用户名: 密码: 验证码:
人工诱导贝类雄核发育的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雄核发育(Androgenesis)是指后代的遗传物质完全来自父本的特殊的有性生殖方式。人工诱导雄核发育的原理是利用物理或化学方法等使卵子遗传失活,与正常精子受精,卵仅靠雄核发育成胚胎,而后通过抑制第一次卵裂使单倍体胚胎的染色体加倍发育成雄核二倍体个体。由于雄核发育后代的遗传物质完全来自父本,加倍后各基因位点均处于纯合状态,因而可以用于快速建立纯系,进行遗传分析。此外,雄核发育技术与精子冷藏技术相结合还可以成为物种保护的重要手段。γ射线、X射线和紫外线经常被用作失活卵子染色体的有效手段,其中紫外线更以其使用方便、安全廉价的优点被广泛应用。温度休克、静水压处理和化学药物诱导则是常见的加倍方法。在鱼类中,已有许多学者对失活卵子遗传物质和加倍雄核发育单倍体的有效措施进行了研究,并成功地诱导出雄核发育二倍体。然而人工诱导贝类雄核发育的研究在国内外还很少报道。本研究以栉孔扇贝(Chlamys farreri)和太平洋牡蛎(Crassostrea gigas)为研究对象,筛选出紫外线诱导雄核发育的适宜参数,并对诱导的受精细胞学过程进行了观察和探讨。
     一、探讨了紫外线照射对栉孔扇贝和太平洋牡蛎卵子遗传失活的作用。用中心波长为254nm的不同紫外线剂量处理栉孔扇贝和太平洋牡蛎卵子,使其失去遗传活性,然后与正常精子授精,诱导雄核发育单倍体。受精率、D形幼虫发生率及染色体分布频率表明:在强度为2.8mW·cm~(-2)·s~(-1)的紫外线下分别照射20s和30s是获得栉孔扇贝和太平洋牡蛎雄核发育单倍体的适宜条件。研究发现受精率和D形幼虫发生率随照射时间的增加而下降,遗传失活的卵子与正常精子受精后其胚胎发育至D形幼虫前期停止。实验中各处理组均出现非整倍体。出现的原因可能由于紫外线照射剂量对卵子染色体遗传失活的作用程度不同以及光线对DNA的修复作用。
     二、利用DAPI染色和荧光显微镜观察了栉孔扇贝、太平洋牡蛎正常卵子与雄核发育卵子在减数分裂、受精过程和卵裂早期中的核相变化。结果表明在两种贝类中,尽管紫外线照射并没有影响卵子的成熟分裂及雌性、雄性原核的形成,但使它们的发生过程滞后。在第1卵裂中期,雄核发育卵子中雌性原核并不像雄性原核一样形成染色体,而是形成1个浓缩的染色质小体(DCB)。第1卵裂后期,DCB不参与核分裂。第1卵裂结束时,DCB位于2个分裂球其中之一的细胞质内或在赤道板处被分割成
    
     人工诱导贝类雄核发育的研究
    两部分。实验结果提供了栉孔扇贝和太平洋牡蝠雄核发育的细胞学证据。
     三、尝试了利用6一DMAP抑制第一卵裂以诱导栉孔扇贝雄核发育二倍体。结果
    表明尽管部分单倍体胚胎的染色体能够加倍,却很难获得雄核发育二倍体D形幼虫。
    相比较而言,当培养温度为19℃时,授精后80 min用浓度为60仁岁ml的6一DMAP
    处理受精卵巧min诱导效果较好。细胞学观察表明,6一DMAP阻止了纺锤体的形成
    和染色体的移动,导致一个融合的二倍性雄性原核的形成。
Androgenesis is defined as all-paternal inheritance. Viable androgenetic diploids can be generated by inhibiting the first cleavage to double paternally derived chromosomes, after fertilization of genetically inactivated eggs with normal sperm. It is a technique that could facilitate the production of completely homozygous isogenic lines, examine sex determination, make genetic analysis, and protect endangered species. Gamma, X-ray and ultraviolet irradiation inactivation are the usual methods used to inactivate egg nuclei. Among them, UV irradiation has been widely used for the convenient facility, safety and relatively low cost. In many fish species, efficient procedures of genetically inactivating of eggs and restoring diploidy have been studied and achievements of successful diploid androgenesis were reported. In contrast, in mollusks, artificial induction of androgenesis has rarely been studied. In this study, optimum inductive parameters in the scallop (Chlamys farreri), and the Pacific oyster (Crassos
    trea gigas) were tested and cytological processes in induction were observed.
    Effects of ultraviolet irradiation on genetic inactivation of eggs were examined in these two species. UV irradiation of eggs for 20 s and 30 s respectively at a UV (254 nm) intensity of 2.8 mW- cm"2- s"1 were optimum doses to achieve haploid androgenesis of the scallop and the Pacific oyster on the basis of observations on the fertilization and development rates and chromosome constitutions. The rates of the fertilization and the development of D-shaped larvae decreased with increasing irradiation time, and the development of the genetically inactivated eggs fertilized with the normal sperm terminated before reaching the D-shaped stage. Aneuploids were found in these studies. Because ultraviolet irradiation is known to cause pyrimidine dimerization in the DNA helix, which prevents the replication of genome, the occurrence of these aneuploids is probably attributed to different degree of maternal chromosomal inactivation by UV irradiation and/or DNA repair.
    Nuclear changes in normal and androgenetic eggs of the above two species were examined under a fluorescence microscope during meiosis, fertilization and early
    
    
    development. Cytological processes in induction in the two species were almost the same. Although UV irradiation did not effect either meiotic maturation or the formation of the male and female pronuclei, their developmental progresses were delayed. At metaphase of the first cleavage, the female pronucleus in UV-irradiated eggs inseminated with the normal sperm did not form chromosome, unlike the male pronucleus, but became a dense chromatin body (DCB), which did not participate in the karyokinesis at anaphase of the first cleavage. At completion of cytokinesis of the first cleavage, the DCB was seen either in the cytoplasm of one of the two blastomeres or on the equatorial plate as two partitional parts. Cytological evidence of the induction of androgenesis was demonstrated.
    The induction of androgenesis diploids by suppression of the first cleavage in the scallop, C.farreri was attemped using the treatment of 6-dimethylaminopurine (6-DMAP). The result showed that it was difficult to induce diploid androgenetic D-shaped larvae. By comparison, treating the zygotes with 6-DMAP (60 ng/ml) at 80 min postinsemination for 15 min at water temperature of 19癈 produced more expected D-shaped larvae. According to Cytological observations, 6-DMAP disrupted the spindle at mitosis and inhibited chromosome movement, resulting in the formation of one diploid male nucleus.
引文
崔悦礼等.滇池高背鲫鱼雌核发育的研究.动物学研究,1982,3卷(增刊),237-242.
    范兆廷,宋苏祥.鱼类的雌核发育、雄核发育和杂种发育.水产学报,1993,17(2):179-187.
    姜卫国,魏贻尧,李刚.合浦珠母贝、长耳珠母贝和大珠母贝种间人工杂交的研究Ⅱ.受精过程和杂交后代的染色体观察.热带海洋,1983,2(4):316-320.
    李刚,姜卫国,魏贻尧.合浦珠母贝、长耳珠母贝和大珠母贝种间人工杂交的研究Ⅲ.同工酶谱的比较研究.热带海洋,1983,2(4):321-328.
    李冰霞,罗琛.热休克法抑制第一次卵裂实现草鱼雌核发育的细胞学观察.水生生物学报,2003,27(2):155-160.
    李传武,吴维新,徐大义,等.鲤和草鱼杂交中雄核发育子代的研究.水产学报,1990,14(2):153-156.
    李亚娟,毛连举,李霞,等.太平洋牡蛎人工诱导雌核发育精子遗传失活的初步研究.大连水产学院学报,2003,18(2):109-113.
    刘汉勤,易泳兰,陈宏溪.泥鳅雄核发育纯合二倍体的产生.水生生物学报,1987,11(3):341-348.
    刘静霞,周莉,赵振山,等.锦鲤4个人工雌核发育家系的微卫星标记研究.动物学研究,2002,23(2):97-105.
    楼允东.人工雌核发育及其在遗传学和水产养殖上的应用.水产学报,1986,10(1):111-123.
    潘英,李琪,于瑞海,等.虾夷扇贝人工诱导雌核发育精子遗传失活及紫外线照射对精子形态结构影响的初步研究.中国海洋大学学报,2003,已接收.
    任素莲,王德秀,王如才,等.太平洋牡蛎受精过程中的精核扩散与成熟分裂.海洋湖沼通报,1999,1:34-39.
    任素莲,王德秀,绳秀珍,等.栉孔扇贝(Chlamys farreri)受精过程的细胞学观察.海洋湖沼通报,2000,1:24-29.
    沈亦平,刘汀,姜河波,等.近江牡蛎受精的细胞学观察.武汉大学学报(自然科学版),1995,8:482-486.
    田传远,王如才,梁英,等.6-DMAP诱导太平洋牡蛎三倍体-抑制受精卵第二极体释放.中国水产科学,1999,6(2):1-4.
    汪德耀.普通细胞生物学.上海科学技术出版社,1988,133-208、339-346.
    王俐,吴衡,卢子靖,等.银鲫人工杂交试验中雄核发育现象的RAPD实验证据.复旦学报(自然科学版),1997,36(5):565-570.
    
    
    王梅林,郑家声,余海.栉孔扇贝染色体核型.青岛海洋大学学报,1990,20(1):81-85.
    王如才,王昭萍,张建中,等.海水贝类养殖学.青岛海洋大学出版社,1993.
    王昭萍,王如才,李洪刚,等.维生素及海水浸泡对牡蛎卵子的体外促熟作用.海洋湖沼通报,1997,2:70-75.
    魏贻尧,姜卫国,李刚.合浦珠母贝、长耳珠母贝和大珠母贝种间人工杂交的研究Ⅰ.人工杂交和杂交后代的观察.热带海洋,1983,2(4):309-315.
    吴清江,陈荣德,叶玉珍.鲤鱼人工雌核发育及其作为建立近交系新途径的研究.遗传学报,1981,8(1):50-55.
    吴清江,叶玉珍,陈荣德.雌核发育系红鲤8305的产生及其生物学特性.海洋与湖沼,1991,22(4):295-299.
    吴清江,桂建芳,等.鱼类遗传育种工程.上海科学技术出版社,1999.
    徐成,王可玲,徐永立,等.雌核发育牙鲆同工酶基因的重组及父方基因的表达.海洋与湖沼,2002,33(1):62-67.
    许国强,林岳光,李刚,等.人工诱导合浦珠母贝雌核二倍体发生及“Hertwig”效应的初步研究.热带海洋,1990,9(2):1-7.
    杨爱国,王清印,孔杰,等.6-二甲基氨基嘌呤诱导栉孔扇贝三倍体.水产学报,1999,23(3):241-247.
    杨爱国,王清印,孔杰,等.栉孔扇贝受精卵减数分裂的细胞学研究.中国水产科学,1999,6(3):96-98.
    杨爱国,王清印,孔杰,等.6-甲氨基嘌呤诱导栉孔扇贝三倍体的细胞学机理.海洋水产研究,2000,21(1):22-26.
    杨爱国,王清印,刘志鸿,等.虾夷扇贝×栉孔扇贝人工受精过程的荧光显微镜观察.海洋水产研究,2002,23(3):1-4.
    杨蕙萍,王如才,郭希明,等.栉孔扇贝四倍体的研究Ⅰ:细胞松弛素B诱导.青岛海洋大学学报,1997,27(2):166-172.
    叶玉珍,吴清江,陈荣德.60Co-γ射线诱导鱼类雄核发育的研究.水生生物学报,1990,1:91-92.
    俞豪祥.银鲫雌核发育的细胞学观察.水生生物学集刊,1982,7(4):481-487.
    俞豪祥等.天然雌核发育普安鲫生物学特性的研究.水生生物学报,1998,22(增刊):16-25.
    俞豪祥,吴锦忠,李平,等.雄核发育异育银鲫及其初步应用.水产学报,2002,24(1):17-21.
    袁媛,李琪,于瑞海.人工诱导栉孔扇贝雄核发育早期的荧光显微镜观察.中国水产科学,2003,5:419-424
    
    
    张国范.皱纹盘鲍人工诱导雌核发育精子遗传失活的初步研究.海洋科学,2001,25(10):37-39.
    赵洋.杂交扇贝的细胞遗传学研究[学位论文].中国海洋大学硕士论文,2003.
    赵振山,吴清江,黄峰.冷休克诱导大鳞副泥鳅雄核发育纯合二倍体的产生.华中农业大学学报,1997,(增)25:55-61.
    赵振山,吴清江.人工诱导大鳞副泥鳅雄核发育二倍体克隆鱼的产生.遗传学报,1998,25(5):416-421.
    赵振山,吴清江.大鳞副泥鳅雄核发育单倍体胚胎发育的研究.动物学研究,1999,20(3):230-234.
    赵振山,吴清江,高贵琴.鱼类雄核发育的研究进展.遗传,2000,22(2):109-113.
    周嘉申.黑龙江方正银鲫雌核发育的细胞学初步探讨.动物学报,1983,29(1):1-6.
    周莉,刘静霞,桂建芳.应用微卫星标记对雌核发育银鲫的遗传多样性初探.动物学研究,2001,22(4):257-264.
    Allen S K, Bushek D. Large-scale production of triploid oysters, Crassostrea virginica(Gmelin), using "stripped" gametes. Aquaculture, 1992, 103: 241-251.
    Arai k, Onozato H, Yamazaki F. Artificial androgenesis induced with gamma irradiation in masu salmon, Oncorhynchus masou. Bull Fac Fis Hokkaido Univ., 1979, 30(3): 181-186.
    Arai K, Naito F, Sasaki H, et al. Gynogenesis with ultraviolet ray irradiated sperm in the Pacific abalone. Bull. Jpn. Soc. Sci. Fish, 1984, 50: 2019-2023.
    Arai K, Masaoka T, Suzuki R. Optimum conditions of UV ray irradiatin for genetic inactivation of loach eggs. Nippon Suisan Gakkaishi, 1991, 58(7): 1197-1201.
    Arai K, Ikeno M, Siziki R. Production of androgenetic diploid loach Misgurmus anguillicaudatus using spermatozoa of natural tetraploids. Aquac, 1995, 137: 131-138.
    Arai K. Chromosome manipulation. Fish DNA: Molecular Genetic Approaches (in Japanese). Koseisha—Koseikaku, Tokyo, 1997, 32-62.
    Araki K. Androgenetic diploids of rainbow trout (Oncorhynchus mykiss) produced by fused sperm. Can. J. Fish. Aquat. Sci., 1995, 55(5): 892-896.
    Babiak I, Dobosz S, Goryczko K, et al. Androgenesis in rainbow trout using cryopreserved spermatozoa: the effect of processing and biological factors [J]. Theriogenol, 2002, 57: 1229-1249.
    Bercsenyi M, Magyary I, Urbanyi B, et al. Hatching out goldfish from common carp eggs: interspecific androgenesis between two cyprinid species. Genome, 1998, 41(4): 573-579.
    Bongers A B J, in't Veld E P C, Abo-Hashema K, et al. Androgenesis in common carp (Cyprinus carpio L.) using UV irradiation in a synthetic ovarian fluid and heat shocks. Aquac, 1994, 122:119-132.
    
    
    Bongers A B J, Boza Abarca J, Zandieh Doulabi B, et al. Maternal influence on development of androgenetic clones of common carp, Cyprinus carpio L. Aquac, 1995, 137:139-147.
    Briedis A, Elinson R P. Suppression of male pronuclear movement in frog eggs by hydrostatic pressure and deuterium oxide yields androgenetic haploids. J. Exp. Zool., 1982, 222: 45-57.
    Brown KH, Thorgaard GH. Mitochondrial and nuclear inheritance in an androgenetic line of rainbow trout, Oncorhynchus mykiss. Aquaculture, 2002, 204(3-4): 323-335.
    Byren M, Phelps H, Church T, et al. Reproduction and development of the freshwater clam Corbicula australis in southeast Australia. Hydrobiologia, 2002, 418(1): 185-197.
    Campos-Ramos R, Harvey SC, McAndrew BJ, et al. An investigation of sex determination in the Mozambique tilapia, Oreochromis mossambicus, using synaptonemal complex analysis, FISH, sex reversal and gynogenesis. Aquaculture, 2003, 221 (1-4): 125-140.
    Carter R E, Mair G C, Skibinski D O F, et al, The application of DNA fingerprinting in the analysis of gynogenesis in tilapia. Aquaculture, 1991, 95: 41-52.
    Castro J, Bouza C, S(?)nchez L. Gynogenesis assessment using microsatellite genetic markers in turbot. Mar Biotechnology, 2003, 5(6): 584-592.
    Cherfas N B. Investigation of radiation-induced diploid gynogenesis in the carp (Cyprinus carpio L.). Ⅱ. Segregation with respect to certain morphological traits in gynogenetic offspring. Genetika, 1977, 13(5): 557-562.
    Chourrout D. Pressure-induced retention of second polar body and suppression of first cleavage in rainbow trout: production of all-tetraploids, heterozygous and homozygous diploid gynogenetics. Aquaculture, 1984, 36:111-126
    Corley-Smith G E, Lim C J, Brandhorst B P. Production of androgenetic Zebrafish (Danio rerio). Genetics, 1996, 142: 1265-1276.
    Dabrowski K, Rinchard J, Lin F, et al. Induction of gynogenesis in muskellunge with irradiated sperm of yellow perch proves diploid muskellunge male homogamety. J. Exp. Zool., 2000, 287(1): 96-105.
    Desilet J, C Gicquaud, F Dube. An ultrastructural analysis of early fertilization events in the giant scallop, Placopecten magellanicus (Mollusca Pelecypoda). Invert Reprod Develop, 1995, 27: 115-129.
    Desrosiers R R, Gerard A, Peignon J M, et al. A novel method to produce triploids in bivalve mollusks by the use of 6-dimethylaminopurine. J Exp Mar Biol Ecol, 1993, 170(1): 29-43.
    Dub(?) F, Dufresne L, Coutu L, et al. Protein phosphorylation during activation of surf clam oocytes. Dev. Biol., 1991, 146: 473-482.
    
    
    Dufresne L, N(?)ant I, St-Pierre J, et al. Effects of 6-dimethylaminopurine on microtubules and putative intermediate filaments in sea urchin embryos. J cell Sci., 1991, 99(4): 721-730.
    Fairbrother J E. Viable gynogenetic diploid Mytilus edulis (L.) larvae produced by ultraviolet light irradiation and cytochalasin B shock. Aquaculture, 1994, 126: 25-34.
    Felip A, Martinez-Rodriguez G, Piferrer F, et al. AFLP analysis confirms exclusive maternal genomic contribution of meiogynogenetic sea bass (Dicentrarchus labrax L.). Mar. Biotechnol., 2000, 2(3): 301-306.
    Felip A, Piferrer F, Carrillo M, et al. Growth, gonadal development and sex ratios of meiogynogenetic diploid sea bass. J. Fish Biol., 2002, 61(2): 347-359.
    Fujino, K., Arai, K., Iwadare, K., et al. Induction of gynogenetic diploid by inhibiting second meiosis in the Pacific abalone. Nippon Suisan Gakkaishi, 1990, 56: 1755-1763.
    Galbusera P. Gynogenesis in the African catfish Clarias gariepinus (Burchell, 1822) Ⅲ. Induction of endomitosis and the presence of residual genetic variation. Aquaculture, 2000, 185(1-2): 25-42.
    Garcia-Abiado MA, Rinchard J, Dabrowski K, et al. Meiotic gynogenesis induction in muskellunge esox masquinongy by thermal and pressure shocks. J. World Aquacult. Soc., 2001, 32(2): 195-201.
    Gervai J, Csanyi V. Artificial gynogenesis and mapping of gene centromere distances in the paradise fish, Macropodus opercularis [Gene mapping]. Theoretical and applied genetics, 1984, 68(6): 481-485.
    Gheyas AA, Mollah MFA, Islam MS, et al. Cold-shock induction of diploid gynogenesis in stinging catfish, Heteropneustes fossilis. J. Appl. Aquacult., 2001, 11 (4): 27-40.
    Gillespie L L, Armstrong J B. Production of androgenetic diploid axolotls by suppression of first cleavage. J. Exp. Zool., 1980, 213: 423-425.
    Gillespie L L, Armstrong J B. Suppression of first cleavage in the Mesican axolotl (Ambystoma mexicanum) by heat shock or hydrostatic pressure. J. Exp. Zool., 1981, 218:441-445.
    Gomelsky B, Cherfas NB, Gissis A, et al. Induced diploid gynogenesis in white bass. Prog. Fish-Cult., 1998, 60(4): 288-292.
    Gomelsky B, Mims SD, Onders RJ, et al. Induced gynogenesis in black crappie. N. Am. J. Aquacult., 2000, 62(1): 33-41.
    Goswami U. Sperm density required for inducing gynogenetic haploidy in scallop Chlamys nobilis. Indian J Mar Sci., 1991, 20: 255-258.
    Goswami U. Induction of gynogenetic haploidy in oyster Crassostrea gigas, using ultraviolet irradiated
    
    sperm. Indian J Mar Sci., 1993, 22: 146-148.
    Grunina A S, Gomelsky B I, Neyfakh A A. Diploid androgenesis in pond carp. Genetika, 1990, 26(11): 2037-2043.
    Grunina A S, Gomelsky B I, Neyfakh A A. Production of androgenetic diploid hybrids between common carp and crucian carp. Genetika, 1991, 27(9): 1612-1616.
    Grunina A S, Recoubratsky A V, Neyfakh A A, et al. Induced diploid androgenesis in sturgeons. Sturgeon quarterly, 1995, 3(3): 6-7.
    Guo X, Hershberger W K, Cooper K, et al. Artificial gynogenesis with ultravoilet light-irradiated sperm in the Pacific oyster, Crassostrea gigas Ⅰ. Induction and survival. Aquaculture, 1993a, 113: 201-214.
    Guo X, Gaffney P M. Artificial gynogenesis with ultraviolet light-irradiated sperm in the Pacific oyster, Crassostrea gigas Ⅱ. Allozyme inheritance and early growth. Heredity, 1993b, 84:311-315.
    Guo X, Allen S K Jr. Sex determinnation and polyploid gigantism in the dwarf surfclam (Mulinia lateralis Say). Genetics, 1994, 138:1199-1206.
    Guo X, Hershberger W K, Cooper K, et al. Tetraploid induction with mitosis inhibition and cell fusion in the Pacific oyster (Crassostrea gigas Thunberg). J. Shellfish Res., 1994, 13:193-198
    Guo X, Allen Jr S K. Viable tetraploids in the Pacific oyster (Crassostrea gigas Thunberg) produced by inhibiting polar body 1 in eggs from triploids. Mol. Mar. Bio. Biotechnol., 1994b, 3(1), 42-50
    Guo X, DeBrosse G A, Allen Jr S K. All-triploid pacific oysters (Crassostrea gigas Thunberg) produced by mating tetraploid and diploids. Aquaculture, 1996, 142: 149-161.
    Gwo J C, Ohta H, Okuzawa K, et al. Crypreservation of sperm from the endangered formosan landlocked salmon (Oncorhynchus masou formosanua). Theriogenol, 1999, 51: 569-582.
    Han H, Taniguchi N, Tsujimura A. Production of clonal ayu by chromosome manipulation and confirmation by isozyme marker and tissue grafting. Nippon Suisan Gakkaishi, 1991, 57: 825-832.
    Hussain MG, Penman DJ, McAndrew BJ, et al. Production of heterozygous and homozygous clones in Nile tilapia. Aquaculture international: journal of the European Aquaculture Society, 1998, 6(3): 197-205.
    Ishibashi R, Komaru A, Ookubo K, et al. The second meiosis occurs in cytochalasin D-treated eggs of Corbicula leana even though it is not observed in control androgenetic eggs because the maternal chromosomes and centrosomes are extruded at first meiosis. Dev Bio, 2002, 244:37-43.
    Jenneckens I, Muller-Belecke A, Horstgen-Schwark G, et al. Proof of the successful development of
    
    Nile tilapia (Oreochromis niloticus) clones by DNA fingerprinting. Aquaculture, 1999, 173(1/4): 377-388.
    Kado K. Breeding and biotechnology of aquaculture species. Red sea bream. Youshoku, 1999, 36 (8): 70-74.
    Kato K, Hayashi R, Yuasa D, et al. Production of cloned red sea bream, Pagrus major, by chromosome manipulation. Aquaculture, 2002, 207(1/2): 19-27.
    Kijima A. Effect of UV irradiation on genetic inactivation of sperm using marketing tissue culture petri dish in the Pacific abalone Haliotis discus hannai. Agric Res, 1992, 42: 73-81.
    Kirankumar S, Pandian TJ. Production of androgenetic tiger barb, Puntius tetrazona. Aquaculture, 2003, 228(1-4): 37-51.
    Kobayashi Toru. Survival and cytological observations on early development of normal, hybrid and gynogenetic embryos of amago salmon. FISH. SCI., 1997, 63(1): 33-36.
    Kobayashi T, Ueno K. Cytological inspection on the optimum timing for retention of the second polar body in early gynogenetic eggs of amago salmon. Nippon Suisan Gakkaishi, 2000, 66(5): 840-845.
    Kobayasi H. Zool. Mag. 1971, 80: 314-322.
    Komaru A, Matsuda H, Yamakawa T, et al. Meiosis and fertilization of the Japanese pearl oyster eggs at different temperature observed with a fluorescence microscope. Nippon Suisan Gakkaishi, 1990, 56(3): 425-430.
    Komaru A, et al. Different processes of pronuclear events in pressure-treated and CB-treated zygotes at the second meiosis in scallop. Nippon Suisan Gakkaishi, 1991, 57(7): 1219-1223.
    Komaru A, Kawagishi T, Konishi K. Cytological evidence of spontaneous androgenesis in the freshwater clam Corbicura leana Prime. Dev Genes Evol, 1998, 208(1): 46-50.
    Komaru A, Ookubo K, Kiyomoto M. All meiotic chromosomes and both centrosomes at spindle pole in the zygotes discarded as two polar bodies in clam Corbicura leana: unusual polar body formation observed by antitubulin immunofluorescence. Dev Genes Evol, 2000, 210: 263-269.
    Komen J, Clone of common carp (Cyprinus carpio). Thesis of Doctor Degree, Wageningen Agriculture University, 1990.
    Kouichi Ohwada. Sex determination system of the rosy bitterling, Rhodeus ocellatus ocellatus. Environ. Biol. Fish., 1998, 52(1-3): 251-260.
    Krisfalusi M, Wheeler PA, Thorgaard GH, et al. Gonadal morphology of female diploid gynogenetic and triploid rainbow trout. J. Exp. Zool., 2000, 286(5): 505-512.
    
    
    Li Q, Osada M, Kashihara M, et al. Artificially induced gynogenetic diploid in the Pacific abalone, Haliotis discus hannai. Fish Genetics and Breeding Science, 1999a, 28: 85-94.
    Li Q, Osada M, Kashihara M, et al. Effects of ultraviolet irradiation on genetical inactivation and morphological structure of sperm of the Pacific abalone Haliotis discus hannai. Agricul Res, 1999b, 50(1-2): 1-10.
    Li Q, Osada M, Kashihara M, et al. Gynogenetic diploids induced by suppression of first cleavage in the Pacific oyster, Crassostrea gigas. Fish Genetics and Breeding Science, 2000a, 29: 37-48.
    Li Q, Osada M, Kashihara M, et al. Induction of gynogenetic diploids and cytological studies in the Pacific oyster, Crassostrea gigas. Suisanzoshoku, 2000b, 48(2): 185-191.
    Li Q, Osada M, Kashihara M, et al. Effects of ultraviolet irradiation on genetical inactivation and morphological structure of sperm of the Japanese scallop, Patinopecten yessoensis. Aquaculture, 2000c, 186 (3-4): 233-242.
    Li Q, Osada M, Kashihara M, et al. Cytological observations on nuclear behavior in normal and gynogenetic eggs of the Pacific oyster Crassostrea gigas. SUISANZOSHOKU, 2000c, 48(2): 193-198.
    Li Q, Osada M, Kashihara M, et al. Cytological studies on artificially induced gynogenesis in the Pacific abalone. Fish Sci, 2000, 66: 701-707.
    Li Q, Osada M, Kashihara M, et al. Effects of ultraviolet irradiation on genetical inactivation and morphological features of sperm of the Pacific oyster Crassostrea gigas. Fisheries Science, 2000f, 66(1): 91-96.
    Lieder V U. Biologisckes Zentralblatt. Heff., 1959, 2: 284-291.
    Lou Y D, Purdom C E. Diploid gynogenesis induced by hydrostatic pressure in rainbow trout, Salom gairdneri Rchardson. J Fish Biol, 1984, 24: 665-670.
    Ma A P H. Gynogenesis induction in the Pacific oyster (Crassostrea gigas Thunberg) using ultraviolet light and cytochalasin B. University of Washington, Seattle, 1987, USA.
    Marengoni NG, Onoue Y. Ultraviolet-induced androgenesis in Nile tilapia, Oreochromis niloticus (L.), and hybrid Nile x blue tilapia, O. aureus (Steindachner). Aquacult. Res., 1998, 29(5): 359-366.
    Masaoka T, Arai K, Suzuki R. Production of androgenetic diploid loach Misgurmus anguillicaudatus from UV irradiation eggs of the first cleavage. Fish Sci, 1995, 61(4): 716-717.
    May B, Henley K J, Krueger C C, et al. Androgenesis as a mechanism for chromosome set manipulation in brook trout (Salvelinus fontinalis). Aquac, 1988, 75: 57-70.
    Morishima K, Nakayama I, Arai K. Microsatellite-centromere mapping in the loach, Misgurnus anguillicaudatus. Genetica, 2001, 111 (1-3): 59-69.
    
    
    Muller-Belecke A, Horstgen-Schwark G. Performance testing of clonal Oreochromis niloticus lines. Aquaculture, 2000, 184(1/2): 67-76.
    Murakami M, Matsuba C, Fujitani H. Characterization of DNA markers isolated from the gynogenetic triploid ginbuna (Carassius auratus langsdorfi) by representational difference analysis. Aquaculture, 2002, 208(1-2): 59-68.
    Myers J M, Penman D J and Basavaraju Y et al. Induction of diploid androgenetic and mitotic gynogenetic Nile tilapia (Oreochromis niloticus L.). Theor. Appl. Genet., 1995, 90(2): 205-210.
    Nagoya H, Okamoto H, Nakayama I, et al. Production of Androgenetic diploids in amago salmon Oncorhynchus masou ishikawae. Fish Sci, 1996, 62(3): 380-383.
    Nagy A, Rajki K, Horvath L, et al. Investigation on carp, Cyprinus carpio L., gynogenesis. J. Fish Biol., 1978,13: 215-224.
    Nam YK, Cho YS, Cho HJ, et al. Accelerated growth performance and stable germ-line transmission in androgenetically derived homozygous transgenic mud loach, Misgurnus mizolepis. Aquaculture, 2002, 209(1-4): 257-270.
    N(?)ant I, Guerrier P. 6-Dimethylaminopurine blocks starfish oocyte maturation by inhibiting a relevant protein kinase activity. Exp. Cell Res., 1988, 176: 68-79.
    Neyfakh A A. The effect of ionizing radiation on gametes of the loach (Misgurnus fossilis L.). Dokl. Akad. Nauk. SSSR, 1956, 111(3): 585-588.
    Ocalewicz K, Babiak I. Primed in situ labelling detection of 5S rDNA sequences in normal and androgenetic rainbow trout. J. Fish Biol., 2003, 62(6): 1462-1466.
    Palti Y, Shirak A, Cnaani A, et al. Detection of genes with deleterious alleles in an inbred line of tilapia (Oreochromis aureus). Aquaculture, 2002, 206(3/4): 151-164.
    Pandian T J, Kooteeswaran R. Ploidy induction and sex control in fish. Hydrobiologia, 1998, 384: 167-243.
    Parsons J E, Thorgaard G E. Induced androgenesis in rainbow trout. J Exp Zool, 1984, 231:407-412.
    Parsons J E, Thorgaard G E. Production of androgenetic diploid rainbow trout. J Hered, 1985, 76: 177-181.
    Paschos I, Natsis L, Nathanailides C, et al. Induction of gynogenesis and androgenesis in goldfish Carassius auratus (var. oranda). Reproduction in domestic animals, 2001, 36 (3/4): 195-198.
    Peruzzi S, Chatain B. Pressure and cold shock induction of meiotic gynogenesis and triploidy in the European sea bass, Dicentrarchus labrax L.: relative efficiency of methods and parental variability. Aquaculture, 2000, 189 (1/2): 23-37.
    
    
    Purdom C E. Radiation-induced gynogenesis and androgenesis in fish. Heredity, 1969, 24:431-444.
    Purdom C E. Induced poliploidy in plaice (Pleuronectes platessa) and its hybrid with the flounder (Platichthys flesus). Heredity, 1972, 29(1): 11-24.
    Purdom C E, Lincoln R F. Gynogenesis in hybrids within the Pleuronectidae. In: The Early Life History of Fish (ed. Blaxter J H S), Springer-Verlag, Berlin, 1974, pp.537-544.
    Purdom C E, Thompaon D, Dando P R. Genetic analysis of enzyme polymorphisms in plaice (Pleuronectes platessa). Heredity, 1976, 37:193-206.
    Purdom C E. Genetic engineering by the manipulation of chromosomes. Aquaculture, 1983, 33: 287-300.
    Rinchard J, Garcia-Abiado MA, Dabrowski K, et al. Induction of gynogenesis and gonad development in the muskellunge. J. Fish Biol., 2002, 60(2): 427-441.
    Romasshov D D, Golovinskaya V K, Belyaeva V K, et al, Studies on the irradiated diploid gynogenesis of fish. Biophysica, 1960, 5: 417-446.
    Romasshov D D, Belyaeva V K. Cytology of radiation gynogenesis and androgenesis in the loach (Misgurnus fossilis). Dokl. Akad. Nauk. SSSR, 1964, 157(4): 503-506.
    Sato S, Amita K. Induction of mitotic-gynogenetic diploid Nishikigoi, Cyprinus carpio. Rep. Niigata Prefect. Inland Water Fish. Exp. Stn., 2001, 25: 1-5.
    Scarpa J, Bolton E T. Experimental production of gynogenetic and parthenogenetic Mulinia laterlis(Say). J. Shellfish Res, 1988, 7:132 (Abstract).
    Scarpa J, Komaru A., Wada K T. Gynogenetic induction in the mussel, Mytilus galloprovincialis. Bull. Natl. Res. Inst. Aquac., 1994, 23: 33-41.
    Scheerer P D, Thorgaard G H, Allendorf F W, et al. Androgenetic rainbow trout produced from inbred and outbred sperm sources show similar survival. Aquac, 1986, 57: 289-298.
    Scheerer P D, Thorgaard G H, Allendorf F W. Genetic analysis of androgenetic rainbow trout. J Exp Zool, 1991,260: 382-390.
    Shirak A, Vartin J, Don J, et al. Production of viable diploid mitogynogenetic Oreochromis aureus using the cold shock and its optimization through definition of cleavage time. The Israeli journal of aquaculture, 1998, 50(3): 140-150.
    Simili M, Pellerano P, Pigullo S, et al. 6-DMAP inhibition of early cell cycle events and induction of mitotic abnormalities. Mutagenesis, 1997, 12:313-319.
    Singer A, Perlman H, Yan Y et al. Sex-Specific Recombination Rates in Zebrafish (Danio rerio). Genetics, 2002, 160(2): 649-657.
    
    
    Stanley J G. Production of hybrid, androgenetic, and gynogenetic grass carp and carp. Trans. Am. Fish. Soc., 1976, 105: 10-16.
    Stiles S. Conventional and exprerimental approaches to hybridization and inbreeding research in the oyster. Proc 9 th Ann Mtg World Mariculture Soc., 1978, 577-586.
    Stiles S, Cromanski J, Longwell A. Cytological appraisal of prospects for successful gynogenesis, parthenogenesis, and androgenesis in the oyster. Int Council for the Exploration of the Sea, Mariculture Committee Paper. 1983, F: 10.
    Streisinger G, Walker C, Lower N et al, Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature, 1981,291: 293-296.
    Streisinger G, Walker C. Genetic methods. In: The zebrafish book. Oregon University Press, 1989, p.6-1~6-3.
    Thompson D, Purdom C E, Jones B V. Genetic analysis of spontaneous gynogenetic diploids in the plaice Pleuronectes platessa. Heredity, 1981, 47: 267-274.
    Thorgaard G H, Scheerer P D, Hershberger W K, et al. Androgenetic rainbow trout produced using sperm from tetraploid males shows improved survival. Aquac, 1990, 85:215-221.
    Tsoy R M. Chemical gynogenesis in the rainboe trout and the peled. Genetika, 1972, 8(2): 185-188.
    Ungar AR, Helde KA, Moon RT, et al. Production of androgenetic haploids in zebrafish with ultraviolet light. Mol. Mar. Biol. Biotechnol., 1998, 7(4): 320-326.
    Uyeno T. Chromosomes of offspring resulting from crossing coho salmon and brook trout. Japan. J. Ichthyol., 1972,19: 166-171.
    Varadi L, Benko I, Varga J, et al. Induction of diploid gynogenesis using interspecific sperm and production of tetraploids in African catfish, Clarias gariepinus Burchell (1822). Aquaculture, 1999, 173(1-4): 399-409.
    Vasetsky S G. Ploid variation of sturgeon fry under influence of temperature shock on eggs during different development stages. DNA SSSR, 1967, 172(5): 1234-1237.
    Watson J D. Molecular Biology of the Gene. W. A. Benjamin, Inc., London, 1975.
    Yamamoto E. Studies on sex manipulation and production of cloned populations in hirame, Paralichthys olivaveus. Aquaculture, 1999, 173: 235-246.
    Yamazaki F. Chromosome variations in salmonids. Chromosomal aberration by overriping and irradiation. Kaiyo Kagaku, 1981, 13(1): 71-80.
    Yang L, Yang S T, Wei X H, et al. Genetic diversity among different clones of the gynogenetic silver crucian carp, Carassius auratus gibelio, revealed by transferrin and isozyme markers. Biochem.
    
    Genet., 2001, 39(5-6): 213-225.
    Youg W H, Wheeler P A, Fields R D, et al. DNA fingerprinting confirms isogenicity of androgenetically derived rainbow trout lines. J Hered, 1996, 87:77-81.
    Young WP, Wheeler PA, Coryell VH et al. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 1998, 148(2): 839-850.
    Yousefian M, Amirinia C, Beresenyi M, et al. Optimization of shock parameters in inducing mitotic gynogenesis in the carp Cyprinus carpio L. CAN. J. ZOOL./REV. CAN. ZOOL., 1996, 74(7): 1298-1303.
    Zhou L, Wang Y, Gui JF. Genetic evidence for gonoehoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. J. Mol. Evol., 2000, 51(5): 498-506.
    Zhou L, Wang Y, Gui JF. Molecular analysis of silver crucian carp (Carassius auratus gibelio Bloch) clones by SCAR markers. Aquaculture, 2001, 201(3/4): 219-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700