用户名: 密码: 验证码:
胃癌肝转移相关新Hub基因的预测和验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究目的]分离在胃癌肝转移过程中起关键作用的关键基因(Hubs),建立能预测胃癌发生及其转移的新的生物学标志,为未来开展胃癌分子流病学研究奠定基础。
     [研究方法] 2006年1月到2009年2月收集67例胃癌病人的手术切除标本,所有标本均于术后2小时内取回、分装和冻存;选择3例患者的胃癌肝转移及配对原发组织进行cDNA芯片检测,选择在3张芯片中基因表达变化倍数均≥1.6倍的基因作为差异表达基因;利用MILANO、Chilibot、UniHI和Endeavour等多种生物信息学软件工具,依次对差异表达基因进行系统的文献挖掘、蛋白质网络和功能相似性分析,最后预测胃癌肝转移相关的新Hub基因(相互作用基因数≥30);根据预测结果选择兴趣基因,采用定量RT-PCR技术,检测这些兴趣基因在另外8对胃癌肝转移及配对原发组织、57对胃癌原发灶及配对癌旁组织间的相对表达变化,并分析这些基因的相对表达变化与疾病分期之间的关系;采用免疫组化技术,检测兴趣基因所对应蛋白在11例胃癌肝转移、26例胃癌原位及26例胃癌癌旁组织中的表达模式,并将蛋白表达变化与转录水平表达变化进行比较。
     [研究结果]芯片分析共确定272个差异表达基因,通路分析显示差异表达基因在13条KEGG通路上显著富集,其中8条通路已证明与肿瘤转移相关;文献注释结果显示272个差异表达基因中包含118个已知癌症相关基因和68个已知肿瘤转移相关基因;已知转移相关基因在118个癌症相关基因中的比例明显高于已知转移相关基因在Sanger中心的382个癌症普查基因中的比例(P<0.001),提示本研究所获得的272个差异表达基因显著富集了转移相关基因;蛋白质网络分析发现所获得的差异表达基因中存在一个由63个蛋白形成的亚网络,该亚网络包含60个相互作用、29个已知转移相关基因和37个Hub基因。统计分析显示,该网络不仅富集了已知转移相关基因(P<0.05),而且富集了Hub基因(P<0.05);利用Endeavour软件进行基因功能相似性分析,发现45个未报道与转移相关的基因与我们所设定的已知转移相关基因群的功能最为相似,其中8个基因为蛋白质亚网络中的Hub基因:NR3C1、NR4A2、HNRPA1、PSMB3、FBLN2、DARS、XAB2、CD8A。
     根据预测结果和研究兴趣,9个基因(NR3C1、NR4A2、HNRPA1、XAB2、HSP90AA1、CCNE1、RPL17、FKBP1A和XAB2)被选择在临床样本中验证,定量RT-PCR分析结果显示:NR4A2在8例同时性胃癌肝转移样本中的表达水平显著低于其配对原发灶(P=0.001),而HSP90AA1的表达水平显著高于其配对原发灶(P=0.029);NR4A2、NR3C1、ARF3、XAB2以及NR4A2的两种替换剪切模式(SP8和SP-novel)在57例胃癌原发样本中的表达水平显著低于其配对癌旁组织(P<0.001),而CCNE1的表达水平显著高于其配对癌旁组织(P=0.001)。
     HSP90AA1(P=0.043)和NR4A2(P=0.003)在胃癌肝转移组织中的蛋白表达水平分别高于和低于原发组织的表达水平, CCNE1(P=0.000)和NR3C1(P=0.005)在胃癌原发灶组织中的蛋白表达水平分别高于和低于癌旁正常组织的表达水平,上述结果与定量RT-PCR结果一致;HSP90AA1在胃癌原发灶中的蛋白表达水平高于癌旁正常组织(P=0.003),而定量RT-PCR未发现差异。在定量RT-PCR分析中显示:癌旁正常组织中NR4A2基因的表达水平显著高于原位组织,但免疫组化显示NR4A2蛋白在癌旁正常组织间质细胞中的表达水平高于原位肿瘤间质细胞细胞中的表达水平,而在癌旁胃腺组织上皮细胞中的表达水平低于原位胃癌上皮组织中的表达水平。
     [研究结论] NR4A2可能是胃癌肝转移的诊断和预后标志,NR4A2可能参与胃癌上皮细胞的上皮-间质转化(EMT)过程;NR3C1、ARF3和XAB2与胃癌发生相关,可能是胃癌发生中的新型Hub基因;HSP90AA1可能是胃癌肝转移的预后标志,而CCNE1是胃癌发生的诊断标志,但尚需进一步研究。
[Bankground] Gastric cancer (GC) is the second leading cause of cancer death worldwide, although its incidence is decreasing. About 60% of new cases of GC occur in eastern Asia. Surgical resection is the most effective treatment for GC without distant metastasis. However, relapse after surgical treatment and distant metastasis contribute to the high GC-associated fatality. Understanding hub genes involved in gastric cancer (GC) metastasis could lead to effective, targeted approaches to diagnose and treat cancer metastasis.
     [Objective] To isolate hub genes responsible for gastric cancer metastasis, and establish novel biomarkers for the predition of gastric cancer and metastasis, and lay the groundwork for further molecular epidemiological study of gastric cancer.
     [Methods] Tumor tissues of 67 patients were obtained from GC patients who had undergone curative surgery at Department of General Surgery of the 1st affiliated hospital, Second Military Medical University, from January 2006 to February 2009; The synchronous liver metastasis and their matched GC from 3 patients were used for double-colored cDNA microarray assay and differentially expressed genes with fold-change 1.6 or higher in each microarray data were selected for further bioinformatics and validation analyses. a novel intergrated bioinformatics methods for the prediction of gene function through combination of microarray technology, text mining, protein-protein interaction (PPI) and genes similarity analysis. Online bioinformatics tools, such as MILANO, Chilibot, UniHI and Endeavour, were used in turn for literature ananotaions and gene founction prediction. Then, the candidate genes were validated by using real-time quantitative RT-PCR and immunohistochemistry in synchronous liver metastasis verse the paired GC from 8 other patients and in GC verse the matched gastric mucosa from 57 patients. The protein expression patterns of candidate genes also were validated by using immunohistochemistry among distance metastasis, orthotopic cancer and adjacent mucosa of GC.
     [Results] We selected 272 differentially expressed genes with fold-change 1.6 or higher in each microarray. KEGG pathway analysis showed that of the 13 enriched pathways, 8 were involved in cancer metastasis. Literature-based annotation with MILANO and Chilibot showed that the differentially expressed genes significantly enriched known metastasis-related genes. With the use of protein-protein interaction network, we found a sub-network significantly enriching the metastasis-related genes and hub genes. First 45 of un-annotated genes in Endeavour prioritization shared 8 hubs in the sub-network, containing NR3C1,NR4A2, HNRPA1, PSMB3, FBLN2, DARS, XAB2, and CD8A. Nine hubs,containing NR3C1, NR4A2, HNRPA1, XAB2, HSP90AA1, CCNE1, RPL17, FKBP1A, and XAB2 were then selected for validation by using quantitative RT-PCR in the sub-network. It was found that NR4A2 (P=0.001) was down-regulated, while HSP90AA1 (P=0.029) up-regulated, in synchronous liver metastasis verse the paired GC from 8 patients. NR4A2, NR3C1, ARF3, XAB2, and alternatively spliced variants of NR4A2, SP8 and SP-novel, were down-regulated (P<0.001 for each), while CCNE1 (P=0.001) up-regulated, in GC verse the matched gastric mucosa from 57 patients.
     Immunohistochemistry showed that HSP90AA1(P=0.043) and NR4A2(P=0.003) protein were significantly up and down-regulated in the distant metastasis when compared to the orthotopic cancer of GC, respectively. CCNE1(P<0.001) and NR3C1(P=0.005) were also significantly up and down-regulated in orthotopic cancer compared to adjacent mucosa of GC. NR4A2 protein was significantly up-regulated in normal gastric mesenchymal cells (P=0.005) and significantly down-regulated in normal gastric epithelial cells (P<0.001) when compared to primary gastric cancer tissue.
     [Conclusion] NR4A2 stands out as the most probable diagnostic and prognostic marker for GC. NR4A2 may play an important role in epithelial-mesenchymal transitions (EMT) of gastric cancer liver metastasis. NR3C1, ARF3, and XAB2 are novel hubs reversely associated with GC. HSP90AA1 is a potential prognostic marker, while CCNE1 a potential diagnostic marker, for GC.
引文
[1] Kelley JR, Duggan JM. Gastric cancer epidemiology and risk factors. J Clin Epidemiol 2003;56:1-9.
    [2] Hochwald SN, Kim S, Klimstra DS, Brennan MF, Karpeh MS. Analysis of 154 actual five-year survivors of gastric cancer. J Gastrointest Surg 2000;4:520-5.
    [3] Hayashi M, Inokuchi M, Takagi Y, Yamada H, Kojima K, Kumagai J, Kawano T, Sugihara K. High expression of HER3 is associated with a decreased survival in gastric cancer. Clin Cancer Res 2008;14:7843-9.
    [4] Kita Y, Fukagawa T, Mimori K, Kosaka Y, Ishikawa K, Aikou T, Natsugoe S, Sasako M, Mori M. Expression of uPAR mRNA in peripheral blood is a favourite marker for metastasis in gastric cancer cases. Br J Cancer 2009;100:153-9.
    [5] Driessen A, Landuyt W, Pastorekova S, Moons J, Goethals L, Haustermans K, Nafteux P, Penninckx F, Geboes K, Lerut T, Ectors N. Expression of carbonic anhydrase IX (CA IX), a hypoxia-related protein, rather than vascular-endothelial growth factor (VEGF), a pro-angiogenic factor, correlates with an extremely poor prognosis in esophageal and gastric adenocarcinomas. Ann Surg 2006;243:334-40.
    [6] Terashima M, Maesawa C, Oyama K, Ohtani S, Akiyama Y, Ogasawara S, Takagane A, Saito K, Masuda T, Kanzaki N, Matsuyama S, Hoshino Y, et al. Gene expression profiles in human gastric cancer: expression of maspin correlates with lymph node metastasis. Br J Cancer 2005;92:1130-6.
    [7] Lin KY, Fang CL, Uen YH, Chang CC, Lou HY, Hsieh CR, Tiong C, Pan S, Chen SH. Overexpression of protein kinase Calpha mRNA may be an independent prognostic marker for gastric carcinoma. J Surg Oncol 2008;97:538-43.
    [8] Wakatsuki K, Yamada Y, Narikiyo M, Ueno M, Takayama T, Tamaki H, Miki K, Matsumoto S, Enomoto K, Yokotani T, Nakajima Y. Clinicopathological and prognostic significance of mucin phenotype in gastric cancer. J Surg Oncol 2008;98:124-9.
    [9] Sakashita K, Mimori K, Tanaka F, Kamohara Y, Inoue H, Sawada T, Hirakawa K, Mori M. Prognostic relevance of Tensin4 expression in human gastric cancer. Ann Surg Oncol 2008;15:2606-13.
    [10] Mühlmann G, Spizzo G, Gostner J, Zitt M, Maier H, Moser P, Gastl G, Zitt M, Müller HM, Margreiter R, Ofner D, Fong D. TROP2 expression as prognostic marker for gastric carcinoma. J Clin Pathol 2009;62:152-8.
    [11] Wu CY, Wu MS, Chiang EP, Wu CC, Chen YJ, Chen CJ, Chi NH, Chen GH, Lin JT. Elevated plasma osteopontin associated with gastric cancer development, invasion and survival. Gut 2007;56:782-9.
    [12] Cheng WL, Wang CS, Huang YH, Liang Y, Lin PY, Hsueh C, Wu YC, Chen WJ, Yu CJ, Lin SR, Lin KH. Overexpression of a secretory leukocyte protease inhibitor in human gastric cancer. Int J Cancer 2008;123:1787-96.
    [13] Wang Z, He YL, Cai SR, Zhan WH, Li ZR, Zhu BH, Chen CQ, Ma JP, Chen ZX, Li W, Zhang LJ. Expression and prognostic impact of PRL-3 in lymph node metastasis of gastric cancer: its molecular mechanism was investigated using artificial microRNA interference. Int J Cancer 2008;123:1439-47.
    [14] Park YP, Choi SC, Kim JH, Song EY, Kim JW, Yoon DY, Yeom YI, Lim JS, Kim JW, Paik SG, Lee HG. Up-regulation of Mac-2 binding protein by hTERT in gastric cancer. Int J Cancer 2007;120:813-20.
    [15] Li X, Zhang Y, Cao S, Chen X, Lu Y, Jin H, Sun S, Chen B, Liu J, Ding J, Wu K, Fan D. Reduction of TIP30 correlates with poor prognosis of gastric cancer patients and its restoration drastically inhibits tumor growth and metastasis. Int J Cancer. 2009;124:713-21.
    [16] Yu J, Cheng YY, Tao Q, Cheung KF, Lam CN, Geng H, Tian LW, Wong YP, Tong JH, Ying JM, Jin H, To KF, et al. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology 2009;136:640-51.
    [17] Buffart TE, Overmeer RM, Steenbergen RD, Tijssen M, van Grieken NC, Snijders PJ, Grabsch HI, van de Velde CJ, Carvalho B, Meijer GA. MAL promoter hypermethylation as a novel prognostic marker in gastric cancer. Br J Cancer 2008;99:1802-7.
    [18] Bi J, Lau SH, Hu L, Rao HL, Liu HB, Zhan WH, Chen G, Wen JM, Wang Q, Li B, Guan XY. Downregulation of ZIP kinase is associated with tumor invasion, metastasis and poor prognosis in gastric cancer. Int J Cancer 2009;124:1587-93.
    [19] Wanajo A, Sasaki A, Nagasaki H, Shimada S, Otsubo T, Owaki S, Shimizu Y, Eishi Y, Kojima K, Nakajima Y, Kawano T, Yuasa Y, Akiyama Y. Methylation of the calcium channel-related gene, CACNA2D3, is frequent and a poor prognostic factor in gastric cancer. Gastroenterology 2008;135:580-90.
    [20] Mori M, Shimada H, Gunji Y, Matsubara H, Hayashi H, Nimura Y, Kato M, Takiguchi M, Ochiai T, Seki N. S100A11 gene identified by in-house cDNA microarray as an accurate predictor of lymph node metastases of gastric cancer. Oncol Rep 2004;11:1287-93.
    [21] Leung SY, Chen X, Chu KM, Yuen ST, Mathy J, Ji J, Chan AS, Li R, Law S, Troyanskaya OG, Tu IP, Wong J, et al. Phospholipase A2 group IIA expression in gastric adenocarcinoma is associated with prolonged survival and less frequent metastasis. Proc Natl Acad Sci U S A 2002; 99:16203-8.
    [22] Fukui R, Nishimori H, Hata F, Yasoshima T, Ohno K, Nomura H, Yanai Y, Tanaka H, Kamiguchi K, Denno R, Sato N, Hirata K. Metastases-related genes in the classification of liver and peritoneal metastasis in human gastric cancer. J Surg Res 2005;129:94-100.
    [23] Sakakura C, Hagiwara A, Nakanishi M, Shimomura K, Takagi T, Yasuoka R, Fujita Y, Abe T, Ichikawa Y, Takahashi S, Ishikawa T, Nishizuka I, et al. Differential gene expression profiles of gastric cancer cells established from primary tumour and malignant ascites. Br J Cancer 2002; 87:1153–61.
    [24] Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A 2006;103:5923-8.
    [25] Horvath S, Zhang B, Carlson M, et al. Analysis of Oncogenic Signaling Networks in Glioblastoma Identifies ASPM as a Novel Molecular Target. Proc Natl Acad Sci U S A 2006;103:17402-17407
    [26] Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis.Mol Syst Biol 2007;3:140.
    [27] Pujana MA, Han JD, Starita LM, et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 2007;39:1338-49.
    [28] Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci U S A 2007;104:8685-90.
    [29] Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein-protein interactions. J Med Genet 2006;43:691-8.
    [30] Karni S, Soreq H, Sharan R. A network-based method for predicting disease-causing genes. J Comput Biol 2009;16:181-9.
    [31] He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet 2006; 2:e88.
    [32] Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature 2001;411:41-2.
    [33] Jonsson PF, Bates PA. Global topological features of cancer proteins in human interactome. Bioinformatics 2006; 22:2291-7.
    [34] Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon cancer initiating cells. Nature 2007;445(7123):111-5.
    [35] O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445(7123):106-10.
    [1] Amemiya H, Kono K, Itakura J, Tang RF, Takahashi A, An FQ, Kamei S, Iizuka H, Fujii H, Matsumoto Y. c-Met expression in gastric cancer with liver metastasis. Oncology. 2002;63(3):286-96.
    [2] Yokoyama H, Ikehara Y, Kodera Y, Ikehara S, Yatabe Y, Mochizuki Y, Koike M, Fujiwara M, Nakao A, Tatematsu M, Nakanishi H. Molecular basis for sensitivity and acquired resistance to gefitinib in HER2-overexpressing human gastric cancer cell lines derived from liver metastasis. Br J Cancer. 2006 Dec 4;95(11):1504-13.
    [3] Yu Guan-zhen, Chen Ying, Ni Can-rong, Wang Guo-dong , Qian Jian-xin,Wang Jie-jun. Reduced protein expression of metastasis-related genes (nm23, KISS1, KAI1 and p53) in lymph node and liver metastases of gastric cancer. Int J Exp Pathol. 2007 Jun;88(3):175-83.
    [4] Troyanskaya OG. Putting microarrays in a context: integrated analysis of diverse biological data.Brief Bioinform. 2005 Mar;6(1):34-43.
    [5] Rhodes DR, Chinnaiyan AM. Integrative analysis of the cancer transcriptome. Nat Genet. 2005 Jun;37 Suppl:S31-7.
    [6] Tan X, Zhai Y, Chang W, Hou J, He S, Lin L, Yu Y, Xu D, Xiao J, Ma L, Wang G, Cao T, et al. Global analysis of metastasis-associated gene expression in primary cultures from clinical specimens of clear-cell renal-cell carcinoma. Int J Cancer 2008;123:1080-8
    [7] Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004;32:D277-80
    [8] Futreal PA, Coin L, Marshall M, et al. A census of human cancer genes. Nat Rev Cancer 2004; 4:177-13.
    [9] Alibés A, Yankilevich P, Ca?ada A, Díaz-Uriarte R. IDconverter and IDClight: conversion and annotation of gene and protein IDs. BMC Bioinformatics. 2007 Jan 10;8:9.
    [10] Rubinstein R, Simon I. MILANO–custom annotation of microarray results using automatic literature searches. BMC Bioinformatics 2005; 6:12.
    [11] Chen H, Sharp BM. Content-rich biological network constructed by mining PubMed abstracts.BMC Bioinformatics 2004; 5:147.
    [12] Gautam C, Yasir I, Christian H, Hanspeter H, Erich E, Matthias E. UniHI: an entry gate to the human protein interactome. Nucleic Acids Res 2007; 35: D590-4.
    [13] Paul S, Andrew M, Owen O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-504.
    [14] Aerts S, Lambrechts D, Maity S, et al. Gene prioritization through genomic data fusion. Nat Biotechnol 2006;24: 537-44.
    [15] Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res 2008;14:6735-41.
    [16] Helleman J, Jansen MP, Ruigrok-Ritstier K, et al. Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response. Clin Cancer Res 2008;14:5555-64.
    [17] Joshi B, Strugnell SS, Goetz JG, et al. Phosphorylated caveolin-1 regulates Rho/ROCK-ependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res 2008;68:8210-20.
    [18] Ren T, Wen ZK, Liu ZM, Liang YJ, Guo ZL, Xu L. Functional expression of TLR9 is associated to the metastatic potential of human lung cancer cell: functional active role of TLR9 on tumor metastasis. Cancer Biol Ther 2007;6:1704-9.
    [19] Cheung LW, Leung PC, Wong AS. Gonadotropin-releasing hormone promotes ovarian cancer cell invasiveness through c-Jun NH2-terminal kinase-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9. Cancer Res 2006;66:10902-10.
    [20] Friday BB, Adjei AA. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res 2008;14:342-6.
    [21] Kodama M, Kitadai Y, Tanaka M, et al. Vascular endothelial growth factor C stimulates progression of human gastric cancer via both autocrine and paracrine mechanisms. Clin Cancer Res 2008;14:7205-14.
    [22] Miles FL, Pruitt FL, van Golen KL, Cooper CR. Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 2008;25:305-24.
    [23] Belova L, Delgado B, Kocherginsky M, Melhem A, Olopade OI, Conzen SD.Glucocorticoid receptor expression in breast cancer associates with older patient age. Breast Cancer Res Treat. 2008 Jul 31.
    [24] Lind GE, Kleivi K, Meling GI, Teixeira MR, Thiis-Evensen E, Rognum TO, Lothe RA.ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis. Cell Oncol. 2006;28(5-6):259-72.
    [25] Li QX, Ke N, Sundaram R, Wong-Staal F. NR4A1, 2, 3--an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis. Histol Histopathol 2006;21:533-40.
    [26] Kitagawa H, Ray WJ, Glantschnig H, Nantermet PV, Yu Y, Leu CT, Harada S, Kato S, Freedman LP. A regulatory circuit mediating convergence between Nurr1 transcriptional regulation and Wnt signaling. Mol Cell Biol 2007;27:7486-96.
    [27] Mix KS, Attur MG, Al-Mussawir H, Abramson SB, Brinckerhoff CE, Murphy EP. Transcriptional repression of matrix metalloproteinase gene expression by the orphan nuclear receptor NURR1 in cartilage. J Biol Chem 2007;282:9492-504.
    [28] Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J, Conneely OM. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med 2007;13:730-5.
    [29] Inamoto T, Papineni S, Chintharlapalli S, Cho SD, Safe S, Kamat AM. 1,1-Bis(3'-indolyl)-1-(p-chlorophenyl) methane activates the orphan nuclear receptor Nurr1 (NR4A2) and inhibits bladder cancer growth. Mol Cancer Ther 2008;7:3825-33.
    [30] Ushigome M, Ubagai T, Fukuda H, Tsuchiya N, Sugimura T, Takatsuka J, Nakagama H. Up-regulation of hnRNP A1 gene in sporadic human colorectal cancers. Int J Oncol. 2005 Mar;26(3):635-40.
    [31] Yan-Sanders Y, Hammons GJ, Lyn-Cook BD.Increased expression of heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP) in pancreatic tissue from smokers and pancreatic tumor cells. Cancer Lett. 2002 Sep 26;183(2):215-20.
    [32] Dressman MA, Baras A, Malinowski R, Alvis LB, Kwon I, Walz TM, Polymeropoulos MH.Gene expression profiling detects gene amplification and differentiates tumor types in breast cancer. Cancer Res. 2003 May 1;63(9):2194-9.
    [33] Saip P, Cicin I, Eralp Y, Karagol H, Kucucuk S, Cosar Alas R, Yavuz E, Dincer M, Saglam E, Topuz E. Identification of patients who may benefit from the prophylactic cranial radiotherapy among breast cancer patients with brain metastasis. J Neurooncol. 2008 Dec 20. [Epub ahead of print]
    [34] Tambo M, Higashihara E, Terado Y, Nutahara K, Okegawa T. Comparison of serum HER2/neu with immunohistochemical HER2/neu expression for the prediction of biochemical progression in metastatic prostate cancer. Int J Urol. 2009 Feb 4. [Epub ahead of print]
    [35] Marx AH, Tharun L, Muth J, Dancau AM, Simon R, Yekebas E, Kaifi JT, Mirlacher M, Brümmendorf TH, Bokemeyer C, Izbicki JR, Sauter G. HER-2 amplification is highly homogenous in gastric cancer. Hum Pathol. 2009 Mar 5.
    [36] Yi CH, Smith DJ, West WW, Hollingsworth MA. Loss of fibulin-2 expression is associated with breast cancer progression. Am J Pathol. 2007 May;170(5):1535-45.
    [37] Ohnuma-Ishikawa K, Morio T, Yamada T, Sugawara Y, Ono M, Nagasawa M, Yasuda A, Morimoto C, Ohnuma K, Dang NH, Hosoi H, Verdin E, Mizutani S. Knockdown of XAB2 enhances all-trans retinoic acid-induced cellular differentiation in all-trans retinoic acid-sensitive and -resistant cancer cells. Cancer Res. 2007 Feb 1;67(3):1019-29.
    [38] Callahan MJ, Nagymanyoki Z, Bonome T, Johnson ME, Litkouhi B, Sullivan EH, Hirsch MS, Matulonis UA, Liu J, Birrer MJ, Berkowitz RS, Mok SC. Increased HLA-DMB expression in thetumor epithelium is associated with increased CTL infiltration and improved prognosis in advanced-stage serous ovarian cancer. Clin Cancer Res. 2008 Dec 1;14(23):7667-73.
    [39] Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci U S A 2007;104:8685-90.
    [40] Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein-protein interactions. J Med Genet 2006;43:691-8.
    [41] Karni S, Soreq H, Sharan R. A network-based method for predicting disease-causing genes. J Comput Biol 2009;16:181-9
    [1] Chuaqui RF, Bonner RF, Best CJ, Gillespie JW, Flaig MJ, Hewitt SM, Phillips JL, Krizman DB, Tangrea MA, Ahram M, Linehan WM, Knezevic V, Emmert-Buck MR. Post-analysis follow-up and validation of microarray experiments. Nat Genet. 2002 Dec;32 Suppl:509-14. Links
    [2] Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 61, 4683–4688 (2001).
    [3] Dhanasekaran, S.M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).
    [4] Molecular genetic profiling of Gleason grade 4/5 prostate cancers compared to benign prostatic hyperplasia. J. Urol. 166, 2171–2177 (2001).
    [5] Singh, D. et al. Gene expression correlates of clinical prostate cancer. Cancer Cell 1, 203–209 (2002).
    [6] Taniguchi, M., Miura, K., Iwao, H. & Yamanaka, S. Quantitative assessment of DNA microarrays—comparison with Northern blot analyses. Genomics 71, 34–39 (2001).
    [7] Sgroi, D.C. et al. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 59, 5656–5661 (1999).
    [8] Vu, H.L., Troubetzkoy, S., Nguyen, H.H., Russell, M.W. & Mestecky, J. A method for quantification of absolute amounts of nucleic acids by (RT)-PCR and a new mathematical model for data analysis. Nucleic Acids Res. 28, E18 (2000).
    [9] Nacht, M. et al. Molecular characteristics of non-small cell lung cancer. Proc. Natl Acad. Sci. USA 98, 15203–15208 (2001).
    [10] Singh, D. et al. Gene expression correlates of clinical prostate cancer. Cancer Cell 1, 203–209 (2002).
    [11] Rajeevan, M.S., Vernon, S.D., Taysavang, N. & Unger, E.R. Validation of arraybased gene expression profiles by real-time (kinetic) RT-PCR. J. Mol. Diagnosis 3, 26–31 (2001).
    [12] Tellmann G. The E-Method: a highly accurate technique for gene-expression analysis. Nat Methods 2006; 21: i-ii.
    [13] Yang Y, Rao R, Shen J, Tang Y, Frisks W, Nechtman J, Atadja P, Bhalla K. Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Res 2008;68:4833-42.
    [14] Mori M, Mimori K, Shiraishi T, Fujie T, Baba K, Kusumoto H, Haraguchi M, Ueo H, Akiyoshi T. Analysis of MT1-MMP and MMP2 expression in human gastric cancers. Int J Cancer 1997;74:316-21.
    [15] Milne AN, Carvalho R, Jansen M, Kranenbarg EK, van de Velde CJ, Morsink FM, Musler AR, Weterman MA, Offerhaus GJ. Cyclin E low molecular weight isoforms occur commonly in early-onset gastric cancer and independently predict survival. J Clin Pathol 2008;61:311-6.
    [16] Leung SY, Ho C, Tu IP, Li R, So S, Chu KM, Yuen ST, Chen X. Comprehensive analysis of 19q12 amplicon in human gastric cancers. Mod Pathol 2006;19:854-63.
    [17] Kang GH, Lee S, Cho NY, Gandamihardja T, Long TI, Weisenberger DJ, Campan M, Laird PW. DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest 2008;88:161-70.
    [18] Ueda Y, Ishikawa K, Shiraishi N, Yokoyama S, Kitano S. Clinical significance of HLA class I heavy chain expression in patients with gastric cancer. J Surg Oncol 2008;97:451-5.
    [19] Ohnuma-Ishikawa K, Morio T, Yamada T, Sugawara Y, Ono M, Nagasawa M, Yasuda A, Morimoto C, Ohnuma K, Dang NH, Hosoi H, Verdin E, et al. Knockdown of XAB2 enhances all-trans retinoic acid-induced cellular differentiation in all-trans retinoic acid-sensitive and -resistant cancer cells. Cancer Res 2007;67:1019-29.
    [20] Ushigome M, Ubagai T, Fukuda H, Tsuchiya N, Sugimura T, Takatsuka J, Nakagama H. Up-regulation of hnRNP A1 gene in sporadic human colorectal cancers. Int J Oncol. 2005 Mar;26(3):635-40.
    [21] Yan-Sanders Y, Hammons GJ, Lyn-Cook BD.Increased expression of heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP) in pancreatic tissue from smokers and pancreatic tumor cells. Cancer Lett. 2002 Sep 26;183(2):215-20.
    [22] Li QX, Ke N, Sundaram R, Wong-Staal F. NR4A1, 2, 3--an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis. Histol Histopathol 2006;21:533-40.
    [23] Kitagawa H, Ray WJ, Glantschnig H, Nantermet PV, Yu Y, Leu CT, Harada S, Kato S, Freedman LP. A regulatory circuit mediating convergence between Nurr1 transcriptional regulation and Wnt signaling. Mol Cell Biol 2007;27:7486-96.
    [24] Mix KS, Attur MG, Al-Mussawir H, Abramson SB, Brinckerhoff CE, Murphy EP. Transcriptional repression of matrix metalloproteinase gene expression by the orphan nuclear receptor NURR1 in cartilage. J Biol Chem 2007;282:9492-504.
    [25] Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J, Conneely OM. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med 2007;13:730-5.
    [26] Inamoto T, Papineni S, Chintharlapalli S, Cho SD, Safe S, Kamat AM. 1,1-Bis(3'-indolyl)-1-(p-chlorophenyl) methane activates the orphan nuclear receptor Nurr1 (NR4A2) and inhibits bladder cancer growth. Mol Cancer Ther 2008;7:3825-33.
    [27] Abril J, de Heredia ML, González L, Clèries R, Nadal M, Condom E, AguilóF, Gómez-Zaera M, Nunes V. Altered expression of 12S/MT-RNR1, MT-CO2/COX2, and MT-ATP6 mitochondrial genes in prostate cancer. Prostate 2008;68:1086-96.
    [28] Yang YX, Latchman DS. Nurr1 transcriptionally regulates the expression of alpha-synuclein. Neuroreport 2008;19:867-71
    [29] Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nature Review Molecular Cell Biology 2006, 7:1038.
    [30] Thiery JP. Epithelial-mesenchymal transitions in tumor progression. Nature Reviews 2002; 2:442-454.
    [1] Mikael Benson, Rainer Breitling. Network theory to understand microarray studies of complex disease. Current Molecular Medicine 2006;6:1-7
    [2] Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A 2006;103:5923-8.
    [3] Xin Lu, Vipul V Jain, Patricia W Finn, David L Perkins. Hubs in biological interaction networks exhibit low changes in expression in experimental asthma. Mol Syst Biol 2007;3:98.
    [4] Wang E, Lenferink A, O’Connor-McCourt M. Cancer systems biology: exploring cancer-associated genes on cellular networks. Cell Mol Life Sci 2007; 64:1752-62
    [5] Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004;5:101-13
    [6] Pieroni E, de la Fuente van Bentem S, Mancosu G, Capobianco E, Hirt H, de la Fuente A. Protein networking: insights into global functional organization of proteomes. Proteomics 2008;8:799-816
    [7] Zhou XJ, Kao MC, Huang H, Wong A, Nunez-Iglesias J, Primig M, Aparicio OM, Finch CE, Morgan TE, Wong WH. Functional annotation and network reconstruction through cross-platform integration of microarray data.Nat Biotechnol 2005;23:238-43.
    [8] Gevaert O, Van Vooren S, de Moor B. Integration of microarray and textual data improves the prognosis prediction of breast, lung and ovarian cancer patients. Pac Symp Biocomput 2008:279-90.
    [9] Frank ES, Matthias D. Analysis of microarray data: a network-based approach. 2008. ISBN:978-3-527-31822-3
    [10] Réka Albert. Scale-free networks in cell biology. J Cell Sci 2005;118:4947-57
    [11] Albert R, Jeong H, Barabási, AL. Error and attack tolerance of complex networks. Nature 2000; 406:378 -82
    [12] Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature 2001;411:41-2.
    [13] Jonsson PF, Bates PA. Global topological features of cancer proteins in human interactome. Bioinformatics 2006; 22:2291-7.
    [14] Wagner A, Fell DA. The small world inside large metabolic networks. Proc Biol Sci 2001;268:1803-10
    [15] Almaas E. Biological impacts and context of network theory. J Exp Biol 2007;210:1548-58
    [16] Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science 2002; 296:910-913.
    [17] Batada NN, Hurst LD, Tyers M. Evolutionary and physiological importance of hub proteins. PLoS Comput Biol 2006;2:e88.
    [18] Gunsalus KC, Ge H, Schetter AJ, et al. Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 2005; 436:861-865.
    [19] Gandhi TK, Zhong J, Mathivanan S, et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 2006; 38:285.
    [20] Xia K, Dong D, Xue H, et al. Identification of proliferation/ differentiation switch in the cellular network of multicellular organisms. PLoS Computational Biology 2006;2: e145.
    [21] Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Systems Biology 2007;1:54
    [22] Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci U S A 2004;101:5934-9.
    [23] Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet 2007;8:450-61.
    [24] Camargo A, Azuaje F. Linking gene expression and functional network data in human heart failure. PLoS ONE 2007;2:e1347.
    [25] Kauffman S. Homeostasis and differentiation in random genetic control networks. Nature 1969; 224:177-178.
    [26] Chen T, He HL, Church GM. Modeling gene expression with differential equations. Pac Symp Biocomput 1999; 29-40
    [27] Zhu D, Hero AO, Cheng H, Khanna R, Swaroop A. Network constrained clustering or gene microarray data. Bioinformatics 2005;21:4014–4020.
    [28] Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003; 19:386–375.
    [29] Zhang B, Horvath S. A General Framework for Weighted Gene Co-Expression Network Analysis. StatAppl Genet MolBiol 2005; 4: Article 17
    [30] Horvath S, Dong J. Geometric Interpretation of Gene Coexpression Network Analysis. PLoS Comput Bio l 2008; 4: e1000117
    [31] Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian networks to analyze expression data. J Comput Biol 2000; 7:601–620.
    [32] Keshava Prasad TS, Goel R, Kandasamy K, et al. Human Protein Reference Database--2009 update. Nucleic Acids Res 2009;37:D767-72.
    [33] Brown KR, Jurisica I. Online Predicted Human Interaction Database. Bioinformatics 2005;21;:2076-82.
    [34] von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Krüger B, Snel B, Bork P. STRING 7--recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 2007;35:D358-62.
    [35] Aylwin Ng, Borisas Bursteinas, Qiong Gao, Ewan Mollison and Marketa Zvelebil. pSTIING: a 'systems' approach towards integrating signalling pathways, interaction and transcriptional regulatory networks in inflammation and cancer. Nucleic Acids Research 2006; 34: D527-D534.
    [36] Chaurasia G, Malhotra S, Russ J, Schnoegl S, H?nig C, Wanker EE, Futschik ME. UniHI 4: new tools for query, analysis and visualization of the human protein-protein interactome. Nucleic Acids Res 2009 ;37:D657-60.
    [37] Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis.Mol Syst Biol 2007;3:140.
    [38] Wachi S, Yoneda K, Wu R. Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 2005;21:4205-8.
    [39] Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR.A census of human cancer genes. Nat Rev Cancer. 2004;4:177-83.
    [40] Awan A, Bari H, Yan F, Moksong S, Yang S, Chowdhury S, Cui Q, Yu Z, Purisima EO, Wang E. Regulatory network motifs and hotspots of cancer genes in a mammalian cellular signalling network. IET Syst Biol 2007;1:292-7.
    [41] Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci U S A 2007;104:8685-90.
    [42] Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein-protein interactions. J Med Genet 2006;43:691-8.
    [43] Karni S, Soreq H, Sharan R. A network-based method for predicting disease-causing genes. J Comput Biol 2009;16:181-9.
    [44] Horvath S, Zhang B, Carlson M, et al. Analysis of Oncogenic Signaling Networks in Glioblastoma Identifies ASPM as a Novel Molecular Target. Proc Natl Acad Sci U S A 2006;103:17402-17407
    [45] Jonsson PF, Cavanna T, Zicha D, Bates PA. Cluster analysis of networks generated through homology: automatic identification of important protein communities involved in cancer metastasis. BMC Bioinformatics 2006;7:2.
    [46] Franke L, van Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet;78:1011-25.
    [47] Pujana MA, Han JD, Starita LM, et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 2007;39:1338-49.
    [48] Segal E, Friedman N, Koller D, Regev A.A module map showing conditional activity of expression modules in cancer. Nat Genet 2004;36:1090-8.
    [49] Segal E, Friedman N, Kaminski N, Regev A, Koller D. From signatures to models: understanding cancer using microarrays.Nat Genet 2005;37 Suppl:S38-45.
    [50] Yu K, Ganesan K, Miller LD, Tan P. A modular analysis of breast cancer reveals a novel low-grade molecular signature in estrogen receptor-positive tumors. Clin Cancer Res 2006;12:3288-96.
    [51] Aggarwal A, Guo DL, Hoshida Y, et al. Topological and functional discovery in a gene coexpression meta-network of gastric cancer. Cancer Res. 2006;66:232-41.
    [52] Dawelbait G, Winter C, Zhang Y, et al. Structural templates predict novel protein interactions and targets from pancreas tumour gene expression data. Bioinformatics 2007; 23:i115-124.
    [53] Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 2007;1:54.
    [54] Ramaswamy S, Ross K, Lander E, Golub T. A molecular signature of metastasis in primary solid tumors. Nat Genet 2002;33:49-54.
    [55] Lu X, Jain VV, Finn PW, Perkins DL. Hubs in biological interaction networks exhibit low changes in expression in experimental asthma. Mol Syst Biol 2007;3:98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700