2002, 295(5554): 469-472.
    [4] Chui S.S.-Y., Lo S.M.-F., Charmant J.P.H., etc.. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n[J]. Science,1999, 283(5405):1148-1150.
    [5]宋明纲.金属配合物/分子筛复合材料对苯加氢的催化性能研究[D].太原:太原理工大学,2005.
    [6]魏文英.新型金属有机骨架的合成、结构表征及催化性能[D].天津:天津大学, 2005.
    [7]张伟. MCM-22分子筛的合成、表征及其剥层沸石ITQ-2的研究[D].太原:太原理工大学,2007.
    [8] KitagawaS., KitauraR., NoroShin-ichiro. Functional Porous CoordinationPolymers[J]. Angew. Chem. Int. Ed., 2004, 43(4): 2334-2375.
    [9] Yaghi O.M.. Crystalline Metal-organic Microporous Materials[P]. US: 5648508, 1997 -07-15.
    [10]孙锦玉,周亚明,陈珍霞等.开放式有机—无机杂化骨架配位聚合物[Sn(SO4)(BDC)(H2O)]的合成和晶体结构[J].高等学校化学学报,2003,24(9):1555-1557.
    [11] Mori W.,Takamizawa S.. Microporous Materials of Metal Carboxylates [J]. Solid. State. Chem., 2000, 152(11): 120-129.
    [12] Banerjee R, Phan A, Wang Bo, etc.. High-Throughput Synthesis of Zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319 (5865): 939-943.
    [13] Nijkamp M.G., Raaymakers J.E., van Dillen A.J., etc.. Hydrogen storage using physisorption-materials demands[J]. Appl.Phys.A, 2001, 72(5) : 619-623.
    [14] Li Hailian, Eddaoudi M., O'Keeffe M., etc.. Design and synthesis of anexceptionallystable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279.
    [15] Chae H.K., Siberio-Pérez D.Y., Kim J., etc.. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 523-527.
    [16] Wang Q M, Shen D M, Lau M L, etc.. Metal-organic molecular sieve for gas separation and purification[J]. Micropor Mesopor Mater, 2002, 55 (2): 217-230.
    [17] Kondo M.,Shimamura M.,Noro Shin-ichiro, etc.. Microporous Materials Constructed from the Interpenetrated Coordination Networks Structures and Methane Adsorption Properties[J]. Chem.Mater., 2000, 12(5): 1288-1299.
    [18] K Schlichte, T Kratzke, S Kaskel. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2[J]. Micropor Mesopor Mater, 2004, 73(1-2): 81-88.
    [19] Yaghi O.M., Davis C.E., Li Guangming, etc.. Selective Guest Binding by Tailores Channelsina 3-D porous Zine(ц)-Benzenetricarboxylate Nework[J]. J.Am. Chem.Soc., 1997, 119: 2861-2868.
    [20] Huang L M, Wang H T, Chen J X, et al. Synthesis, morphology control, and properties of porous metal–organic coordination polymers [J]. Micropor Mesopor Mater, 2003, 58(2): 105–114.
    [21]任蕾,于凯,石秀峰等.金属有机分子筛Cu_3(BTC)_2在苯甲醇氧化反应中的催化性能研究[J].石油学报, 2008,10(24):204-207.
    [22] Kinson C. Kam, Karen L. M. Young and Anthony K. Cheetham Chemical and Structural Diversity in Chiral Magnesium Tartrates and their Racemic and Meso Analogues[J]. Crystal Growth & Design, 2007, 7(8): 1522-1532.
    [23] Kitagawa S., Kitaura R., Noro Shin-ichiro. Functional Porous Coordinatio Polymers[J]. Angew.Chem.Int.Ed., 2004, 43(18): 2334-2375.
    [24] Shi Xin, Zhu Guangshan, Wang Xiaohui, etc.. From a 1-D Chain, 2-D Layered Network to a 3D Supramolecular Framework Constructed from a Metal-Organic Coordination Compound[J]. Cryst.Growth.Des., 2005, 5(1): 207-213.
    [25]尹明彩.芳香羧酸配合物的合成、结构及性能表征[D].武汉:武汉大学,2004.
    [26]魏文英,方键,孔海宁等.金属有机骨架材料的合成及应用[J].化学进展, 2005,17(6):1110-1115。
    [27] Wang Yi-Bo, Zhuang Wen-Juan, in Lin-Pei, etc.. New lanthanide coordination polymers of 1,2,4,5-benzenetetracarboxylic acid and 4,40-bipyridine with 1D channels[J]. J.Mol.Struct., 2005, 737: 165-172.
    [28] Zhang Li-Ping, Wan Yong-Hong, Jin Lin-Pei. Hydrothermal synthesis and crystal structure of neodymium(III) coordination polymers with isophthalic acid and 1,10-phenanthroline[J]. Polyhedron, 2003, 22(7): 981-987.
    [29] Livage C., Egger C., Férey G.. Hydrothermal versus Nonhydrothermal Synthesis for the Preparation of Organic-Inorganic Solids:The Example of Cobalt(II) Succinate[J]. Chem.Mater., 2001, 13(2): 410-414.
    [30] Hoskins B.F., Robosn R.. Design and Constructuion of a New Class of Scaffolding-like Materiald Comprising Infinite Polymeric Frameworks of 3D-Linked Molecular Rods[J]. J.Am.Chem.Soc., 1990, 112(4): 1546-1554.
    [31] Wu Ziyan, Lee Stephen, Moore Jeffrey S..Synthesis of Tree-Dimensional Nanoscaffolding[J]. J.Am.Chem.Soc., 1992, 114(22): 8730-8732.
    [32] Barton T.J., Bull L.M., Klemperer W.G., etc.. Tailored Porous Materials[J]. Chem.Mater., 1999, 11(10): 2633-2656.
    [33] Janiak C. Engineering coordination polymers towards applications[J]. Dalton Trans, 2003, (14): 2781-2804.
    [34] Rosi N.L.. Design, Synthesis and Control of Metrics,Functionality and Interpenetration in Metal-Organic Frameworks and their Application in Hydrogen Storage[D]. MichiganL: the University of Michigan, 2003.
    [35] Borkowski L.A., Cahill C.L..Two novel three-dimensional Nd-adipates: influence of hydrothermal reaction temperature on framework topology[J]. Inorg. Chem.Commun., 2004, 7(6): 725-728.
    [36] Serre C., Millange F., Marrot J., etc.. Hydrothermal Synthesis, Structure Determination and Thermal Behabior of New Three-Dimensional Europium Terephthalates[J]. Chem.Mater., 2002, 14(5): 2409-2415.
    [37] Keper C.J., Prior T.J., Rosseinsky M.J.. A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality[J]. J.Am.Chem.Soc., 2000, 122(21): 5158-5168.
    [38] Gutschke S.O.H., Price D.J., Powell A.K., etc.. Rational Design of Open- Framework Coordination Solids-Synthesis and Structure of [Co5(OH)2{1,2,4,5-(O2C)4C6H2} 2(H2O)4]·xH2O[J]. Eur.J.Inorg.Chem., 2001, 55(11): 2739-2741.
    [39] Lu J.Y., Babb A.M.. A new 3-D neutral framework coordination polymer constructed via square pyramidal binuclear Cu(II)and nicotinato ligand[J]. Inorg.Chem.Commun. , 2001, 4(12): 716-718.
    [40] Li Hailian, Eddaoudi M., Groy T.L., etc.. Establishing Microporosity in Open Metal- Organic Frameworks: Gas Sorption Isotherms for Zn(BDC)(BDC=1,4- Benzene dicarboxylate)[J]. J.Am.Chem.Soc., 1998, 120(33): 8571-8572.
    [41] Chae H.K., Kim J., Friedrichs O.D., etc.. Design of Frameworks with Mixed Triangular and Octahedral Building Blocks Exemplified by the Structure of [Zn4O(TCA)2] Pyrite Topology[J]. Angew.Chem.Int.Ed., 2003, 42(33): 3907-3909.
    [42] Sudik A.C., C?téA.P., Yaghi O.M.. Metal-Organic Frameworks Based on Trigonal Prismatic Building Blocks and the New“acs”Topology[J]. Inorg.Chem., 2005, 44(9): 8209-8211.
    [43] Yoshizawa M., Takeyama Y., Okano T., etc.. Cavity-Directed Synthesis within a Self-Assembled Coordination Cage: Highly Selective [2 + 2] Cross-Photodimerization of Olefins [J]. J.Am.Chem.Soc., 2003, 125(11): 3243-3247.
    [44] Chen Wei, Wang Jia-Yu, Chen Cheng, etc.. Photoluminescent Metal-Organic Polymer Constructed from Trimetallic Clusters and Mixed carboxylates[J]. Inorg. Chem., 2003, 42(4): 944-946.
    [45] Xu Hong-Bin, Su Zhong-Min, Shao Kui-Zhan, etc.. A novel strong fluorescent three-dimensional supramolecular coordination polymer based on bridging terephthalate[J]. Inorg.Chem.Commun., 2004, 7(2): 260-263.
    [46] Qin Z., Jennings M.C., Puddephatt R.J.. Self-Assembly of Polymer and Sheet Structuresin Palladium(II) Complexes Containing Carboxylic Acid Substituents[J]. Inorg.Chem., 2002, 41(20): 5174-5186.
    [47] Pan Long, Sander M.B., Huang Xiaoying, etc.. Microporous Metal Organic Materials:Promising Candidates as Sorbents for Hydrogen Storage[J]. J.Am. Chem.Soc., 2004, 126(5): 1308-1309.
    [48] Muler U., Hesse, M.Lobree L., etc.. Organometallic Building Materials and Method for Producing the Same[P]. US: 2004/009724,2004-05-20.
    [49]周国强,陈金喜,陈珍霞等.新型三维锰( II )配位聚合物[Mn2(NDC)2(DMF)2(H2O)]n·Ndmf的合成和表征化学学报,2004,62(9):901-904.
    [50] Wenkin M., Debillers M., Tinant B., etc.. Diammine(pyrazine-2,3-dicarboxylato-N,O) palladium(II): synthesis, crystal structure, spectroscopic and thermal properties[J]. Inorg.Chim.Acta., 1997, 258(1): 113-118.
    [51] Chen Banglin, Ockwig N.W., Fronczek F.R.. Transformation of a Metal-Organic Framework from the NbO to PtS Net[J]. Inorg.Chem., 2005, 44(2): 181-183.
    [52] Rosi N.L., Eddaoudi M., Kim J., etc.. Infinite Secondary Building Units and Forbidden Catenation in Metal-Organic Frameworks[J]. Angew.Chem., 2002, 114 (2): 294-297.
    [53] Choi H.J., Suh M.P.. Self-Assembly of Molecular Brick Wall and Molecular Honeycomb from Nickel(II) Macrocycle and 1,3,5-Benzenetricarboxylate: Guest-Dependent Host Structures[J]. J.Am.Chem.Soc. 1998, 120(41): 10622-10628.
    [54]杨士烑.钴、镍、铜、锌离子与芳香羧酸配位聚合物的组装、结构和性质[D].厦门:厦门大学,2002.
    [55] Caudoa S, Centia G, Genovesea C, etc.. Cu-MOF: a new highly active catalyst for WHPCO of waste water from agro-food production[J]. Stud Surf Sci Catal, 2007, 170(B): 2054-2059.
    [56] Rosa S D, Giordano G, Granato T, etc.. Chemical Pretreatment of Olive Oil Mill Wastewater Using a Metal-Organic Framework Catalyst [J]. J Agric Food Chem, 2005, 53(21): 8306-8309.
    [57] Opelt S, Tu¨rk S, Dietzsch E, Henschel A, etc.. Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst [J]. Catal Commun, 2008, 9(6):1286–1290.
    [58] Muler U., Stober M., Ruppel R., etc.. Process For The Alkoxylation Of Organic Comopounds In The Presence Of Novel Framework Materials[P]. US: 20030078311, 2003-4-24.
    [59] Yaghi O.M., Li Hailian, Groy T.L.. Construction of Porous Solids from Hydrogen -Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid[J]. J.Am. Chem.Soc., 1996, 118(38): 9096-9101.
    [60] Suh M.P., Choi H.J., So S.M., etc.. A New Metal-Organic Open Framework Consisting of Three fold Parallel Interwoven(6,3) Nets[J]. Inorg.Chem., 2003, 42 (3): 676-678.
    [61] Evans O.R., Linc W.. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks[J]. Acc.Chem.Res., 2002, 35(7): 511-522.
    [62] Dybtsev D.N., Chun H., Yoon S.H., etc.. Microporous Manganese Formate:A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties[J]. J.Am.Chem.Soc., 2004, 126(1): 32-33.
    [63] Opre Z., Ferri D., Krumeich F., etc.. Aerobic oxidation of alcohols by organically modified ruthenium hydroxyapatite[J]. Journal of Molecular Catalysis, 2006, 241(2): 287-295.
    [64] Vasant R.Choudhary, Pankaj A.Chaudhari, Vijay S.Narkhede. Solvent-free liquid phase oxidation of benzyl alcohol to benzaldehyde by molecular oxygen using non-noble transition metal containing hydrotalcite-like solid catalysts[J]. Catalysis Communications, 2003, 4(4): 171–175.
    [65]刘君霞,王华江.乙苯脱氢制苯乙烯催化剂的研究及工业化前景[J].黑龙江科技信息,2008,(32):17.
    [66] L’Argentiére P C, Liprandi D,Marconetti D V, etc.. High active,selective and sulfur resistant supported palladium tetra-coordinated complex as catalyst in the selective hydrogenation of styrene [J]. Journal of Molecular Catalysis, 1997, 118(3): 341-348.
    [67] K Schlichte, T Kratzke, S Kaskel. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2[J]. Micropor Mesopor Mater, 2004, 73(1-2): 81-88.
    [68] Huang L M, Wang H T, Chen J X, etc.. Synthesis, morphology control, and properties of porous metal–organic coordination polymers [J]. Micropor Mesopor Mater, 2003, 58(2): 105–114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700