用户名: 密码: 验证码:
大菱鲆抗病相关MHC II B等位基因筛选与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,由于水产业的高速发展,高密度养殖及环境的恶化使水产鱼类病害频发。培育抗病品种,已成为促进水产业发展的一大重要课题。大菱鲆作为我国重要的养殖鱼类,这一难题也急需解决。MHC II B在先天免疫和后天获得性免疫中起着重要作用,并且已有大量研究证明:MHC II B不同等位基因与机体对病原菌的抗性或易感性有着密切关系。所以,我们研究了大菱鲆MHC II B基因的多态性,以及不同等位基因与大菱鲆抗病性之间的关系。
     1.大菱鲆致病菌的鉴定
     我们通过16S rDNA序列分析鉴定了大菱鲆致病菌-迟钝爱德华氏菌。该病原菌来自于实验室保存菌株,是在大菱鲆疾病暴发时期,从其腹腔内分离获取的单克隆。利用细菌16S rDNA保守区引物8F和1492R扩增其16S rDNA部分序列,并进行克隆测序。通过测序共获得1505bp的序列,所测三个转化子各不相同。将三条序列到Genbank上比对发现,其与两种细菌相似性最高:Edwardsiella ictaluri和Edwardsiella tarda。通过进化树分析可以发现,我们所得到的序列与Edwardsiella tarda亲缘关系最近,而与Edwardsiella ictaluri相差较远。并且其中一条序列16S rDNA-2与Edwardsiella ictaluri和Edwardsiella tarda序列比对时,其与Edwardsiella tarda有100%的相似度。考虑到细菌16S rDNA多拷贝间的差异以及测序误差在内,因此,可以将大菱鲆病原菌鉴定为迟钝爱德华氏菌(Edwardsiella tarda)。
     2.大菱鲆MHC II B多态性及其与大菱鲆抗病力的关系
     通过对大菱鲆MHC II B内含子1和外显子2的序列分析,共发现了4种不同的内含子1(A、B、C和D型),其不同是由于一19bp重复单元的重复次数不同所致。内含子1的3`端含有一个富含CT/GT的区,该区域为重组酶RecA的潜在识别位点,表明在其演化史中可能发生过重组事件。
     通过对43个抗病个体中的224条序列和42个易感个体中的214条序列进行MHC II B外显子2分析,共发现了59个不同的等位基因,其中包括35个A型、6个B型、13个C型和5个D型。对其中的25个等位基因进行了抗病群体与易感群体的分布统计分析,部分等位基因在两个群体中都有分布,部分以较低的频率仅出现抗病或易感群体中。等位基因Scma-DBB1*04在抗病群体中出现频率为7%,而在易感群体中出现频率为42.9%,与易感性状相关(p=0.000);等位基因Scma-DBB2*01在抗病群体中出现频率为44.2%,而在易感群体中出现频率为19%,与抗病相关(p=0.013)相关。
Along with fast development of aquaculture, fish diseases occured frequently as the result of high breeding density and worsen environment. It is necessary to breed anti-pathogen stock for aquaculture development. The problems also need to be resolved for turtot, which is an important breeding fish in China. As MHC II B genes play a crucial role in innate and adaptive immune responses and a lot of evidences proved the association between different MHC II B alleles and resistance or susceptibility to pathogens. We studied the MHC polymorphism and association between alleles and resistance to Edwardsiella tarda here.
     1. Characterization of turbot pathogen
     Turbot pathogen- Edwardsiella tarda was characterized by 16S rDNA sequence analysis. The pathogen was islated from abdomen cavity as single clone during disease burst period and preserved in our lab. Part of 16S rDNA was amplified with 16S rDNA conserved primer 8F and 1492R of bacteria and sequenced. Three sequences with 1505bp length were obtained with small difference. High similarities were discovered with Edwardsiella ictaluri and Edwardsiella tarda by blast analysis in Genbank. Higher similarity with Edwardsiella tarda was revealed by phylogenetic tree analysis. And one of these sequenes, 16S rDNA-2, shared 100% similarity with Edwardsiella tarda via alignment analysis with Edwardsiella ictaluri and Edwardsiella tarda. Considering sequencing error and the difference of different copies of 16S rDNA, the pathogen of turbot was characterized as Edwardsiella tarda.
     2. MHC II B polymorphism and associations with pathogen resistance in turbot
     Four types of intron 1 were discovered, named as A, B, C and D, which were different at their length resulting from the repeats of a 19bp repeat element. There is a CT/GT rich region at 3` end of intron1, which is the potential site recognized by RecA, indicating that recombination might have happened.
     59 alleles in total were discovered from 42 susceptible and 43 resistant individuals, including 35 of type A, 6 of type B, 13 of type C and 5 of type D. 25 of them were used to analyze distribution between resistant and susceptible stocks. Some alleles appeared in both susceptible and resistant stock with different frequency, while some only appeared in susceptible or resistant stock with low frequency. The allele Scma-DBB1*04 was discovered to be associated with susceptibility to Edwardsiella tarda with frequency 7% in resistant stock and 42.9% in susceptible (p=0.000). The allele Scma-DBB2*01 was associated with resistance, 44.2% in resistant stock and 19% in susceptible (p=0.013).
引文
[1]张永安,聂品,朱作言.鱼类免疫球蛋白基因结构及抗体多样性的遗传机制.遗传, 2002, 24(5):575-580.
    [2]张福淼,袁金铎,安利国,杨桂文.鱼类免疫球蛋白多样性产生机制的研究进展.水产科学, 2005, 24(9):45-48.
    [3]张义兵,王铁辉,李戈强等.鲫鱼囊胚细胞干扰素的诱导及部分特性.中国病毒学,2000,15(2):163—169.
    [4]张义兵,张奇亚,桂建芳.鱼类的干扰素系统和干扰素系统基因的鉴定.水生生物学报,2004, 28(3):317-322.
    [5]赫崇波,王强,刘卫东,周遵春,徐晓虹.鱼类趋化因子基因的研究.水产科学, 2006, 25(7):367-370.
    [6]张金洲,陈新华.鱼类趋化因子的研究进展.生物技术通报, 2006,增刊, 129-132.
    [7]火村英,周国勤,杜宣.酵母多糖的提取及其对鱼类非特异性免疫功能的影响.生物技术, 2004, 14(3):45-47.
    [8] Angeles E M,Afejandro R.,Alberto Cuesta. Effects of lactoferrin on non-specific immune responses of gilthead seabream. Fish and Shellfish Immunology,2005,18(2):109—124.
    [9] Zasloff M. Magainins. a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor, Proc. Natl.Acad. Sci. USA 1987, 84: 5449–5453.
    [10] Rinaldi AC. Antimicrobial peptides from amphibian skin: an expanding scenario. Curr Opin Bio, 2002; 6:799-804.
    [11] Boman, H.G. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol.1995, 13:61-92
    [12] Riley MA, Werz JE. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie, 2002,84:357-364.
    [13] Michael R. Yeaman , Nannette Y. Mechanisms of Antimicrobial Peptide Action and Resistance . Pharmacol Rev,2003 ,55:27–55.
    [14] Cudic M, Otvos Jr L. Intracellular targets of antibacterial peptides. Curr Drug Targets 2002,3:101–106.
    [15] Patrzykat A, Douglas SE. Gone gene fishing: how to catch novel marine antimicrobials. Trends in Biotecnology, 2003,21 (8): 362-369.
    [16] Marshall SH. Antimicrobial peptides: a natural alternative to chemical antibiotics and a potential for applied biotechnology. Electronic Jounal of Biotechnology, ,2003, 6 (2): 114.
    [17] Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415: 389-395
    [18] Krause A, Neitz S, Magert HJ, et al. Leap1,a novel highly disulfide bonded human peptide,exhibits antimicrobial activity. FEBS Lett, 2000, 480:147-150.
    [19] Shike H, Lauth X, Westerman ME. Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge. Eur J Biochem, 2002, 269: 2232-2237.
    [20] Jia X, Patrzykat A, Devlin RH. Antimicrobial Peptides Protect Coho Salmon from Vibrio anguillarum Infections. Applied and Environmental Microbiology, 2000, 66 (5):1928–1932.
    [21] Rinaldi AC. Antimicrobial peptides from amphibian skin: an expanding scenario. Curr Opin Bio ,2002, 6:799-804.
    [22] Blackwell J.M., (Convenor, 27th Forum in Immunology)The macrophage resistance gene Lsh/Ity/Bcg, Res. Immunol. ,1989,140:767–828.
    [23] Vidal S.M., Malo D., Vogan K., Skamene E., Gros P.,Natural resistance to infection with intracellular parasites:isolation of a candidate for Bcg. Cell, 1993,73 :469–485.
    [24] Barton C.H., White J.K., Roach T.I.A., Blackwell J.M. NH2-terminal sequence of macrophage-expressed natural resistance-associated macrophage protein (Nramp) encodes a proline/serine-rich putative Src homology 3-binding domain. J. Exp. Med., 1994,179:1683–1687.
    [25] Barton C.H., Whitehead S.H., Blackwell J.M. Nramp transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: Influence on oxidative burst and nitric oxide pathways.Mol. Med., 1995,1: 267–279.
    [26] Vidal S., Tremblay M.L., Govoni G., Gauthier S., Sebastiani G., Malo D., Skamene E., Olivier M., Jothy S., Gros P.The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J. Exp. Med., 1995,182 :655–666.
    [27] Govoni G., Vidal S., Gauthier S., Skamene E., Malo D.,Gros P. The Bcg/Ity/Lsh locus: Genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1Gly169 allele. Infect. Immun., 1996,64:2923–2929.
    [28] Cellier M., Belouchi A., Gros P. Resistance to intracellular infections: Comparative genomic analysis of Nramp,.Trends Genet., 1996,12:201–204.
    [29] Blackwell JM,Searle S.,Goswami T,Miller EN.understanding the multiple functions of Nramp1. Microbes and Infection, 2000, 2, 317?321.
    [30] Atkinson P.G.P., Blackwell J.M., Barton C.H. Nramp1 locus encodes a 65 kDa interferon-gamma inducible protein in murine macrophages. Biochem. J., 1997,325:779–786.
    [31] Gruenheid S., Pinner E., Desjardins M., Gros P. Natural resistance to infections with intracellular pathogens: The Nramp1 protein is recruited to the membrane of the phagosome, J. Exp. Med., 1997,185:717–730.
    [32] Searle S., Bright N.A., Roach T.I.A., Atkinson P.G.P.,Barton C.H., Meloen R.H., Blackwell J.M. Localisation of Nramp1 in macrophages: modulation with activation and infection. J. Cell. Sci., 1998,111:2855–2866.
    [33] Gunshin H., Mackenzie B., Berger U.V., Gunshin Y.,Romero M.F., Boron W.F., Nussberger S., Gollan J.L.,Hediger M.A.Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 1997,388:482–488.
    [34] Fleming M.D., Romano M.A., Su M.A., Garrick L.M.,Garrick M.D., Andrews N.C.Nramp2 is mutated in the anemic Belgrade (b) rat: Evidence of a role for Nramp2 in endosomal iron transport.Proc. Natl. Acad. Sci. USA , 1998,95:1148–1153.
    [35] Gruenheid S., Canonne-Hergaux F., Gauthier S., Hackam D.J., Grinstein S., Gros P. The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J. Exp.Med., 1999,189:831–841.
    [36] Chen SL, Wang ZJ, Xu MY, Gui JF. Molecular identification and expression analysis of natural resistance associated macrophage protein (Nramp) cDNA from Japanese flounder(Paralichthys olivaceus). Fish & Shellfish Immunology, 2006, 20 (3): 365-373.
    [37] Chen SL, Zhang YX, Xu JY, Meng L, Sha ZX, Ren GC. Molecular cloning, characterization and expression analysis of natural resistance associated macrophage protein (Nramp) cDNA from turbot (Scophthalmus maximus). Comp Biochem Physiol B Biochem Mol Biol. , 2007, 147(1):29-37.
    [38] Chen S L,Xu M Y,Hu S N.Analysis of immunerelevant genes expressed in red sea bream(Chrysophrys major)spleen.Aquaculture,2004,240:ll5—130.
    [39] Chen H, Waldbieser GC, Rice CD, Elibol B, Wolters WR, Hanson LA. Isolation and characterization of channel catfish natural resistance associated macrophage protein gene.Dev Comp Immunol ,2002,26:517-531.
    [40] Shau H, Butterfield LH, Chiu R, Kim A. Cloning and sequence analysis of candidate human natural killer-enhancing factor genes. Immunogenetics, 1994, 40: 129-134.
    [41] Shau H, Kim A. Identification of natural killer enhancing factor as a major antioxidant in human red blood cells. Biochem Biophys Res Commun, 1994, 199: 83-88.
    [42] Sauri H, Butterfield L, Kim A, Shau H. Antioxidant function of recombinant human natural killer enhancing factor. Biochem Biophys Res Commun, 1995, 208: 964-969.
    [43] Sauri H, Ashjian PH, Kim AT, and Shau H. Recombinant natural killer enhancing factor augments natural killer cytotoxicity. J Leukoc Biol, 1996, 59: 925-931.
    [44] Shau H, Kim A, Hedrick CC, Lusis AJ. Endogenous natural killer enhancing factor-B increases cellμlarresistance to oxidative stress. Free Radic. Biol. Med, 1997, 22: 497-503.
    [45] Shau H, Gupta RK, Golub SH. Identification of natural killer enhancing factor (NKEF) from human erythroid cells. Cell Immunol, 1993, 147: 1-11.
    [46] Sato H, Ishii T, Sugita Y, Tateishi, N, Bannai S. Induction of a 23 kDa stress protein by oxidative and sulfhydryl-reactive. Biochem Biophys Res Acta, 1993, 1148 (1): 127-132.
    [47] Yamaguchi M, Sato H, Bannai S. Induction of stress proteins in mouseperitoneal macrophages by oxidized low-density lipoprotein. Biochem Biophys Res Commun, 1993, 193 (3) : 1198-1201.
    [48] Shin DH, Kazuhiro F, Miki N, Tomoki Y. Organization of the NKEF gene and its expression in the common carp (Cyprinus carpio). Developmental and Comparative Immonology, 2001, 25: 597-606.
    [49] Zhang H, Evenhuis JP, Thorgaard GH, Ristow SS. Cloning characterization and genomic structure of the natural cell enhancement factor (NKEF)-like gene from homozygous clones of rainbow trout (Oncorhynchus mukiss). Developmental and Comparative Immonology, 2001, 25: 25-35.
    [50]王志坚,陈松林,季相山.牙鲆自然杀伤细胞增强因子(NKEF)全长cDNA的克隆及表达分析.高技术通讯,2005, 15(11):86-90.
    [51] Nikolich-?ugich J.,Fremont D. H. , Miley M. J., Messaoudi I. The role of mhc polymorphism in anti-microbial resistance. Microbes and Infec,2004, 6:501-512.
    [52] Ono H, O’Huigin C, Vincek V, Stet RJ, Figueroa F, Klein J. New beta chain-encoding MHC class II genes in the carp. Immunogenetics ,1993, 38:146-149.
    [53] Van Erp SHM, Egberts E and Stet RJ. Characterization of class A and B genes inⅡa gynogenetic carp clone. Immunogenetics , 1996,44 (3):192-202.
    [54] Ono H., Klein D., Vincek V., Figueroa F., O`hUigin C., Tichy H. and Klein J. Major histocompatibility complex class II genes of zebrafish.Proc. Natl. Acad. Sci., 1992, 89:11886-11890.
    [55] Glamann J. Complete coding sequence of rainbow trout Mhc beta chain. Scand.Ⅱ. J. Immunol, 1995, 41: 365-372.
    [56] Hordvik I, Grimholt U, Fosse VM, Lie ?, Endresen C. Cloning and sequence analysis of cDNA encoding the MHC class chain in Atlantic salmonⅡon ( Salmo salar). Immunogenetics,1994, 37: 437-441.
    [57] Grimholt U., Olsaker I., de Vries Lindstr?m C., Lie ? . A study of variability in the MHC class IIβ1 and class Iα2 domain exons of Atlantic salmon (Salmo salar). Anim. Genet,1994, 25:147–153.
    [58]夏春.白鲢MHC Ia2基因克隆及序列分析.动物学报,1999,45(3):345—349.
    [59]夏春,徐广贤,林常有.草鱼MHC class I等位基因克隆及其多态性分析.自然科学进展,2004,14(1):51—58.
    [60]蔡完其,轩兴荣,王成辉.红鲤4群体间主要组织相容性复合体的差异.水产学报,2003, 27(2):ll3一ll8.
    [61] Prapansak S,Tsuyoshi O.Ikuo H.Cloning,characterization and expression of cDNA containing major histocompatibility complex class I, IIa and IIb genes of Japanese flounder Paralichthys olivaceus.Fisheries Science,2004,70(2):264—276.
    [62]张玉喜,陈松林.牙鲆MHC class II基因多态性及其与鱼体抗病力关系的研究.水产学报,2006,30(5):633-639.
    [63]张玉喜,陈松林.大菱鲆MHC II B基因全长cDNA的克隆与组织表达分析.高技术通讯,2006,16(8):859-863.
    [64] Chen S.L., Zhang Y.X., Xu M.Y., Ji X.S., Yu G.C., Dong C.F. Molecular polymorphism and expression analysis of MHCⅡB gene from red sea bream (Chrysophrys major). Dev. Comp. Immunol. ,2006,30:407-418.
    [65] Sambrook J. G., Russell R. ,Umrania Y. , Edwards Y. J. K., Campbell R. D., Elgar G., Clark M. S. Fugu orthologues of human major histocompatibility complex genes: a genome survey. Immunogenetics,2002,54:367- 380.
    [66] Quiniou S. M.-A., Wilson M., Bengtén E., Waldbieser G. C., Clem L. W., Miller N. W. MHC RFLP analyses in channel catfish full-sibling families: identification of the role of MHC molecules in spontaneous allogeneic cytoxic response.Dev. Com. Immunol., 2005, 29:457-467.
    [67] Grimholt U., Larsen S., Nordmo R., Midtlyng P., Kjoeglum S.,Storset A., Saeb? S., Stet R. J. M. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar) ; facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics, 2003,55:210-219.
    [68] Rothbard J.B. and Gefter M.L. Interactions between immunogenetic peptides and Mhc proteins. Annu. Rev. Immunol., 1991,9: 527-565.
    [69] Apanius V., Penn D., Slev P. R., Ruff L. R., Potts W. K. The nature of selection on the major histocompatibility complex. Rev. Immunol., 1997,17:179-224.
    [70] Edwards S.V., Hedrick P.W. Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol. Evol., 1998,13:305-311.
    [71] Hedrick PW, and Kim TJ. Genetics of complex polymorphisms: parasites and maintenance of MHC variation, in Evolutionary Genetics From Molecules to Morphology. Edited by R. S. Singh and Krimbas, C.K. Cambridge University Press, New York, 1999
    [72] Clem L.W., Miller N.W., Bly J.E. Evolution of lymphocyte subpopulations, their interaction and temperature sensitivities. In: Warr G.W., Cohen N., editors. The phylogenesis of immune functions. Boca Raton (FL): CRC Press, 1991. p. 191-212.
    [73] Miller N.W., Deuter A., Clem L.W. Phylogeny of lymphocyte heterogeneity: the cellular requirements for the MLR in channel catfish. Immunology,1989, 59:123-128.
    [74] Vallejo A., Miller N.W., Clem L.W. Antigen processing and presentation in teleost immuneresponses. Ann. Rev. Fish. Dis., 1992,2:73-89.
    [75] Graser R., O`hUigin C., Vincek V., Meyer A., Klein J. Trans- species polymorphism of class II Mhc loci in danio fishes. Immunogenetics, 1996,44:36-48.
    [76] Godwin U. B., Flores M., Quiniou S., Wilson M. R., Miller N. W. ,Clem L.W., McConnell T. J. MHC class II A genes in the channel catfish (Ictalurus punctatus). Developmental and Comparative Immunology,2000,24:609-622.
    [77] Dijkstra J. M., Kiryu I., K?llner B.,Yoshiura Y. , Ototake M. MHC class II invariant chain homologues in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunol., 2003, 15:91-105.
    [78] Zhang Y. X. and Chen S. L. Molecular identification, polymorphism and expression analysis of major histocompatibility complex classⅡA and B genes of turbot (Scophthalmus maximus). Mar. Biotechnol , 2006,8(6):611-623.
    [79] Hoelzel A.R., Stephens J.C., O’Brien S.J.Molecular Genetic Diversity and Evolution at the MHC DQB Locus in Four Species of Pinnipeds. Mol. Biol. Evol, 1999,16(5): 611–618.
    [80] Mitchison N. A., Muller B. and Segal R. M. Natural Variation in Immune Responsiveness, with Special Referencee to Immunodeficiency and Promotor Polymorphism in Class II MHC Genes. Human Immunol,2000,61:177-181.
    [81]严洁,杨光,周开亚,魏辅文.白鱀豚MHC基因类DQB1座位第二外元的序列变异分析.2003, 49( 4): 501-507.
    [82] Hill A.V.S., Allsopp C.E.M., Kwiatkowski D., Anstey N.M., Twumasi P., Rowe P.A., Bennett S., Brewster D., Mcmichael A.J., Greenwood B.M. Common West African HLA antigens are associated with protection from severe malaria. Nature, 1991,352:595-600.
    [83] Pedro O.F.V., Houria H., Sophie C.Z., Jay R., lberto B.T., Sebastien B.M., Jorge A.R.M., Maria E.T., Juan R.T., Zagury J.F. Associations of MHC Ancestral Haplotypes with Resistance/Susceptibility to AIDS Disease Development. J. Immunol, 2003,170:1925-1929.
    [84] Medina E., North R.J. Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology, 1998,93:270-274.
    [85] Paterson S., Wilson K., Pemberton J.M. Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc. Natl. Acad. Sci., 1998,95:3714-3719.
    [86] Lamont S. J. The chicken major histocompatibility complex and disease. Rev. Sci. Tech., 1998, 17:128-142.
    [87] Bacon L.D., Hunt H. D., Cheng H. H. A review of the development of chicken lines to resolve genes determining resistance to diseases. Poult Sci., 2000,79:1082-1093.
    [88] Langefors ?., Lohm J., Grahn M., Andersen ?. and Schantz T. Association between major histocompatibility complex class II B alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc. R. Soc. Lond. B., 2000,268:479-485.
    [89] Wedekind C., Walker M., Portmann J., Cenni B., Müller R. and Binz T. MHC-linked susceptibility to a bacterial infection,but no MHC-linked cryptic female choice in whitefish. J. Evol. Biol., 2004,17:11-18.
    [90] Wynne J., Cook M.T., Barbara F.N., Nicholas G.E. Polymorphism within MHC genes associated with resistance and susceptibility to amoebic gill disease (AGD) in Atlantic salmon Salmo salar. Australian Aquaculture Posters presented by CSIRO scientists, 2004.
    [91] Zhang Y.X., Chen S.L., Liu Y.G. , Sha Z.X., Liu Z.J. Major histocompatibility complex classII B allele polymorphism and its association with resistance/susceptibility to Vibrio Anguillarum in Japanese flounder (Paralichthys olivaceus). Mar. Biotechnol., 2006,8(6):600-610.
    [92] Wiegertjes GF, Bongers AB, Voorthuis P, Zandieh Doulabi B, Groeneveld A, Van Muiswinkel WB, Stet RJ. Characterization of isogenic carp (Cyprinus carpio L.) lines with a genetically determined high or low antibody production. Anim Genet., 1996, 27(5):313-319.
    [93] Langefors ?, Lohm J, Von Schantz T. Allelic polymorphism in MHC classⅡβin four populations of Atlantic salmon (Salmo salar). Immunogenetics, 2001, 53: 329-336.
    [94] Lohm J, Grahn M, Langefors A, Andersen O, Storset A, von Schantz T. Experimental evidence for major histocompatibility complex-allele-specific resistance to a bacterial infection. Proc Biol Sci, 2002, 269(1504):2029-2033.
    [95] Yniv Palti, Krista MN, Waller KI, Parsons JE, Thorgaard GH. Association between DNA polymorphisms tightly linked to MHC classⅡgenes and IHV virus resistance in backcrosses of rainbow and cutthroat trout. Aquaculture,2001,194:283-289.
    [96]郭秀花,李爱国,冯丹,张德舜,朴相浩.细菌的数值分类方法.微生物学通报,1996, 23(3):188-190.
    [97]詹銮峰,郭维植.病原菌鉴定分型方法的研究概况.海峡预防医学杂志,2006, 12(2): 26-28.
    [98] DeLong EF, Wickham GS, Pace NR. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells.Science,1989,243(4896):1360-1363.
    [99]陈文新.细菌系统发育.微生物学报, 1998,38(3):24.
    [100] Gray MW, Sankoff D, Cedergren RJ. On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA.Nucleic Acids Res., 1984 ,12(14):5837-5852.
    [101] Misbah S, Hassan H, Yusof M Y, Hanifah Y A, AbuBakar S .Genomic species identification of Acinetobacter of clinical isolates by 16S rDNA sequencing.Singapore Med J ,2005,46(9) : 461-464.
    [102] Fredricks D. N., Fiedler T. L., and Marrazzo J. M.Molecular Identification of Bacteria Associated with Bacterial Vaginosis. N Engl J Med, 2005,353:1899-1911.
    [103] Widjojoatmodjo M. N., Fluit A. C., Verhoef J. Molecular Identification of Bacteria by Fluorescence-Based PCR–Single-Strand Conformation Polymorphism Analysis of the 16S rRNA Gene.J. CLIN. MICROBIOL,1995,33(10):2601–2606.
    [104]焦振泉,刘秀梅.细菌分类与鉴定的新热点: 16S-23S rDNA间区.微生物学通报,2001 ,28 (1):85-89.
    [105]郑雪松,杨虹,李道棠,韩文卿.基因间隔序列(ITS)在细菌分类鉴定和种群分析中的应用.应用与环境生物学报, 2003,9(6):678-684.
    [106] Owen RJ. Chromosomal DNA fingerprinting--a new method of species and strain identification applicable to microbial pathogens. J Med Microbiol., 1989,30(2):89-99.
    [107] Li Y., Yan X.-H., Chen J.X., Wang Y.-G., Li Q.F. Studies on the Characteristics of Pathogenic Edwardsiella tarda Isolated from Diseased Scophthalmus maximus. Periodical of Ocean University of China, 2006,36(4):649-654.
    [108] Gordina AD. Spawning of turbot psetta maeotica (Pallas) (Scophthalnidae pisces) in the Black Sea in May-June, EHKOL-MORYA.,1990,35: 40-43.
    [109] Bergstad OA, Folkvord A. Dispersal of tagged juvenile turbot Scopthalmus maximus L. on the Norwegian Skagerrak coast. Fisheries Research, 1998.
    [110] Blanquer A, Alayse J-P, Berrada-Rkhami O, Berrebi P. Allozyme variation in turbot (Psetta maxima) and brill (Scophthalmus rhombus) (Osteichtyes, Pleuronectiformes, Scophthalmidae) throughout their range in Europe. Journal of Fish Biology, 1992, 41:725–736.
    [111]雷霁霖.大菱鲆(Scophthalmus maximus L.)引起养殖的初步研究.现代渔业信息,1995, 11:1-3.
    [112]雷霁霖.海水养殖新品种介绍-大菱鲆.中国水产,2000,4:65-69.
    [113] Miller S. A., Dykes D. D. and Polesky H. F. A simple salting out procedure for extraction DNA from human nucleated cells. Nucleic Acids Res,1988,16(3):1215.
    [114] Zilberman N., Reikhav S., Hulata G., Ron M. High-throughput genomic DNA extraction protocol from tilapia's fin tissue.Aquaculture,2006,255: 597–599.
    [115] Benbouza H., Jacquemin J.-M., Baudoin J.-P. , Mergeai G. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol. Agron. Soc. Environ., 2006,10 (2):77–81.
    [116] Penn D. J., Damjanovich K. and Potts W. K. MHC heterozygosity confers a selective advantage against mutiple-strain infections.Proc. Natl. Acad. Sci., 2002,99(17):11260-11264.
    [117] Grimholt U., Getahun A., Hermsen T., Stet R. J. M. The major histocompatibility class II alpha chain in salmonid fishes. Dev. and Comp. Immunol, 2000,24:751-763.
    [118] Landry C., Garant D., Duchesne P. and Bernatchez L. 'Good genes as heterozygosity' : the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). Proc. R. Soc. Lond. B., 2001,268:1279-1285.
    [119]潘星华,庾镇城,谈家桢. MHC基因分子进化研究进展.国外医学遗传学分册,1995, 18(1):7-11.
    [120] Hedrick P. W. Balancing selection and MHC. Genetica, 1999,104:207-214.
    [121] Ellis S. The cattle major histocompatibility complex: is it unique. Veterinary Immunol. and Immunopathol., 2004,102:1-8.
    [122] Málaga-Trillo E., Zaleska-Rutczynska Z., McAndrew B., Vincek V., Figueroa F. , Sültmann H. and Klein J. Linkage Relationships and Haplotype Polymorphism Among Cichlid Mhc Class II B loci.Genetics, 1998,149:1527-1537.
    [123] Kiryu I., Dijkstra J. M., Sarder R. I., Fujiwara A., Yoshiura Y., Ototake M. New MHC class Ia domain lineages in rainbow trout(Oncorhynchus mykiss) which are shared with other fish species. Fish & Shellfish Immunology, 2005,18:243-254.
    [124] Kim T. J., Parker K. M. and Hedrick P. W. Major Histocompatibility Complex Differentiation in Sacramento River Chinook Salmon.Genetics,1999,151:1115-1122.
    [125] OttováE., ?imkováA., Martin J.-F., Bellocq J. G., Gelnar M., Allienne J.-F., Morand S. Evolution and trans-species polymorphism of MHC class IIβgenes in cyprinid fish.Fish & Shellfish Immunology,2005,18:199-222.
    [126] McConnell T. J., Godwin U. B., Norton S. F., Nairn R. S., Kazianis S. and Morizot D. C.. Identification and Mapping of Two Divergent,Unlinked Major Histocompatibility Comple Class II B Genes in Xiphophorus Fishes. Genetics,1998,149:1921-1934.
    [127] Grimholt U., Getahun A., Hermsen T., Stet R. J. M. The major histocompatibility class II alpha chain in salmonid fishes. Developmental and Comparative Immunology, 2000,24:751-763.
    [128] Liu Y., Kasahara M., Rumfelt L. L., Flajnik M. F. Xenopus class II A genes: studied of genetics, polymorphism, and expression.Developmental and Comparative Immunology, 2002,26:735-750.
    [129]Ying Chen, Yu-Xi Zhang, Tingjun Fan, Liang Meng, Guo-cheng Ren, Song-Lin Chen 2006 Molecular identification and expression analysis of the natural killer cell enhancing factor (NKEF) gene from turbot (Scophthalmus maximus). Aquaculture, 261:1186-1193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700