用户名: 密码: 验证码:
水性聚氨酯丙烯酸酯水性漆制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯(PU)材料是一类含有氨基甲酸酯键,脲键等的产品形态多样的多功能合成树脂,氨基甲酸酯键间易形成氢键,氢键作用使PU分子链形成致密聚合物网络,使聚氨酯涂膜具有优异的耐磨性、柔韧性、耐低温及耐化学介质性。本论文针对水性聚氨酯的研究现状,开展了不饱和有机硅单体和丙烯酸酯单体改性聚氨酯乳液的合成工作,系统的研究了制得的硅烷偶联剂和丙烯酸酯单体改性聚氨酯乳液的乳液性能和胶膜性能,且合成的改性聚氨酯乳液可以作为水性漆树脂乳液,制备性能优良的水性清漆,并分别应用于纸张,墙面和木材表面。本论文主要包括以下三个方面的工作:
     (1)以异佛尔酮二异氰酸酯(IPDI)、聚四氢呋喃二醇(PTMG)、γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷(MEMO)为基本原料,采用偶氮引发剂引发MEMO与聚氨酯预聚体反应,制得了系列不饱和有机硅单体改性的聚氨酯乳液,并外加交联剂进一步提高了胶膜的性能。采用衰减全反射傅里叶变换红外光谱(ATR-FTIR)对产物的结构进行了表征,同时采用动态激光光散射(DLS)、多功能力学实验机及热重分析(TGA)考察了MEMO含量对乳液粒径、胶膜耐水性、力学性能及热性能的影响,同时通过X-光电子能谱(XPS)对胶膜表面的元素进行了分析,以及对胶膜的结晶性及接触角进行了测试。结果表明,ATR-FTIR分析证实了MEMO成功的反应到了聚氨酯分子链上;随着MEMO含量的增加,乳胶粒的粒径从121.4nm降至91.4nm。在w(MEMO)=5.67%,w(COOH)=1.5%,w(AZ)=2%时,胶膜的耐水性最低为14.84%,胶膜的最大拉伸强度为17.334MPa,断裂伸长率为232.56%,且经不饱和有机硅单体改性后聚氨酯的热稳定性提高。XPS分析证实有机硅氧烷已经成功反应到聚氨酯分子链上,胶膜表面Si元素的实际含量比理论计算值略高,表明有机硅组分主要聚集于聚合物膜表面。XRD及接触角测试表明胶膜的结晶性及表面能均降低。将合成的MPU乳液应用于纸张表面,纸张耐折次数达到90次和渗透时间增加至65s,扫描电镜显示乳液成膜性能优良。
     (2)以聚氨酯乳液作为种子乳液,在丙烯酸酯聚合体系中引入甲基丙烯酸缩水甘油酯(GMA)合成了环氧基团改性的聚氨酯/丙烯酸酯(EPUA)复合乳液。通过流变,表面张力,动态光散射(DLS)和透射电镜(TEM)测试表征了相关乳液的性能。流变测试表明,EPUA乳液表现出剪切变稀的特性,利于涂装后涂料的流动和流平。表面张力测试表明聚氨酯乳液具有相关表面活性剂的性能,随着聚氨酯浓度的增加,乳液的表面张力迅速下降。当聚氨酯乳液浓度为0.3%时,体系表面张力最低为47.98mN/m。DLS结果表明随着GMA含量的增加,乳液的粒径及粒度分散系数均越来越大。TEM测试表明乳液有明显的核壳结构。采用衰减全反射傅里叶变换红外光谱(ATR-FTIR)及X-光电子能谱(XPS)对产物的结构及元素进行了表征,同时采用多功能力学实验机及热重分析(TGA)考察了GMA含量对胶膜耐水性、力学性能及热性能的影响。红外分析证实了丙烯酸酯的存在,XPS测试表明胶膜表面富集有聚氨酯组分,通过对XPS测试结果进行去卷积拟合处理证实了胶膜中含有EPUA组分。随着GMA含量从0%增加到3%,吸水率从18%下降到7.8%,吸THF率从30.1%下降到15.3%。在w(GMA)=3%,w(PA)=20%时,体系的拉伸强度增加到5.825MPa,交联度较高。TGA分析表明随着体系中环氧基团与羧基的反应,交联网络结构形成,胶膜的热稳定性提高。原子力显微镜(AFM)分析表明随着GMA含量的增加,胶膜表面结构中的“沟壑”数量明显减少,胶膜表面平整光滑。将此乳液配制成水性清漆,并采用水性漆性能测试表征了此清漆的性能。结果表明,随着GMA含量的提高,所制得水性清漆的铅笔硬度增加,耐冲击性能变小,柔韧性能好,附着力优良,光泽度逐渐增加,耐磨耗性不断变好,耐失光性好,可作为外墙涂料进行应用。
     (3)以聚氨酯乳液为种子乳液,烯丙氧基羟丙基磺酸钠(AHPS)为功能性单体,甲基丙烯酸甲酯(MMA),丙烯酸丁酯(BA),甲基丙烯酸羟乙酯(HEA)为聚合单体,采用原位乳液聚合法,合成了新型聚氨酯丙烯酸酯(PUAS)复合乳液。采用表面张力,动态光散射(DLS)和透射电镜(TEM)测试表征了相关乳液的性能。随着AHPS用量的增加,乳液的稳定性越来越好。表面张力测试表明采用AHPS合成的乳液表面张力(62.5-65.6mN·m-1)比AHPS单体的表面张力大,且更加接近于水的表面张力,说明绝大部分AHPS单体与丙烯酸酯单体参与了聚合反应,只有很小一部分通过物理作用吸附在粒子表面。随着AHPS含量的从1%增加到4%,乳液的转化率从89.70%上升至95.78%,乳液的粒径则从102nm降至83nm。TEM测试结果表明核壳结构紧密的结合在了一起。采用衰减全反射傅里叶变换红外光谱(ATR-FTIR)及X-光电子能谱(XPS)对产物的结构及元素进行了表征,同时采用拉力试验及热重分析(TGA)考察了AHPS含量对胶膜耐水性、力学性能及热性能的影响。红外分析表明AHPS成功聚合到PUAS分子链上。X-光电子能谱分析表明钠元素主要在胶膜表面富集。随着AHPS用量的增加,PUAS胶膜的拉伸强度不断增加,断裂伸长率不断减小。热重测试结果表明PUAS胶膜中可聚合乳化剂AHPS的加入提高了体系的热稳定性。差示扫描量热分析(DSC)和动态力学分析(DMA)表明随着AHPS含量的增加,胶膜的玻璃化转变温度(Tg)逐渐升高,体系的相容性不断变好。原子力显微镜微观形貌分析表明所制得的胶膜表面平整。漆膜测试性能优良,可作为家具用涂料进行应用。
     本论文围绕水性聚氨酯乳液展开研究,主要针对水性涂料行业对涂料综合性能要求的不断提高的现状,开发综合性能优良的水性聚氨酯涂料。在无皂乳液技术的条件下,分别采用不饱和硅烷偶联剂,甲基丙烯酸缩水甘油酯和烯丙氧基羟丙基磺酸钠等单体在聚氨酯大分子为自乳化剂条件下,对聚氨酯乳液进行改性研究,制得了具有核壳结构的系列改性聚氨酯复合乳液。同时,深入探讨了改性聚氨酯乳液的乳胶粒及胶膜的形成机理。
~Polyurethane (PU) is one of the most versatile materials in the world today,which contains a significant number of urethane groups (-HN-COO-) and ureagroups (-NH-CO-). The molecular chains can be easily to form compact networkdue to the hydrogen bonds between the urethane groups, so the PU films havebetter abrasion resistance, flexibility, low temperature and chemical resistance. Inthis study, a series of silane and acrylic monomers modified PU emulsions andfilms were prepared and their properties were discussed according to the recentstudy of the waterborne PU. The prepared PU emulsion can be used as mainbinder in clear coatings to obtain a better performance of clear coatings, and theycan be used in the surface of paper, wall and wood. The main works in this studyinclude the following parts:
     (1) A series of γ-Methacryloxypropyl trimethoxy silane modifiedwaterborne polyurethane(MPU) was synthesized by using isophoronediisocyanate(IPDI), polytetrahydrofuran glycol(PTMG), γ-Methacryloxypropyltrimethoxy silane(MEMO) as raw materials and aziridine was also used toimprove the property of the film. The azo initiators were used to initiate theMEMO react with the PU prepolymer. The structure was characterized byATR-FTIR. Dynamic light scattering (DLS), Multi-function mechanical testingmachine and Thermo gravimetric analysis (TGA) were used to evaluate theeffect of MEMO content on emulsion size, the mechanical properties andthermal stability of the MPU films. The X-ray photoelectron spectroscopy (XPS)was used to analysis the element of the film surface. The crystallinity and contactangle were studied. The ATR-FTIR results showed that MEMO was successfullyintroduced into the PU chains. With the increment of the MEMO content, theparticle size decreased gradually. The results also showed that when w(MEMO)=5.67%,w(COOH)=1.5%,w(AZ)=2%, the water absorption was lowto14.84%, the maximum tensile strength was17.334Mpa, the breakingelongation was232.56%. XPS result indicated that the film surface was rich insilane content. The surface energy and the crystallinity of the polyurethane filmwere decreased while the thermal stability was enhanced. The folding strengthcan be reached to90times, while the penetration time to65s. The SEM showsthat the MPU emulsion’s film formation property on the paper surface was good.
     (2) Polyurethane/polyacrylate (EPUA) composite emulsions weresynthesized based on the presence of preformed polyurethane chains. Glycidylmethacrylate (GMA), an acrylate monomer, was introduced into the system.Rheology measurements, Surface tension measurements, Dynamic lightscattering (DLS) and Transmission electron microscope (TEM) were used tocharacterize the property of the composite emulsions. The EPUA with acrylicmonomers displays non-Newtonian, shear-thinning behavior during shear ratesweep experiment. Surface tension measurements assured the surface activitiesof the polyurethane emulsion. Normally surface tension decreases as thesurfactant concentration increases, and comes to equilibrium above the criticalmicelle concentration (CMC). The surface tension came to equilibrium at47.98mN/m when the mass concentration is0.3%. Dynamic light scattering(DLS) result showed that the average diameters and polydispersity wereincreased with the increment of GMA content. A core-shell structure is observedby TEM. Attenuated total reflection Fourier transform infrared (ATR-FTIR) andX-ray photoelectron spectroscopy (XPS) were used to test the polymer structureand element content. The tensile test and Thermo gravimetric analysis (TGA)were used to analysis the water resistance, mechanical property and thermalstability of the films. ATR-FTIR analysis ascertains the formation of EPUA, andXPS result indicated that the upper surface was rich in PU phase. The peakdeconvolution results of XPS also confirmed the formation of EPUA. With thew(GMA) increases from0%to3%, the water absorption decrease from18%to7.8%, and the THF absorption decrease from30.1%to15.3%. Whenw(GMA)=3%,w(PA)=20%, the tensile strength was up to5.825MPa, and the gelcontent was also in a high level. TGA of the membranes showed that the thermalstability enhanced and the decomposition temperature was much higher than the pure PU membrane, due to the reaction between the carboxyl groups and theepoxide groups. Atomic force microscopy (AFM) observation performed thatwith the increment of GMA content, the quantity of hills and valleys in thesurface structure were decreased and the extremely flat surface was obtained.The waterborne coating was prepared by using the synthesized emulsion, and thetest showed that with the increment of the GMA, the pencil hardness, gloss andabrasion resistance were all increased, the impact resistance was decreased, thelight loss resistance was good, and it can be used in wall coatings.
     (3) Novel polyurethane/polyacrylate (PUA) composite emulsions weresynthesized by soap-free emulsion polymerization method from methylmethacrylate (MMA), butyl acrylate (BA), and2-Hydroxyethyl acrylate (HEA)in the presence of PU as seeds and a polymerizable emulsifier-Allyloxy hvdroxylpropanesulfonic salt (AHPS). Surface tension measurements, Dynamic lightscattering (DLS) and Transmission electron microscope (TEM) were used tocharacterize the property of the composite emulsions. With the increment of theAHPS content, the stability of the emulsion was good. Compared with thesurface tension of AHPS, the surface tension of all emulsions prepared by AHPSis very high (from62.5to65.6mN·m-1) and closes to that of water, it can be saidthat large part of AHPS is joined polymerization with monomer, only small partanchored on the surface of the emulsion particles. With augment of the AHPS,the conversion ratio increased sharply from89.70%to95.78%, while theaverage particle diameters of the PUAS emulsion particles, decreased from102nm to83nm as the AHPS amount increased from1to4wt%. A core-shellstructure is observed by TEM. Fourier transform infrared (ATR-FTIR) and X-rayphotoelectron spectroscopy (XPS) were used to test the polymer structure andelement content. The tensile test and Thermo gravimetric analysis (TGA) wereused to analysis the water resistance, mechanical property and thermal stabilityof the films. Fourier transform infrared spectroscopy (FT-IR) result shows thatAHPS was introduced into the PUAS chains. X-ray photoelectron spectroscopy(XPS) analysis showed that sodium was preferably enriched on the surface oflatex particles. With the increment of the AHPS content, the tensile strengthincreased, and the breaking elongation decreased. TGA of the films showed thatthe thermal stability enhanced. The DSC and DMA tests show that Tg of the films increased gradually and the compatibility between the components of thePU and PA is increased with augment of AHPS amount in polymer. Atomic forcemicroscopy (AFM) observation performed the extremely flat membrane.
     In this paper, we are aimed to explore PU coatings with better properties, soas to satisfy the meetings of the coatings. A series of silane, glycidylmethacrylate (GMA) and allyloxy hvdroxyl propanesulfonic salt(AHPS) wereused to modify PU emulsions and films were prepared and their properties werediscussed according to the recent study of the waterborne PU, and the modifiedPU with core-shell structure were successfully obtained. The latex formationprocess and film-forming mechanismwere also discussed.
引文
[1]许戈文.水性聚氨酯材料[M].北京:化学工业出版社,2006:1.
    [2]从树枫,喻露如.聚氨酯涂料[M].北京:化学工业出版社,2003:1.
    [3] Dieterich D. Aqueous emulsions, dispersions and solutions of polyurethanes; synthesisand properties[J]. Progress in Organic Coatings,1981,9(3):281-340.
    [4] Kim B K, Lee J C. Waterborne polyurethanes and their properties[J]. Journal ofPolymer Science Part A: Polymer Chemistry,1996,34(6):1095-1104.
    [5] Chen Guannan, Chen Kannan. Self-curing behaviors of single pack aqueous-basedpolyurethane system[J]. Journal of Applied Polymer Science,1997,63(12):1609-1623.
    [6] Coutinho F M B, Delpech M C. Some properties of films cast from polyurethaneaqueous dispersions of polyether-based anionomer extended with hydrazine[J].Polymer Testing,1996,15(2):103-113.
    [7] Kim C K, Kim B K. IPDI-based polyurethane ionomer dispersions: Effects of ionic,nonionic hydrophilic segments, and extender on particle size and physical properties ofemulsion cast film[J]. Journal of Applied Polymer Science,1991,43(12):2295-2301.
    [8] Delpech M C, Coutinho F M B. Waterborne anionic polyurethanes andpoly(urethane-urea)s: influence of the chain extender on mechanical and adhesiveproperties[J]. Polymer Testing,2000,19(8):939-952.
    [9] Wicks D A, Yeske P E. Amine chemistries for isocyanate-based coatings[J]. Progress inOrganic Coatings,1997,30(4):265-270.
    [10] Wicks Jr Z W. Blocked isocyanates[J]. Progress in Organic Coatings,1975,3(1):73-99.
    [11] Seefried C G, Koleske J V, Critchfield F E. Thermoplastic urethane elastomers. I.Effects of soft-segment variations[J]. Journal of Applied Polymer Science,1975,19(9):2493-2502.
    [12] Tanaka H, Suzuki Y, Yoshino F. Synthesis and coating application of waterbornefluoroacrylic-polyurethane composite dispersions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,153(1-3):597-601.
    [13] Madbouly S A, Otaigbe J U. Recent advances in synthesis, characterization andrheological properties of polyurethanes and POSS/polyurethane nanocompositesdispersions and films[J]. Progress in Polymer Science,2009,34(12):1283-1332.
    [14] Wang C, Chu F, Graillat C, et al. Hybrid polymer latexes: Acrylics-polyurethane fromminiemulsion polymerization: Properties of hybrid latexes versus blends[J]. Polymer,2005,46:1113-1124.
    [15] Wicks D A, Wicks Jr Z W. Blocked isocyanates III: Part A. Mechanisms andchemistry[J]. Progress in Organic Coatings,1999,36(3):148-172.
    [16] Wicks D A, Wicks Jr Z W. Multistep chemistry in thin films; the challenges of blockedisocyanates[J]. Progress in Organic Coatings,2001,43(1-3):131-140.
    [17] Yang Z, Wicks D A, Hoyle C E, et al. Newly UV-curable polyurethane coatingsprepared by multifunctional thiol-and ene-terminated polyurethane aqueousdispersions mixtures: Preparation and characterization[J]. Polymer,2009,50(7):1717-1722.
    [18] Asif A, Shi W, Shen X, et al. Physical and thermal properties of UV curable waterbornepolyurethane dispersions incorporating hyperbranched aliphatic polyester of varyinggeneration number[J]. Polymer,2005,46(24):11066-11078.
    [19] Durrieu V, Gandini A. Preparation of aqueous anionic poly(urethane-urea) dispersions.Influence of the incorporation of acrylic, polycarbonate and perfluoro-oligoether diolson the dispersion and polymer properties[J]. Polymers for Advanced Technologies,2005,16(11-12):840-845.
    [20] Parmar R, Patel K, Parmar J. High-performance waterborne coatings based onepoxy-acrylic-graft-copolymer-modified polyurethane dispersions[J]. PolymerInternational,2005,54(2):488-494.
    [21] Wicks Jr Z W. New developments in the field of blocked isocyanates[J]. Progress inOrganic Coatings,1981,9(1):3-28.
    [22] Blencowe A, Clarke A, Drew M G B, et al. Alternative syntheses of linearpolyurethanes using masked isocyanate monomers[J]. Reactive and FunctionalPolymers,2006,66(11):1284-1295.
    [23] Chattopadhyay D K, Raju K V S N. Structural engineering of polyurethane coatings forhigh performance applications[J]. Progress in Polymer Science,2007,32(3):352-418.
    [24]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版,2002:559-633.
    [25]吴红菊.环氧改性水性聚氨酯清漆的合成与性能研究[D].大连:大连理工大学,2013.
    [26] Zhu Yan, Sun Duoxian. Preparation of silicon dioxide/polyurethane nanocomposites bya sol-gel process[J]. Journal of Applied Polymer Science,2004,92(3):2013-2016.
    [27] Kim B K, Kim T K, Jeong H M. Aqueous dispersion of polyurethane anionomers fromH12MDI/IPDI, PCL, BD, and DMPA[J]. Journal of Applied Polymer Science,1994,53(3):371-378.
    [28] Chen Yun, Chen Yuehliang. Aqueous dispersions of polyurethane anionomers: Effectsof countercation[J]. Journal of Applied Polymer Science,1992,46(3):435-443.
    [29] Narayan R, Chattopadhyay D K, Sreedhar B, Raju K V S N, Mallikarjuna N N,Aminabhavi T M. Synthesis and characterization of crosslinked polyurethanedispersions based on hydroxylated polyesters[J]. Journal of Applied Polymer Science,2006,99(1):368-380.
    [30]李冰.水性聚氨酯涂料的制备、改性及其性能研究[D].天津:天津大学,2006.
    [31] Cooper S L, Tobolsky A V. Properties of linear elastomeric polyurethanes[J]. Journal ofApplied Polymer Science,1966,10(12):1837-1844.
    [32] Wang Z, Pinnavaia T J. Nanolayer reinforcement of elastomeric polyurethane[J].Chemistry of Materials,1998,10(12):3769-3771.
    [33] Chang S L, Yu T L, Huang C C, et al. Effect of polyester side-chains on the phasesegregation of polyurethanes using small-angle X-ray scattering[J]. Polymer,1998,39(15):3479-3489.
    [34] Goda H, Frank C W. Fluorescence studies of the hybrid composite ofsegmented-polyurethane and silica[J]. Chemistry of Materials,2001,13(9):2783-2787.
    [35]刘涛.有机硅/丙烯酸酯复合改性水性聚氨酯的合成及性能研究[D].太原:中北大学,2012.
    [36] Liu Xin, Xu Kai, Liu Huan, et al. Preparation and properties of waterbornepolyurethanes with natural dimer fatty acids based polyester polyol as soft segment[J].Progress in Organic Coatings,2011,72(4):612-620.
    [37] Lai Jianzei, Chen Paojan, Yeh Jentaut, et al. A cross self-curing system for anaqueous-based PU hybrid[J]. Journal of Applied Polymer Science,2005,97(2):550-558.
    [38] Wang Tazen, Chen Kannan. Introduction of covalently bonded phosphorus intoaqueous-based polyurethane system via postcuring reaction[J]. Journal of AppliedPolymer Science,1999,74(10):2499-2509.
    [39] Fiori D, Ley D, Quinn R. Effect of particle size distribution on the performance oftwo-component water-reducible acrylic polyurethane coatings using tertiarypolyisocyanate crosslinkers[J]. Journal of Coatings Technology,2000,72(902):63-69.
    [40]李轩,沈一丁,李小瑞,等.聚氨酯/羧基丁苯胶乳的表面施胶及其交联对纸张表面强度及耐折度的影响[J].功能材料,2011,42(11):2096-2099.
    [41] Pesetskii S S, Fedorov V D, Jurkowski B, et al. Blends of thermoplastic polyurethanesand polyamide12: Structure, molecular interactions, relaxation, and mechanicalproperties[J]. Journal of Applied Polymer Science,1999,74(5):1054-1070.
    [42] Wang Niangui, Zhang Lina, Lu Yongshan. Effect of the particle size in dispersions onthe properties of waterborne polyurethane/casein composites[J]. Industrial&Engineering Chemistry Research,2004,43(13):3336-3342.
    [43] Ma Jianzhong, Xu Qunna, Gao Dangge, et al. Blend composites ofcaprolactam-modified casein and waterborne polyurethane for film-forming binder:Miscibility, morphology and properties[J]. Polymer Degradation and Stability,2012,97(8):1545-1552.
    [44] Zhong Ni, Yuan Qiaolong. Preparation and properties of molded blends of wheat glutenand cationic water-borne polyurethanes[J]. Journal of Applied Polymer Science,2013,128(1):460-469.
    [45]颜财彬,傅和青.水性聚氨酯的改性研究进展[J].化工进展,2011,(30)12:2658-2664.
    [46]杨冬亚,张鹏,邱凤仙,等.内交联水性聚氨酯脲的制备及性能表征[J].化工进展,2008,27(2):270-273.
    [47]王小荣,沈一丁,赖小娟.室温交联水性聚氨酯施胶增强剂的合成及增强机理[J].高分子科学与工程,2012,28(3):25-28.
    [48]王福芳,魏燕彦,宗成中.封闭型水性聚氨酯的制备及其高温固化性能的研究[J].涂料工业,2010,40(10):44-46.
    [49]李阿峰.低温解封封闭异氰酸酯固化剂的合成及应用研究[D].西安:陕西科技大学,2013.
    [50]孔霞.新型羟基聚丙烯酸酯及双组份水性聚氨酯涂料[D].广州:华南理工大学,2010.
    [51]罗春晖.水性涂料用聚合物乳液的交联改性研究[D].广州:华南理工大学,2010.
    [52] Lai Jianzei, Ling Haojan, Chen Guannan, et al. Polymer hybrids from self-emulsifiedPU anionomer and water-reducible acrylate copolymer via a postcuring reaction[J].Journal of Applied Polymer Science,2003,90(13):3578-3587.
    [53]王武生,潘才元,曾俊,等.交联水性聚氨酯分散体的合成[J].高分子学报,2000(3):319-324.
    [54] Hesselmans L C J, Derksen A J, Goorbergh J A M. Polycarbodiimide crosslinkers[J].Progress in Organic Coatings,2006,55(2):142-148.
    [55]杨立群,谢志明,李卓美,等.金属离子络合交联丙烯酸酯共聚物无皂水溶胶涂料[J].应用化学,1998,15(2):82-84.
    [56]朱伟,王芳,吕菲菲,等.环氧树脂改性聚氨酯水乳液稳定性的研究[J].涂料工业,2010,40(5):47-49.
    [57]邓朝霞,叶代勇,黄洪,等.环氧树脂改性水性聚氨酯的合成研究[J].功能材料,2007,7(38):1132-1135.
    [58]赖小娟,李小瑞,王磊.环氧改性水性聚氨酯乳液的制备及其膜性能[J].高分子学报,2009(11):1107-1112.
    [59] Lu Yongshan, Larock R C. New hybrid latexes from a soybean oil-based waterbornepolyurethane and acrylics via emulsion polymerization[J]. Biomacromolecules,2007,8(10):3108-3114.
    [60] Okamoto Y, Hasegawa Y, Yoshino F. Urethane/acrylic composite polymer emulsions[J].Progress in Organic Coatings,1996,29(1-4):175-182.
    [61] Li Mei, Daniels E S, Dimonie V, et al. Preparation of Polyurethane/Acrylic HybridNanoparticles via a Miniemulsion Polymerization Process[J]. Macromolecules,2005,38(10):4183-4192.
    [62] Kukanja D, Golob J, Zupan i-Valant A, et al. The structure and properties ofacrylic-polyurethane hybrid emulsions and comparison with physical blends[J]. Journalof Applied Polymer Science,2000,78(1):67-80.
    [63] Hirose M, Kadowaki F, Zhou J. The structure and properties of core-shell typeacrylic-polyurethane hybrid aqueous emulsions[J]. Progress in Organic Coatings,1997,31(1-2):157-169.
    [64] Ruckenstein E, Li H. Semi interpenetrating polymer network latexes via concentratedemulsion polymerization[J]. Journal of Applied Polymer Science,1995,55(6):961-970.
    [65] Lee J S, Kim B K. Modification of aqueous polyurethanes via latex AB crosslinkedpolymers[J]. Journal of Applied Polymer Science,2001,82(6):1315-1322.
    [66] Mekras C I, George M H, Barrie J A. Synthesis and characterization ofpoly(urethane-g-acrylic acid)s[J]. Polymer,1989,30(4):745-751.
    [67] Zhang Hongtao, Guan Rong, Yin Zhaohui, et al. Soap-free seeded emulsioncopolymerization of MMA onto PUA and their properties[J]. Journal of AppliedPolymer Science,2001,82(4):941-947.
    [68] Son S J, Kim K B, Lee Y H, et al. Effect of acrylic monomer content on the propertiesof waterborne poly(urethane-urea)/acrylic hybrid materials[J]. Journal of AppliedPolymer Science,2012,124(6):5113-5121.
    [69] Chen Su, Chen Li. Structure and properties of polyurethane/polyacrylate latexinterpenetrating networks hybrid emulsions[J]. Colloid and Polymer Science,2003,282(1):14-20.
    [70]幸松民,王一璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社2000,331-332.
    [71] Queiroz D P, Norberta de Pinho M. Structural characteristics and gas permeationproperties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-softsegment membranes[J]. Polymer,2005,46(7):2346-2353.
    [72] Ioan S, Grigorescu G, Stanciu A. Dynamic-mechanical and differential scanningcalorimetry measurements on crosslinked poly(ester-siloxane)-urethanes[J]. Polymer,2001,42(8):3633-3639.
    [73] Ioan S, Grigorescu G, Stanciu A. Effect of segmented poly(ester-siloxane)urethanescompositional parameters on differential scanning calorimetry anddynamic-mechanical measurements[J]. European Polymer Journal,2002,38(11):2295-2303.
    [74] Wang L F, Ji Q, Glass T E, et al. Synthesis and characterization of organosiloxanemodified segmented polyether polyurethanes[J]. Polymer,2000,41(13):5083-5093.
    [75] Vlad S, Vlad A, Oprea S. Interpenetrating polymer networks based on polyurethaneand polysiloxane[J]. European Polymer Journal,2002,38(4):829-835.
    [76] Fei Guiqiang, Shen Yiding, Wang Haihua, et al. Effects of polydimethylsiloxaneconcentration on properties of polyurethane/polydimethylsiloxane hybriddispersions[J]. Journal of Applied Polymer Science,2006,102(6):5538-5544.
    [77] Li Xiaorui, Fei Guiqiang, Wang Haihua. Mechanical and surface properties ofmembranes prepared from waterborne cationic hydroxyl-terminatedpolydimethylsiloxane/polyurethane surfactant-free micro-emulsion[J]. Journal ofApplied Polymer Science,2006,100(1):40-46.
    [78] Wang Haihua, Shen Yiding, Fei Guiqiang, et al. Micromorphology and phase behaviorof cationic polyurethane segmented copolymer modified with hydroxysilane[J]. Journalof Colloid and Interface Science,2008,324(1-2):36-41.
    [79] Sardon H, Irusta L, Fernández-Berridi M J, et al. Synthesis of room temperatureself-curable waterborne hybrid polyurethanes functionalized with(3-aminopropyl)triethoxysilane (APTES)[J]. Polymer,2010,51(22):5051-5057.
    [80] Hwang H D, Kim H J. Enhanced thermal and surface properties of waterborneUV-curable polycarbonate-based polyurethane (meth)acrylate dispersion byincorporation of polydimethylsiloxane[J]. Reactive and Functional Polymers,2011,71(6):655-665.
    [81] Li Guang, Zheng Haiting, Wang Yanxue, et al. A facile strategy for the fabrication ofhighly stable superhydrophobic cotton fabric using amphiphilic fluorinated triblockazide copolymers[J]. Polymer,2010,51(9):1940-1946.
    [82] Zheng Wei, He Ling, Liang Junyan, et al. Preparation and properties of core-shellnanosilica/poly(methyl methacrylate-butyl acrylate-2,2,2-trifluoroethyl methacrylate)latex[J]. Journal of Applied Polymer Science,2011,120(2):1152-1161.
    [83] Cui Xuejun, Zhong Shuangling, Yan Jing, et al. Synthesis and characterization ofcore-shell SiO2-fluorinated polyacrylate nanocomposite latex particles containingfluorine in the shell[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2010,360(1-3):41-46.
    [84] He Ling, Liang Junyan, Zhao Xiang, et al. Preparation and comparative evaluation ofwell-defined fluorinated acrylic copolymer latex and solution for ancient stoneprotection[J]. Progress in Organic Coatings,2010,69(4):352-358.
    [85] Xie Kongliang, Hou Aiqin, Shi Yaqi. Synthesis of fluorine-containing acrylatecopolymer and application as resins on dyed polyester microfiber fabric[J]. Journal ofApplied Polymer Science,2008,108(3):1778-1782.
    [86] Améduri B, Boutevin B, Kostov G. Fluoroelastomers: synthesis, properties andapplications[J]. Progress in Polymer Science,2001,26(1):105-187.
    [87] Erol I. Novel methacrylate copolymers with fluorine containing: Synthesis,characterization, reactivity ratios, thermal properties and biological activity[J]. Journalof Fluorine Chemistry,2008,129(7):613-620.
    [88] Xiao Xinyan, Wang Ye. Emulsion copolymerization of fluorinated acrylate in thepresence of a polymerizable emulsifier[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2009,348(1-3):151-156.
    [89] Deng Jinni, Cao Jing, Li Jiehua, et al. Mechanical and surface properties ofpolyurethane/fluorinated multi-walled carbon nanotubes composites[J]. Journal ofApplied Polymer Science,2008,108(3):2023-2028.
    [90] Jiang Guichang, Tuo Xinlin, Wang Dongrui, et al. Preparation, characterization, andproperties of fluorinated polyurethanes[J]. Journal of Polymer Science Part A: PolymerChemistry,2009,47(13):3248-3256.
    [91] Xin Hua, Shen Yiding, Li Xiaorui. Novel cationic polyurethane-fluorinated acrylichybrid latexes: Synthesis, characterization and properties[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,384(1-3):205-211.
    [92] Kim B K, Seo J W, Jeong H M. Morphology and properties of waterbornepolyurethane/clay nanocomposites[J]. European Polymer Journal,2003,39(1):85-91.
    [93] Lee H T, Hwang J J, Liu H J. Effects of ionic interactions between clay and waterbornepolyurethanes on the structure and physical properties of their nanocompositedispersions[J]. Journal of Polymer Science Part A: Polymer Chemistry,2006,44(19):5801-5807.
    [94] Kuan H C, Ma C C M, Chuang W P, et al. Hydrogen bonding, mechanical properties,and surface morphology of clay/waterborne polyurethane nanocomposites[J]. Journalof Polymer Science Part B: Polymer Physics,2005,43(1):1-12.
    [95] Kwon J, Kim H. Comparison of the properties of waterborne polyurethane/multiwalledcarbon nanotube and acid-treated multiwalled carbon nanotube composites prepared byin situ polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry,2005,43(17):3973-3985.
    [96] Kwon J Y, Kim H D. Preparation and properties of acid-treated multiwalled carbonnanotube/waterborne polyurethane nanocomposites[J]. Journal of Applied PolymerScience,2005,96(2):595-604.
    [97] Kuan H C, Ma C-C M, Chang W P, et al. Synthesis, thermal, mechanical andrheological properties of multiwall carbon nanotube/waterborne polyurethanenanocomposite[J]. Composites Science and Technology,2005,65(11-12):1703-1710.
    [98] Wu Qiuju, Henriksson M, Liu Xiaohui, et al. A High Strength Nanocomposite Basedon Microcrystalline Cellulose and Polyurethane[J]. Biomacromolecules,2007,8(12):3687-3692.
    [99] Subramani S, Choi S W, Lee J Y, et al. Aqueous dispersion of novel silylated(polyurethane-acrylic hybrid/clay) nanocomposite[J]. Polymer,2007,48(16):4691-4703.
    [100]胡哲辉.水性有机硅改性丙烯酸酯水分散体及双组份聚氨酯涂料的研究[D].长沙:湖南大学,2012.
    [101]涂伟萍.水性涂料[M].北京:化学工业出版社,2006:412-413.
    [102]冯圣玉,张洁,李美江,等.有机硅高分子及其应用[M].北京:化学工业出版社,2004:1.
    [103]张发爱.水性双组分聚氨酯涂料的制备及性能研究[D].兰州:西北师范大学,2004.
    [104] Yen Mengshung, Tsai Pingyuan. Effects of soft segments on the surface properties ofpolydimethylsiloxane waterborne polyurethane prepolymer blends and treated nylonfabrics[J]. Journal of Applied Polymer Science,2010,115(6):3550-3558.
    [105]文秀芳.有机硅改性丙烯酸水性树脂的合成及乳液聚合模型的研究[D].广州:华南理工大学,2005.
    [106]龚兴宇.有机硅/丙烯酸酯复合共聚物乳液聚合技术及结构性能研究[D].西安:西北工业大学,2003.03.
    [107]韩朝阳.有机硅改性丙烯酸酯乳液聚合研究[D].西安:西北工业大学,2003.
    [108]邵谦.无机纳米粒子改性复合乳液的制备及在水性涂料中的应用[D].济南:山东大学,2007.
    [109]吕俊.可聚合乳化剂在丙烯酸酯乳液聚合中的应用研究[D].合肥:安徽大学,2011.
    [110] Lai Xiaojuan, Li Xiaorui, Wang Lei, et al. Synthesis and characterizations ofwaterborne polyurethane modified with3-aminopropyltriethoxysilane[J]. PolymerBulletin,2010,65(1):45-57.
    [111]姚路路,吴翠明.硅氧烷改性水性聚氨酯乳液的附着性能[J].高分子材料科学与工程,2011,8:91-94.
    [112]毛淑才.聚四氟乙烯/聚丙烯酸酯微观复合改性乳液的制备及性能与应用研究[D].广州:华南理工大学,2005.
    [113]李翾.丙烯酸树脂乳液/水分散异氰酸酯无甲醛人造板胶黏剂的制备与黏合性能研究[D].西安:陕西科技大学,2012.
    [114] Jiang Z, Du Z. A novel copolymerizable surfactant and its application based onconcentrated emulsion polymerization[J]. Colloid and Polymer Science,2005,283(7):762-772.
    [115] Holmberg K. Polymerizable surfactants[J]. Progress in Organic Coatings,1992,20(3-4):325-337.
    [116] Xu X J, Goh H L, Siow K S, Gan L M. Synthesis of Polymerizable Anionic Surfactantsand Their Emulsion Copolymerization with Styrene[J]. Langmuir,2001,17(20):6077-6085.
    [117] Fu Guodong, Li Guoliang, Neoh K G, et al. Hollow polymeric nanostructures-synthesis,morphology and function [J]. Progress in Polymer Science,2011,36(1):127-167.
    [118] Yang Shifang, Xiong Pingting, Gong Tao, et al. St-BA copolymer emulsions preparedby using novel cationic maleic dialkyl polymerizable emulsifier[J]. European PolymerJournal,2005,41(12):2973-2979.
    [119] Koukiotis C G, Karabela M M, Sideridou I D. Mechanical properties of films of latexesbased on copolymers BA/MMA/DAAM and BA/MMA/VEOVA-10/DAAM and thecorresponding self-crosslinked copolymers using the adipic acid dihydrazide ascrosslinking agent [J]. Progress in Organic Coatings,2012,75(1-2):106-115.
    [120] Abele S, Gauthier C, Graillat C, et al. Films from styrene-butyl acrylate lattices usingmaleic or succinic surfactants: mechanical properties, water rebound and grafting ofthe surfactants[J]. Polymer,2000,41(3):1147-1155.
    [121] Unzué M J, Schoonbrood H A S, Asua J M, et al. Reactive surfactants in heterophasepolymerization. VI. Synthesis and screening of polymerizable surfactants (surfmers)with varying reactivity in high solids styrene-butyl acrylate-acrylic acid emulsionpolymerization[J]. Journal of Applied Polymer Science,1997,66(9):1803-1820.
    [122] Nagai K, Satoh H, Kuramoto N. Polymerization of surface-active monomers:7.Radical copolymerizations of anionic surface-active monomer, sodiumdi(10-undecenyl)sulfosuccinate, with electron-accepting monomers and vinylmonomers in micellar and isotropic solutions[J]. Polymer,1993,34(23):4969-4973.
    [123] Bá ez M V, Robinson K L, Vamvakaki M, et al. Synthesis of novel cationic polymericsurfactants[J]. Polymer,2000,41(24):8501-8511.
    [124] Montoya-Go i A, Sherrington D C. Reactive surfactants in heterophase polymerisation:XXIII. Synthesis and characterisation of novel dialkyl maleate cationic surfmers[J].Polymer,1999,40(4):1067-1079.
    [125] Cochin D, Zana R, Candau F. Photopolymerization of micelle-forming monomers.2.Kinetic study and mechanism[J]. Macromolecules,1993,26(21):5765-5771.
    [126] bele S, Sj berg M, Hamaide T, et al. Reactive Surfactants in HeterophasePolymerization.10. Characterization of the Surface Activity of New PolymerizableSurfactants Derived from Maleic Anhydride[J]. Langmuir,1997,13(2):176-181.
    [127] Nagai K, Igarashi Y, Taniguchi T. Preparation of carbon black dispersion withenhanced stability by aqueous copolymerization of a polymerizable surfactant[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,1999,153(1-3):161-163.
    [128] Favresse P, Laschewsky A, Emmermann C, et al. Synthesis and free radicalcopolymerisation of new zwitterionic monomers: amphiphilic carbobetaines based onisobutylene[J]. European Polymer Journal,2001,37(5):877-885.
    [129] Lacroix-Desmazes P, Guyot A. Reactive surfactants in heterophase polymerization.2.maleate based poly(ethylene oxide) macromonomers as steric stabilizer precursors inthe dispersion polymerization of styrene in ethanol-water media[J]. Macromolecules,1996,29(13):4508-4515.
    [130] Ferguson P, Sherrington D C, Gough A. Preparation, characterization and use inemulsion polymerization of acrylated alkyl ethoxylate surface-active monomers[J].Polymer,1993,34(15):3281-3292.
    [131] Abele S, Zicmanis A, Graillat C, et al. Cationic and zwitterionic polymerizablesurfactantsquaternary ammonium dialkyl maleates.2. emulsion polymerization ofstyrene and butyl acrylate[J]. Langmuir,1998,15(4):1045-1051.
    [132]孙迎利.阳离子型可聚合乳化剂的合成及应用研究[D].大连:大连理工大学,2008.
    [133]戴明明.功能性单体作用下无皂苯丙乳液的合成与性能研究[D].武汉:湖北大学,2011.
    [134] Reb P, Margarit P K, Klapper M, et al. Polymerizable and nonpolymerizableisophthalic acid derivatives as surfactants in emulsion polymerization[J].Macromolecules,2000,33(21):7718-7723.
    [135] Peng Yuxing, Zheng Zhaohui, Ding Xiaobin, et al. Nanometer polymer latex dispersionand its application in water-based coating[J]. Progress in Organic Coatings,2003,48(2-4):161-163.
    [136] Urquiola M B, Dimonie V L, Sudol E D, et al. Emulsion polymerization of vinylacetate using a polymerizable surfactant. I. Kinetic studies[J]. Journal of PolymerScience Part A: Polymer Chemistry,1992,30(12):2619-2629.
    [137] Taued K, Kosmella S. Synthesis, characterization and application of surface activeinitiators[J]. Polymer International,1993,30(2):253-258.
    [138] Vidal F, Guillot J, Guyot A. Surfactants with transfer agent properties (transurfs) instyrene emulsion polymerization[J]. Colloid and Polymer Science,1995,273(11):999-1007.
    [139] Soula O, Guyot A, Williams N, et al. Styrenic surfmer in emulsion copolymerization ofacrylic monomers. II. Copolymerization and film properties[J]. Journal of PolymerScience Part A: Polymer Chemistry,1999,37(22):4205-4217.
    [140] Thenoz F, Soula O, Guyot A. Reactive surfactants in heterophase polymerization. XXV.Core-shell lattices stabilized with a mixture of maleic anionic and styrenic nonionicsurfactants[J]. Journal of Polymer Science Part A: Polymer Chemistry,1999,37(13):2251-2262.
    [141] Bui C, Lassau C, Charleux B, et al. Application of a non-ionic amphiphilic maleicdiester as polymerizable surfactant in free-radical emulsion polymerization[J]. PolymerBulletin,1999,42(3):287-294.
    [142] Greene B W, Saunders F L. In situ polymerization of surface-active agents on latexparticles: III. The electrolyte stability of styrene/butadiene latexes[J]. Journal ofColloid and Interface Science,1970,33(3):393-404.
    [143] Xu X J, Siow K S, Wong M K, Gan L M. Microemulsion polymerization of styreneusing a polymerizable nonionic surfactant and a cationic surfactant[J]. Colloid andPolymer Science,2001,279(9):879-886.
    [144] Guyot A. Advances in reactive surfactants[J]. Advances in Colloid and InterfaceScience,2004,108-109(0):3-22.
    [145] Lacroix-Desmazes P, Guyot A. Reactive surfactants in heterophase polymerization[J].Polymer Bulletin,1996,37(2):183-189.
    [146]王海花.环保型水性聚氨酯分子结构与动态流变和胶膜性能的相关性研究[D].西安:陕西科技大学,2008.
    [147] Mequanint K, Sanderson R, Pasch H. Phosphated polyurethane-acrylic dispersions:synthesis, rheological properties and wetting behavior[J]. Polymer,2002,43(19):5341-5346.
    [148] Shim S E, Jung H, Lee K, et al. Dispersion polymerization of methyl methacrylate witha novel bifunctional polyurethane macromonomer as a reactive stabilizer[J]. Journal ofColloid and Interface Science,2004,279(2):464-470.
    [149]王锋.聚氨酯/聚甲基丙烯酸甲酯水分散体的合成[D].长沙:湖南大学,2004.
    [150]瞿金清,陈焕钦.水性聚氨酯-丙烯酸杂合乳液涂料研究进展[J].高分子材料科学与工程,2003,19(2):43-47.
    [151]戴晶滨.聚氨酯/聚丙烯酸酯复合乳液的制备和性能[D].杭州:浙江大学,2008.
    [152]岳杰,沈一丁,赖小娟. PU/PA核壳乳液/水分散异氰酸酯交联成膜机理及其性能研究[J].功能材料,2012,43(7):851-854.
    [153]刘敬松,沈一丁,赖小娟.丙烯酸酯改性水性聚氨酯胶黏剂的制备及性能[J].化工进展,2010,29(4):699-703.
    [154]王丽娜.水性聚氨酯丙烯酸酯的合成及在UV皮革涂饰剂中的应用[D].北京:北京化工大学,2007.
    [155]李刘佳.聚氨酯/丙烯酸酯共聚物乳液的合成及其在织物整理上的应用[D].北京:北京化工大学,2013.
    [156]吴跃焕.木器涂料用高固含量苯乙烯-丙烯酸酯微乳液的合成及其机理研究[D].广州:华南理工大学,2003.
    [157]周善康,许一婷,庄志强,等.软段PEG含量对水性聚氨酯涂膜结晶性的影响[J].厦门大学学报(自然科学版),2000,39(3):348-352.
    [158]赵永超.以聚合物乳液为成膜物的特性涂料的制备及其应用研究[D].长春:吉林大学,2011.
    [159] Sow C, Riedl B, Blanchet P. Kinetic studies of UV-waterborne nanocompositeformulations with nanoalumina and nanosilica[J]. Progress in Organic Coatings,2010,67(2):188-194.
    [160]贾艳华.水性双组分聚氨酯涂料的制备与应用[D].天津:河北工业大学,2008.04.
    [161] Dvorchak M. Using“High performance two-component waterborne polyurethane”wood coatings[J]. Journal of Coatings Technology,1997,69(866):47-52.
    [162] Guo Yuhua, Guo Jian-jun, Miao Hui, et al. Properties and paper sizing application ofwaterborne polyurethaneemulsions synthesized with isophorone diisocyanate[J].Progress in Organic Coatings,2014,77:988-996.
    [163] Meng Qingbo, Lee Sung-Il, Nah Changwoon, et al. Preparation of waterbornepolyurethanes using an amphiphilic diol for breathable waterproof textile coatings[J].Progress in Organic Coatings,2009,66:382-386.
    [164]姜英涛.涂料工艺(修订本),第五分册[M].北京:化学工业出版社,1992:410.
    [165] Lewandowski K, Krepski L R, Mickus D E. Dry-peelable temporary protectivecoatings from waterborne self-crosslinkable sulfourethane-silanol dispersions[J].Journal of Applied Polymer Science,2004,91(3):1443-1449.
    [166] S.S. Pathak, A. Sharma, A.S. Khanna.Value addition to waterborne polyurethane resinby silicone modification for developing high performance coating on aluminumalloy[J].Progress in Organic Coatings,652009,65:206-216.
    [167] Rink H P, Mayer B. Water-based coatings for automotive refinishing[J]. Progress inOrganic Coatings,1997,34(1-4):175-180.
    [168]陈宗明.多重交联改性无溶剂聚氨酯-丙烯酸酯水性木器漆的制备及应用基础研究
    [D].西安:陕西科技大学,2013.
    [169]刘天亮.高档木器涂料用水性聚氨酯丙烯酸酯复合乳液的合成研究[D].广州:华南理工大学,2010.
    [170] Mequanint K, Sanderson R. Self-assembling metal coatings from phosphated andsiloxane-modified polyurethane dispersions: An analysis of the coating-air interface[J].Applied Polymer Science,2003,88(4):893-899.
    [171]鲍亮,徐洪耀,吴振玉.3-氨基丙基三乙氧基硅烷改性水性聚氨酯的研究[J].高分子材料科学与工程,2007,23(2):250-253.
    [172]王萃萃,王秋梅,戴震.硅烷偶联剂KH-602改性水性聚氨酯的研究[J].涂料技术与文摘,2010(5):23-27.
    [173]卫晓利,张发兴.氨丙基氨乙基三甲氧基硅烷改性磺酸型水性聚氨酯[J].中国皮革,2009,38(7):12-18.
    [174]沈一丁,杨燕,赖小娟.硅烷改性自交联水性聚氨酯的合成及其涂膜性能研究[J].涂料工业,2010,40(8):25-29.
    [175] Damrongsakkul S, Sinweeruthai R, Higgins J S. Processability and chemical resistanceof the polymer blend of thermo plastic polyurethane andpolydimethylsiloxane[J].Macromolecular Symposia,2003,198:411-419.
    [176] Bao Lihong,Lan yunjun,Zhang Shufen. Synthesis and properties of waterbornepolyurethane dispersions with ions in the soft segments[J]. Journal of PolymerResearch,2006,13(6):507-514.
    [177]王锋,胡剑青,涂伟萍.羧基含量对UV固化PUA/EA核壳复合乳液性能的影响.化工学报,2011,62(2):532-538.
    [178]杜娟,郝俊松,李再峰.室温固化水性聚氨酯树脂的耐水性研究[J].涂料工业,2010,40(2):59-61,69.
    [179] Paul S, Verenich S, Pourdeyhimi B. Blending polypropylene with glycidylmethacrylate-containing polymer to improve adhesion to elastomers[J]. PolymerInternational,2008,57(8):975-981.
    [180] Yang Jenming, Lin Haotzu, Lai Wenchin. Properties of modified hydroxyl-terminatedpolybutadiene based polyurethane membrane[J].Journal of MembraneScience,2002,208:105-117.
    [181] Lee J M, Kim J S, Cheong I W, et al. Synthesis, characterization, and mechanicalproperty of poly(urethane-glycidyl methacrylate-methyl methacrylate) hybridpolymers[J]. Journal of Applied Polymer Science,2011,121(6):3111-3121.
    [182] Brown R A, Coogan R G, Fortier D G, et al. Comparing and contrasting the propertiesof urethane/acrylic hybrids with those of corresponding blends of urethane dispersionsand acrylic emulsions[J]. Progress in Organic Coatings,2005,52(1):73-84.
    [183] Peruzzo P J, Anbinder P S, Pardini O R, et al. Waterborne polyurethane/acrylate:Comparison of hybrid and blend systems[J]. Progress in Organic Coatings,2011,72(3):429-437.
    [184] Dawlee S, Jayakrishnan A, Jayabalan M. Studies on novel radiopaque methylmethacrylate: glycidyl methacrylate based polymer for biomedical applications[J].Journal of Materials Science: Materials in Medicine,2009,20(0):243-250.
    [185] Vijayendran B R, Derby R, Bruce A G. Aqueous polyurethane-vinyl polymerdispersions for coating applications[P]. US Patent:5173526,1992-12-22.
    [186] Chao Fongtien, Mao Chungling, Jeanine M S, et al. Low temperature crossinglinkingaqueous dispersions of urethane-vinyl polymers for coating applications[P]. USPatent:5977215,1999-11-02.
    [187] Li Q, Wang D, Elisseeff J H. Heterogeneous-Phase Reaction of Glycidyl Methacrylateand Chondroitin Sulfate: Mechanism of Ring-Opening-TransesterificationCompetition[J]. Macromolecules,2003,36(7):2556-2562.
    [188] Reis A V, Fajardo A R, Schuquel I T A, Guilherme M R, Vidotti G J, Rubira A F, MunizE C. Reaction of Glycidyl Methacrylate at the Hydroxyl and Carboxylic Groups ofPoly(vinyl alcohol) and Poly(acrylic acid): Is This Reaction Mechanism StillUnclear?[J]. The Journal of Organic Chemistry,2009,74(10):3750-3757.
    [189] Chai Shuling, Li Guoping, Xu Houcai, et al. Studies on the diameter of micelle of PUAhybrid emulsions [J].Polymer Materials Science&Engineering,2005,2:65-68.
    [190] Chai Shuling, Jin Martinming, Tan Huimin. Comparative study between core–shell andinterpenetrating network structure polyurethane/polyacrylate composite emulsions[J].European Polymer Journal,2008,44(10):3306-3313.
    [191] Mu Yuanchun, Qiu Teng, Li Xiaoyu. Monodisperse and multilayer core–shell latex viasurface cross-linking emulsion polymerization[J]. Materials Letters,2009,63(18–19):1614-1617.
    [192] Rippel M M, Leite C A P, Lee L T, et al. Formation of calcium crystallites in drynatural rubber particles[J]. Journal of Colloid and Interface Science,2005,288(2):449-456.
    [193] K stner U. The impact of rheological modifiers on water-borne coatings[J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,2001,183-185:805-821.
    [194] Adler H J, Jahny K, Vogt-Birnbrich B. Polyurethane macromers-new building blocksfor acrylic hybrid emulsions with outstanding performance[J]. Progress in OrganicCoatings,2001,43(4):251-257.
    [195] Zheng Jie, Shen Tengfei, Ma Jianying, et al. Physicochemical studies on micelleformation of amphiphilic polyurethane in aqueous solution[J]. Chemical PhysicsLetters,2011,502(4-6):211-216.
    [196] Makarewicz E, Jańczak K. The influence of structure parameters and property ofsurface-active agents on stability of water dispersions of PVC plastisol[J]. Progress inOrganic Coatings,2004,49(2):165-179.
    [197] Filip D, Macocinschi D, Vlad S. Micellar behavior of some amphiphilic blockpolyurethanes in aqueous/nonaqueous media[J]. European Polymer Journal,2012,48(3):464-471.
    [198] Dong A, An Y, Feng S, et al. Preparation and Morphology Studies of Core-Shell TypeWaterborne Polyacrylate-Polyurethane Microspheres[J]. Journal of Colloid andInterface Science,1999,214(1):118-122.
    [199] Zhou Xinhua, Tu Weiping, Hu Jianqing. Preparation and Characterization ofTwo-component Waterborne Polyurethane Comprised of Water-soluble Acrylic Resinand HDI Biuret[J]. Chinese Journal of Chemical Engineering,2006,14(1):99-104.
    [200] Li Lulu, Cheng Chong, Xiang Tao, et al. Modification of polyethersulfonehemodialysis membrane by blending citric acid grafted polyurethane and itsanticoagulant activity[J]. Journal of Membrane Science,2012,405-406:261-274.
    [201] Xu Min, Zhang Tao, Gu Bing, et al. Synthesis and Properties of NovelPolyurethane-Urea/Multiwalled Carbon Nanotube Composites[J]. Macromolecules,2006,39(10):3540-3545.
    [202] Shen Yiding, Wang Xiaorong, Lai Xiaojuan, et al. Synthesis and Mechanical Propertiesof Membranes Prepared from Hydroxyl-Terminated Polyurethane Alcohol DispersionModified by Epoxy Resin[J]. Polymer-Plastics Technology and Engineering,2012,51(11):1077-1082.
    [203] Chen Guannan, Chen Kannan. Hybridization of aqueous-based polyurethane withglycidyl methacrylate copolymer[J]. Journal of Applied Polymer Science,1999,71(6):903-913.
    [204] Zhang Shubao, Jiang Huiming, Xu Yingmei, et al. Thermal and crystalline propertiesof water-borne polyurethanes based on IPDI, DMPA, and PEBA/HNA[J]. Journal ofApplied Polymer Science,2007,103(3):1936-1941.
    [205]冯玉红.现代仪器分析实用教程[M].北京:北京大学出版社,2008:330.
    [206] Zhang Xiaolong, Li Ming, Shi Zuosen, et al. Design, Synthesis, and Characterizationof Crosslinkable Doped NLO Materials Based on Polyurethanes ContainingSpindle-Type Chromophores[J]. Macromolecular Chemistry and Physics,2011,212(9):879-886.
    [207] Peltonen J, J rn M, Areva S, et al. Topographical Parameters for Specifying aThree-Dimensional Surface[J]. Langmuir,2004,20(22):9428-9431.
    [208] Biemond G J E, Braspenning K, Gaymans R J. Polyurethanes with monodisperse rigidsegments based on a diamine-diamide chain extender[J]. Journal of Applied PolymerScience,2008,107(4):2180-2189.
    [209] Loan S, Lupu M, Epure V, et al. Macromolecular assemblies of segmented poly(esterurethane)s and poly(ether urethane)s[J]. Journal of Applied Polymer Science,2008,107(3):1414-1422.
    [210] Yang Hongli, Zhang Xiumei, Duan Lijie, et al. Synthesis and characterization offluorescent PEG-polyurethane with free carboxyl groups[J]. Journal of PolymerResesrch,2012,19(9):1-7.
    [211] Potolinca V, Buruiana E, Oprea S. Dielectric behavior of polyurethane andpolyurethane-urea elastomers with pyridine moieties in the main chain[J]. Journal ofPolymer Resesrch,2013,20(9):1-9.
    [212] Wang Lei, Shen Yiding, Lai Xiaojuan, et al. Synthesis and properties of crosslinkedwaterborne polyurethane[J]. Journal of Polymer Resesrch,2011,18(3):469-476.
    [213] Blum,Harald. Self-crosslinking polyurethane,polyurethane polyurea or polyureadispersions for sizing agents[P].US patent:6586523,2003-07-01.
    [214] Lee K H, Kim B K.Structure-property relationships of polyurethane anionomeracrylates[J].Polymer,1996,37(11):2251-2257.
    [215] Athawale V D, Kulkarni M A.Core-shell and interpenetrating-network PU/AChybrids: Synthesis and comparison waterborne-polyurethane/polyacrylate hybriddispersions[J].Pigment&ResinTechnology,2010,39(3):141-148.
    [216]颜财彬,傅和青.水性聚氨酯的改性研究进展[J].化工进展,2011,30(12):2658-2664.
    [217] Zhang Tong, Wu Wenjian, Wang Xiaojie, et al. Effect of average functionality onproperties of UV-curable waterborne polyurethane-acrylate[J]. Progress in OrganicCoatings,2010,68(3):201-207.
    [218] Nakayama Y. Development of novel aqueous coatings which meet the requirements ofecology-conscious society: Novel cross-linking system based on thecarbonyl-hydrazide reaction and its applications[J]. Progress in Organic Coatings,2004,51(4):280-299.
    [219] Christoph Irle, Harald Blum, Wolfgang Kremer, et al. Self-crosslinkablepolyurethane-polyacrylate hybrid dispersions[P].US Patent:6063861,2000-05-16.
    [220] Tillet G, Boutevin B, Ameduri B. Chemical reactions of polymer crosslinking andpost-crosslinking at room and medium temperature[J]. Progress in Polymer Science,2011,36(2):191-217.
    [221] Mestach DEP, Weber MJJ, Delaunoit G, et al. Aqueous crosslinkable polymercompositions for use in coatings[P]. EP Patent:989163,2000-03-29.
    [222] Hirose M, Zhou J, Nagai K. Structure and properties of acrylic-polyurethane hybridemulsions[J]. Progress in Organic Coatings,2000,38(1):27-34.
    [223] Fadida T, Lellouche J P. Poly-N-(4-benzoylphenyl)methacrylamide nanoparticles:preparation, characterization, and photoreactivity features[J]. Journal of PolymerResesrch,2012,19(12):1-12.
    [224] He Libing, Chao Danming, Wang Xitao, et al. Synthesis and properties of novelelectroactive poly(aryl ether ketone) bearing oligoaniline segments[J]. Journal ofPolymer Resesrch,2012,19(12):1-8.
    [225] Owens D K, Wendt R C. Estimation of the surface free energy of polymers[J]. Journalof Applied Polymer Science,1969,13(8):1741-1747.
    [226] Joki K F, Pakkanen T T. Incorporation of polydimethylsiloxane into polyurethanes andcharacterization of copolymers[J]. European Polymer Journal,2011,47(8):1694-1708.
    [227] Alarcia F, Cal J C, Asua J M. Continuous production of specialty waterborne adhesives:Tuning the adhesive performance[J]. Chemical Engineering Journal,2006,122(3):117-126.
    [228] Bai Chenyan, Zhang Xingyuan, Dai Jiabing, et al. Water resistance of the membranesfor UV curable waterborne polyurethane dispersions[J]. Progress in Organic Coatings,2007,59(4):331-336.
    [229] Braga M, Costa C A R, Leite C A P, Galembeck F. Scanning electric potentialmicroscopy imaging of polymer latex films: Detection of supramolecular domains withnonuniform electrical characteristics[J]. Journal of Physical Chemistry B,2001,105(15):3005-3011.
    [230] Jia Qingming, Zheng Maosheng, Shen Renjie, et al. Synthesis, characterization andproperties of organoclay-modified polyurethane/epoxy interpenetrating polymernetwork nanocomposites[J]. Polymer International,2006,55(3):257-264.
    [231] Wang Xin, Xing Weiyi, Zhang Ping, et al. Covalent functionalization of graphene withorganosilane and its use as a reinforcement in epoxy composites[J]. CompositesScience and Technology,2012,72(6):737-743.
    [232] Lai Xiaojuan, Shen Yiding, Wang Lei. Preparation and properties of self-crosslinkablepolyurethane/silane hybrid emulsion[J]. Journal of Polymer Research,2011,18(6):2425-2433.
    [233] Zhu Xiaoli, Zhang Qingsi, Liu Leili, et al. Synthesis and characterization of a newcompound bearing ketone and hydroxyl groups for preparation of ambient temperatureself-crosslinking waterborne polyurethanes[J]. Progress in Organic Coatings,2007,59(4):324-330.
    [234] Liu Xiang, Fan Xiaodong, Tang Minfeng, et al. Synthesis and characterization ofcore-shell acrylate based latex and study of its reactive blends[J]. International JournalMolecular Sciences,2008,9(3):342-354.
    [235] Riess G, Labbe C. Block Copolymers in emulsion and dispersion polymerization[J].Macromolecular Rapid Communications,2004,25(2):401-435.
    [236] Guyot A. Recent progress in reactive surfactants in emulsion polymerisation[J].Macromolecular Symposia,2002,179(1):105-132.
    [237] Darwish M A, Machunsky S, Peuker U, et al. Magnetite core-shell nano-compositeswith chlorine functionality: preparation by miniemulsion polymerization andcharacterization[J]. Journal of Polymer Research,2011,18(1):79-88.
    [238] Preda N, Enculescu M. Synthesis and characterization of bead-like particles based onchitosan and vinyl polymers[J]. Journal of Polymer Research,2012,19(9):1-9.
    [239] Lee H T, Wang C C. Synthesis and properties of aqueouspolyurethane/polytert-butylacrylate hybrid dispersions[J]. Journal of Polymer Research,2005,12(4):271-277.
    [240] Li Xiaorui, Wang Xiaorong, Shen Yiding, et al. Synthesis and characterization ofself-crosslinked polyurethane/polyacrylate composite emulsion based oncarbonyl-hydrazide reaction[J]. Journal of Polymer Research,2013,20(11):1-9.
    [241] Wang Xiaorong, Shen Yiding, Lai Xiaojuan. Micromorphology and mechanism ofpolyurethane/polyacrylate membranes modified with epoxide group[J]. Progress inOrganic Coatings,2014,77(1):268-276.
    [242] Xu Wei, An Qiufeng, Hao Lifen, et al. Synthesis and characterization ofself-crosslinking fluorinated polyacrylate soap-free latices with core–shell structure[J].Applied Surface Science,2013,268:373-380.
    [243] Wang Xinbo, Huang Longnan. Kinetics and latex particles analysis on styreneemulsion polymerization induced by60Co γ rays in presence of anionic polymerizableemulsifier[J]. Journal of Polymer Research,2010,17(2):241-246.
    [244] Capek I. Surface active properties of polyoxyethylene macromonomers and their rolein radical polymerization in disperse systems[J]. Advances in Colloid and InterfaceScience,2000,88(3):295-357.
    [245] Xu Xiaojun, Chen Fengxi. Semi-continuous emulsion copolymerization of butylmethacrylate with polymerizable anionic surfactants[J]. Polymer,2004,45(14):4801-4810.
    [246] Gao Baojiao, Yu Yaming, Jiang Libing. Studies on micellar behavior of anionic andsurface-active monomers with acrylamide type in aqueous solutions[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2007,293(1-3):210-216.
    [247] Uaulina I, Zicmanis A, Graillat C, et al. Synthesis of polymer colloids usingpolymerizable surfactants. Macromolecular Chemistry and Physics,2001,202:3126-35.
    [248] Cochin D, Laschewsky A, Nallet F. Emulsion Polymerization of Styrene UsingConventional, Polymerizable, and Polymeric Surfactants. A Comparative Study[J].Macromolecules,1997,30(8):2278-2287.
    [249] Guillaume J L, Pichot C, Guillot J. Emulsifier-free emulsion copolymerization ofstyrene and butyl acrylate. I. Kinetic studies in the absence of surfactant[J]. Journal ofPolymer Science Part A: Polymer Chemistry,1990,28(1):119-136.
    [250] Ito F, Makino K, Ohshima H, et al. Hydrophilicity of composite latex particlesprepared with a particular seeded emulsion polymerization techniques[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2004,242(1-3):71-77.
    [251] Zhou Jianhua, Zhang Lin, Ma Jianzhong. Fluorinated polyacrylate emulsifier-freeemulsion mediated by poly(acrylic acid)-b-poly(hexafluorobutyl acrylate)trithiocarbonate via initio RAFT emulsion polymerization[J]. Chemical EngineeringJournal,2013,223:8-17.
    [252] Fang Zhanjian, Wang Shimin, Zhao Lei, et al. Preparation and characterization ofacrylic-based luminescent nanomaterials by in-situ emulsifier-free emulsioncopolymerization[J]. Materials Letters,2008,62(6-7):1085-1088.
    [253] Takahashi K, Nagai K. Preparation of reactive polymeric microspheres by seededcopolymerization using a polymerizable surfactant bearing an active ester group[J].Polymer,1996,37(7):1257-1266.
    [254] Desai S, Thakore I M, Brennan A, et al. Thermomechanical properties and morphologyof interpenetrating polymer networks of polyurethane–poly(methyl methacrylate)[J].Journal of Applied Polymer Science,2002,83(7):1576-1585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700