用户名: 密码: 验证码:
负载型活性炭催化臭氧氧化有机物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究首先对低温下制备的载铜及载镍活性炭催化剂(Cu/AC和Ni/AC)进行多种形式的表征,其次研究了Cu/AC和Ni/AC在催化臭氧化中对苯酚和草酸的降解效果。考察了催化剂投加量、初始溶液pH值、叔丁醇浓度、催化剂循环使用对催化臭氧化反应的影响,进而对非均相催化臭氧化苯酚和草酸降解性能和反应机理展开了初步研究。运用动力学理论对Cu/AC和Ni/AC催化臭氧化进行反应动力学研究,结合试验数据展开了两种催化剂催化臭氧化的对比研究。
     Cu/AC和Ni/AC的XRD、SEM、BET及AAS表征结果显示:Cu/AC和Ni/AC中铜和镍几乎完全分别以CuO和NiO的棒状形式存于催化剂表面,且催化剂表面形貌发生了显著变化。与AC相比,Cu/AC的比表面积、微孔表面积及微孔体积分别减少了50.7%、62.9%、62.4%;Ni/AC则分别减少了47.9%、60.6%、60.7%,催化剂的平均孔径比AC略有增大。
     在O_3/Cu/AC和O_3/Ni/AC氧化系统中,苯酚和草酸去除效果与催化剂投加量呈正相关关系,这主要是由于催化剂投加量的增多,引起臭氧分解成HO~·的效率和产量提高,最终增强了系统氧化能力;碱性条件下苯酚和草酸去除率明显高于酸性范围,这主要是由于臭氧的分解强烈受到溶液pH值的影响,它在碱性条件下主要分解生成HO~·。
     叔丁醇试验表明O_3和O_3/AC过程主要是分子臭氧和活性炭吸附,O_3/Cu/AC和O_3/Ni/AC对苯酚和草酸的降解反应遵循HO~·机理,催化剂促进臭氧分解成一定量的HO~·。活性炭表面的碱性基团和弱碱性的金属氧化物使得催化臭氧化反应最终pH值比臭氧氧化略高。催化臭氧化过程中Cu~(2+)和Ni~(2+)析出浓度很小且析出率不到0.5%,这表明Cu/AC和Ni/AC在反应中稳定性较高且易于回收利用,反应为非均相催化臭氧化反应。
     反应动力学及叔丁醇试验结果表明,O_3/Cu/AC比O_3/Ni/AC反应速率常数小,Ni/AC促进臭氧分解产生的HO~·比Cu/AC略多。催化作用的差别主要是单位质量的Ni/AC中金属负载量比Cu/AC多0.56mol·L~(-1),Ni/AC比表面积比Cu/AC大5%。O_3/Ni/AC体系中反应活性中心增多,且Ni/AC与臭氧接触面积增大,碰撞机会增多,臭氧分解成HO~·的生成量增大。
In this study, copper and nickel loaded activated carbon catalysts (termed Cu/AC and Ni/AC) which were prepared under low temperature were characterized in various forms, followed by studies of application in the ozonation of phenol and oxalic acid. The effects of catalyst dosage, initial pH, concentration of tert-butanol and catalyst recycling in the catalytic ozonation were studied; degradation and reaction mechanism of heterogeneous catalytic ozonation of phenol and oxalic acid were further investigaed. The kinetics studies of O_3/Cu/AC, O_3/Ni/AC and the comparison study of two catalysts in catalytic ozonation were carried out by kinetic theory and experimental data.
     The XRD, SEM, BET and AAS characterization results of Cu/AC and Ni/AC showed that copper and nickel almost entirely in the form of rod-like structered CuO and NiO respectively loaded on the surface of Cu/AC and Ni/AC and both catalysts’surface morphologies were significantly changed. Compared with AC, the surface area, micropore surface area and pore volume of Cu/AC decreased by 50.7%, 62.9%, 62.4%; that of Ni/AC decreased by 47.9%, 60.6%, 60.7% and the average poresize of two catalysts slightly larger than that of AC.
     In O_3/Cu/AC and O_3/Ni/AC oxidation system, the removals of phenol and oxalic acid were positively correlated with catalyst dosage, which was mainly due to the increase of catalyst dosage leads to higher ozone decomposition efficiency and finally enhanced the oxidation capacity of system; the removals of phenol and oxalic acid under alkaline condition significantly higher than that of acid one, which is because the decompositon of ozone strongly influenced by the pH value of solution and ozone was mainly decomposed into HO~·in alkaline condition.
     The tert-butanol experiments showed that the processes of ozonation and O_3/AC mainly contained molecular ozone and activated carbon adsorption. The degradation of phenol and oxalic acid in O_3/Cu/AC and O_3/Ni/AC reactions follows the HO~·mechanism and catalysts promoted ozone decomposed into a certain amount of HO~·. The basic groups in activated carbon surface and the weak alkaline of metal oxides in Cu/AC and Ni/AC aroused the final pH values in catalytic ozonation slightly higher than that of ozonation. The leached Cu~(2+) and Ni~(2+) concentration in catalytic ozonation processes were very limited and the leaching rates were less than 0.5%, which indicating that Cu/AC and Ni/AC has high stability, easy to be recycled and the two catalytic reactions were heterogeneous catalytic ozonation.
     Kinetic studies and tert-butanol experiments showed that the rate constant of O_3/Cu/AC is smaller than that of O_3/Ni/AC and Ni/AC promoted ozone decomposed into more HO~·than Cu/AC. The catalytic effect difference of Ni/AC and Cu/AC is mainly because the unit molar metal conccentration in Ni/AC is 0.56mol·L~(-1) larger than that of in Cu/AC and the BET of Ni/AC is 5% larger than Cu/AC. Therefore the reaction centers, exposure area and the collision of Ni/AC with ozone increased in O_3/Ni/AC system and the possibility and concentration of ozone decomposition into HO~·increased.
引文
[1]刘宏远,张燕.饮用水强化处理技术及工程实例[M].北京:化学工业出版社, 2005: 1-8
    [2]中华人民共和国环境保护部. 2008年中国环境状况公报. http://jcs.mep.gov.cn/hjzl/zkgb/2008zkgb/
    [3]赵雷.超声强化臭氧/蜂窝陶瓷催化氧化去除水中有机物的研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2008
    [4]王国华,任鹤云.工业废水处理工程设计与实例[M].北京:化学工业出版社, 2005: 43-46
    [5] Singer P. C., Reckhow D. A. Water quality & treatment: A handbook of community water supplies [M]. New York: Mc Graw-Hill, 1999: 364-365
    [6] Linda Y. Zou, Yuncang Li, YungTse Hung. Wet air oxidation for waste treatment [A]. Handbook of Environmental Engineering, Volume 5: Advanced Physicochemical Treatment Technologies [C]. Totowa, New Jersey: Humana Press, 2007: 575-610
    [7] Von Sonntag C. The basics of oxidants in water treatment Part A: HO? radical reactions [J]. Wat. Sci. & Tech., 2007, 55(12): 19-23
    [8] Pitochelli A., Biocides. Useful applications for the use of chlorine dioxide in water treatment [J]. Ultrapure Water, 2006, 23(3): 40-42
    [9] Westerhoff P., Nalinakumari B., Pei P. Kinetics of MIB and geosmin oxidation during ozonation [J]. Ozone: Sci. & Eng., 2006, 28(5): 277-286
    [10] Peter A., Von Gunten U., Oxidation kinetics of selected taste and odour compounds during ozonation of drinking water [J]. Env. Sci. & Tech., 2007, 41(2): 626-631
    [11]孙德智,于秀娟,冯玉杰.环境工程中的高级氧化技术[M].北京:化学工业出版社, 2002: 3-6
    [12]储金宇,吴春笃,陈万金,陈志刚.臭氧技术及应用[M].北京:化学工业出版社, 2002: 23-24
    [13] Bermond A., Camel V. The use of ozone and associated oxidation processes in drinkingwater treatment [J]. Wat. Res., 1998, 32(11): 3208-3222
    [14] Yao C. C. D., Haag W. R. Rate constants for direct reactions of ozone with several drinking water contaminants [J]. Wat. Res., 1991, 25(7): 761-773
    [15] Fernando J. Beltrán.水和废水的臭氧反应动力学[M].周云瑞.北京:中国建筑工业出版社, 2007: 5-11
    [16] Marcio Pimentel, Nihal Oturan, Marcia Dezotti, Mehmet A. Oturan. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode [J]. Applied Catalysis B: Environmental, 2008, 83(1/2): 140-149
    [17]罗汉金,刘佳乐,韦朝海.染料溶液的臭氧脱色效率和残留物的分析研究[J],环境化学, 2006, 25(5): 602-606
    [18]刘佳乐,罗汉金,韦朝海.臭氧法对酸性嫩黄G溶液的脱色效率和残留物的分析[J],环境工程, 2007, 25(1): 76-78
    [19]刘佳乐,罗汉金,韦朝海.臭氧对阳离子染料的脱色效率和残留物的研究[J],水处理技术, 2007, 33(10): 31-34
    [20] Luo Hanjin, Liu Jiale, Wei Chaohai. Studies on ozone degradation of anthraquinone dyes [J]. Transactions of Nonferrous Metals society of China, 2007, 17(4): 880-886
    [21]刘佳乐.模拟染料废水的臭氧脱色机理和残留物的分析研究[D].广州:华南理工大学, 2007
    [22]龚宜,罗汉金,韦朝海.酸性染料的臭氧降解与中间产物研究[J].环境化学, 2009, 28(3): 383-386
    [23]龚宜,罗汉金,韦朝海.直接红染料的臭氧脱色与中间产物研究[J].环境工程学报, 2009, 3(3): 409-412
    [24]龚宜,罗汉金,韦朝海.活性嫩黄染料废水的臭氧降解研究[J].环境科学与技术, 2009, 32(3): 126-129
    [25]汪晓军,林德贤,顾晓扬.臭氧-曝气生物滤池处理酸性玫瑰红染料废水[J].环境污染治理技术与设备, 2006, 7(7): 43-45
    [26] Wang Xiaojun, Gu Xiaoyang, Li Dexian. Treatment of acid rose dye containing wastewater by ozonizing biological aerated filter [J]. Dyes and Pigments, 2007, 74(3):736-740
    [27]汪晓军,顾晓扬,简磊.纺织印染厂废水的深度处理中试及工程应用[J].环境工程, 2009, 27(6): 3-5
    [28] Kasprzyk-hordern B, Zió?ek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment [J]. Applied Catalysis B: Environmental, 2003, 46(4): 639-669
    [29] Bakker, S. H. Ozone depletion, chemistry, and impacts [M]. Hauppauge, N.Y.: Nova Science, 2009: 17-52
    [30] Hewes C. G., Davison R. R. Renovation of waste water by ozonation [J]. AIChE Symposium Series, 1973, 69(129): 71-80
    [31] Andreozzi R., Insola A., Caprio V., D'Amore M. G. The kinetics of Mn(II)-catalysed ozonation of oxalic acid in aqueous solution [J]. Wat. Res., 1992, 26 (7): 917-921
    [32] Nowell L. H., HoignéJ. Interaction of iron (II) and other transition metals with aqueous ozone[C]. 8th Ozone World Congress: Zurich, 1987: 9
    [33] Pines D. S., Reckhow D. A. Effect of dissolved cobalt (II) on the ozonation of oxalic acid [J]. Env. Sci. Tech., 2002, 36 (19): 4046-4051
    [34] Ni C. H., Chen J., Yang P. Catalytic ozonation of 2-dichlorophenol by metallic ions [J]. Wat. Sci. & Tech., 2003, 47(1): 77-82
    [35] Beltrán F. J., Rivas F. J., Montero-de-Espinosa R. Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts. 2. Heterogeneous catalytic ozonation [J]. Ind. & Eng. Chem. Res., 2003, 42(14): 3218-3224
    [36] Beltrán F. J., Rivas F. J., Montero-de-Espinosa R. Iron type catalysts for the ozonation of oxalic acid in water [J]. Wat. Res., 2005, 39(15): 3553-3564
    [37]石锐,张华,童少平,马淳安.臭氧及催化臭氧化降解2, 4-滴丙酸动力学研究[J].环境科学学报, 2009, 29(8): 1701-1706
    [38] Chen J. W., Hui C., Keller T., Smith G. Catalytic ozonation in aqueous system, AIChE Symposium Series, 1977, 73: 206-212
    [39] Fernando J. Beltrán, Francisco J. Rivas, Ramón Montero-de-Espinosa. Catalyticozonation of oxalic acid in an aqueous TiO2 slurry reactor [J]. Applied Catalysis B: Environmental, 2002, 39(3): 221-231
    [40]印红玲,谢家理,杨庆良,尹臣,王艳,冯易君.臭氧在金属氧化物上的分解机理[J].化学研究与应用, 2003, 15(1): 1-5
    [41] Tong S., Liu W., Leng W., Zhang Q., Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water [J]. Chemosphere, 2003, 50(10): 1359-1364
    [42] Ernst M., Lurot F., Schorotter J. C. Catalytic ozonation of refractory organic model compounds in aqueous soluiton by alumin oxide [J]. Appl. Catal. B., 2004, 47(1): 15-25
    [43] Kasprzyk-Hordern B., Raczyk-Stanis?awiak U., Swietlik J., Nawrocki J. Catalytic ozonation of natural organic matter on alumina [J]. Applied Catalysis B: Environmental, 2006, 62(3/4): 345-358
    [44]曾玉凤,刘自力,刘宏伟. SnO2的制备及催化臭氧氧化活性[J].催化学报, 2008, 29(3): 253-258
    [45] Zhang Tao, Chen Weipeng, Ma Jun, Qiang Zhimin. Minimizing bromate formation with cerium dioxide during ozonation of bromide-containing water [J]. Water Research, 2008, 42(14): 3651-3658
    [46]叶苗苗,陈忠林,沈吉敏,贲岳,徐贞贞. La2O3和CeO2的制备及催化臭氧氧化对氯硝基苯[J].哈尔滨工业大学学报, 2009, 41(4):77-80
    [47] P. C. C. Faria, D. C. M. Monteiro, J. J. M.órf?o, M. F. R. Pereira. Cerium, manganese and cobalt oxides as catalysts for the ozonation of selected organic compounds [J]. Chemosphere, 2009, 74(6): 818-824
    [48] Haeryong Jung, Heechul Choi. Catalytic decomposition of ozone and para-Chlorobenzoic acid (p-CBA) in the presence of nanosized ZnO [J]. Applied Catalysis B: Environmental, 2006, 66(3/4): 288-294
    [49]王胜军,马军,杨忆新,张静,秦庆东,梁涛.纳米TiO2催化臭氧化对松花江水中氨氮的影响[J].环境科学, 2007, 28(11): 2520-252
    [50] Zhang Xinyu, Li Xin, Wu Qin. Investigation of the catalytic activity for ozonation on thesurface of NiO nano-particles [J]. Chemical Physics Letters, 2009, 479(4/6): 310-315
    [51]翟旭,陈忠林,杨磊,刘婷,刘玥.纳米CuO催化臭氧化降解水中痕量对硝基氯苯的研究[J].黑龙江大学自然科学学报, 2009, 26(5): 652-656
    [52] Zhang Tao, Li Chunjuan, Ma Jun, Tian Hai, Qiang Zhimin.Surface hydroxyl groups of syntheticα-FeOOH in promoting HO? generation from aqueous ozone: Property and activity relationship[J]. Applied Catalysis B: Environmental, 2008, 82(1/2): 131-137
    [53]董玉明,蒋平平,张爱民.介孔结构的α-FeOOH对苯酚的催化臭氧化降解[J].无机化学学报, 2009, 25(9): 1595-1600
    [54]徐贞贞,陈忠林,贲岳,齐飞,沈吉敏.羟基化锌催化臭氧化水中痕量p-CNB的动力学和机理[J].化工学报, 2009, 60(7): 1687-1692
    [55]隋铭皓,马军.臭氧/活性炭对硝基苯的去除效果研究[J].中国给水排水, 2001, 17(10): 70-73
    [56] Qu Xianfeng, Zheng Jingtang, Zhang Yanzong. Catalytic ozonation of phenolic wastewater with activated carbon ?ber in a ?uid bed reactor [J]. Journal of Colloid and Interface Science, 2007, 309(2): 429-434
    [57] Fernando J. Beltrán, Francisco J. Rivas, Lidia A. Fernández, Pedro M.álvarez, Ramón Montero-de-Espinosa. Kinetics of Catalytic Ozonation of Oxalic Acid in Water with Activated Carbon [J]. Ind. Eng. Chem. Res., 2002, 41(25): 6510-6517
    [58] P. C. C. Faria, J. J. M. Orfaó, M. F. R. Pereira. Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon [J]. Applied Catalysis B: Environmental, 2008, 83(1/2): 150-159
    [59] P. C. C. Faria, J. J. M. Orfaó, M. F. R. Pereira. Activated carbon catalytic ozonation of oxamic and oxalic acids [J]. Applied Catalysis B: Environmental, 2008, 79(3): 237-243
    [60] A. H. Konsowa, M. E. Ossman, Yongsheng Chen, John C. Crittenden. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon [J]. Journal of Hazardous Materials, 2010, 176 (1/3): 181-185
    [61] Colin Cooper M., Robbie Burch. An investigation of catalytic ozonation for the oxidation of halocarbons in drinking water preparation [J]. Wat. Res., 1999, 33(18): 3695-3700
    [62] Fernando J. Beltrán, Francisco J. Rivas, Ramón Montero-de-Espinosa. Ozone Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. 2. Heterogeneous Catalytic Ozonation [J]. Ind. Eng. Chem. Res., 2003, 42(14), 3218-3224
    [63] Qu Jiuhui, Li Haiyan, Liu Huijuan, He Hong. Ozonation of alachlor catalyzed by Cu/Al2O3 in water [J]. Catalysis Today, 2004, 90(3/4): 291-296
    [64] Fernando J. Beltrán, Francisco J. Rivas, Ramón Montero-de-Espinosa. Iron type catalysts for the ozonation of oxalic acid in water [J]. Water Research, 2005, 39(15): 3553-3564
    [65] M. Stoyanova, P. Konova, P. Nikolov, A. Naydenov, St. Christoskova, D. Mehandjiev. Alumina-supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs [J]. Chemical Engineering Journal, 2006, 122(1/2): 41-46
    [66]周云瑞,祝万鹏,刘福东,陈迅,董鑫.催化剂载体对催化臭氧氧化活性的影响[J].清华大学学报(自然科学版), 2007, 47(9): 1481-1484
    [67] Yang Li, Hu Chun, Nie Yulun, Qu Jiuhui. Catalytic ozonation of selected pharmaceuticals over mesoporous alumina-supported manganese oxide[J]. Environ. Sci. Technol., 2009, 43(7): 2525-2529
    [68]孙志忠,赵雷,马军.改性蜂窝陶瓷催化臭氧化降解水中微量的硝基苯[J].环境科学, 2005, 26(6): 84-88
    [69]孙志忠,赵雷,马军.水中本底成分对催化臭氧化水中微量硝基苯的影响[J].环境科学, 2006, 27(2): 285-289
    [70]赵雷,马军,孙志忠.无机离子对水中痕量硝基苯催化臭氧化降解效果的影响[J].环境科学, 2006, 27(5): 924-929
    [71]赵雷,马军,孙志忠,刘正乾,杨忆新,路炜.蜂窝陶瓷催化臭氧化降解水中微量硝基苯的动力学研究[J].环境科学, 2007, 28(1): 102-107
    [72]赵雷,马军,孙志忠,刘正乾,杨忆新,路炜.蜂窝陶瓷催化臭氧化降解水中痕量硝基苯的机理研究[J].环境科学, 2007, 28(2): 335-341
    [73]赵雷,孙志忠,马军.蜂窝陶瓷催化臭氧化降解水中草酸的研究[J].环境科学, 2007, 28(11): 2533-2538
    [74]赵雷,马军,孙志忠,刘正乾,杨忆新.催化臭氧化水中硝基苯速率常数的影响因素[J].哈尔滨工业大学学报, 2008, 40(8): 1227-1232
    [75] Zhao Lei, Ma Jun, Sun Zhizhong, Zhai Xuedong. Mechanism of influence of initial pH on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation [J]. Environmental Science and Technology, 2008, 42(11): 4002-4007
    [76] Zhao Lei, Ma Jun, Sun Zhizhong. Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution [J]. Applied Catalyst B: Environmental, 2008, 79(3): 244-253
    [77] Zhao Lei, Ma Jun, Sun Zhizhong, Zhai Xuedong. Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb supported manganese [J]. Applied Catalyst B: Environmental, 2008, 83(3/4): 256-264
    [78]赵雷,孙志忠,马军.催化臭氧化降解水中硝基苯的机制[J].哈尔滨工业大学学报, 2009, 41(2): 71-75
    [79] Zhao Lei, Sun Zhizhong, Ma Jun, Liu Huiling. In?uencing mechanism of bicarbonate on the catalytic ozonation of nitrobenzene in aqueous solution by ceramic honeycomb supported manganese [J]. Journal of Molecular Catalysis A: Chemical, 2010, 322(1/2): 26-32
    [80]马军,张涛,陈忠林,隋铭皓,李学艳.水中羟基氧化铁催化臭氧分解和氧化痕量硝基苯的机理探讨[J].环境科学, 2005, 26(2): 78-82
    [81]隋铭皓,马军,盛力. MnOx/颗粒活性炭催化臭氧化技术降解硝基苯效能研究[J].现代化工, 2005, 25(8): 31-37
    [82]隋铭皓,马军,盛力. MnOx/GAC多相催化臭氧氧化降解有机物机理探讨[J].中国给水排水, 2007, 23(7): 106-108
    [83]关春雨,马军,鲍晓丽,隋铭皓.臭氧催化活性炭处理微污染源水[J].水处理技术, 2007, 33(11): 75-78
    [84] Faria P,órf?o J, Pereira M. A novel ceria-activated carbon composite for the catalytic ozonation of carboxylic acids [J]. Catalysis Communications, 2008, 9(11/12): 2121-2126
    [85] Li Laisheng, Ye Weiying, Zhang Qiuyun, Sun Fengqiang, Lu Ping, Li Xukai. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon [J]. Journal ofHazardous Materials, 2009, 170(1): 411-416
    [86] Faria P. C. C.,órf?o J. J. M. Activated carbon and ceria catalysts applied to the catalytic ozonation of dyes and textile effluents [J]. Applied Catalysis B: Environmental, 2009, 88(3/4): 341-350
    [87] Li Xukai, Zhang Qiuyun, Tang Lili, Lu Ping, Sun Fengqiang, Li Laisheng. Catalytic ozonation of p-chlorobenzoic acid by activated carbon and nickel supported activated carbon prepared from petroleum coke [J]. Journal of Hazardous Materials, 2009, 163(1): 115-120
    [88] Wang Jianbing, Zhou Yunrui, Zhu Wanpeng, He Xuwen. Catalytic ozonation of dimethyl phthalate and chlorination disinfection by-product precursors over Ru/AC [J]. Journal of Hazardous Materials, 2009, 166(1): 502-507
    [89] H. Valdés, F. A. Murillo, J. A. Manoli, C. A. Zaror. Heterogeneous catalytic ozonation of benzothiazole aqueous solution promoted by volcanic sand [J]. Journal of Hazardous Materials, 2008, 153(3): 1036-1042
    [90] H. Choi, Y. Kim, H. Lim, J. Cho, J. Kang, K. Kim. Oxidation of polycyclic aromatic hydrocarbons by ozone in presence of sand [J]. Water Sci. Technol., 2001, 43(5): 349-356
    [91] H. Lim, H. Choi, T. Hwang, J. Kang. Characterization of ozone decomposition in a soil slurry: kinetics and mechanism [J]. Water Res., 2002, 36(1): 219-229
    [92] H. Fujita, J. Izumi, M. Sagehashi, T. Fujii, A. Sakoda. Adsorption and decomposition of water-dissolved ozone on high silica zeolites [J]. Water Res., 2004, 38(1): 159-165
    [93] H. Fujita, J. Izumi, M. Sagehashi, T. Fujii, A. Sakoda. Decomposition of trichloroethene on ozone-adsorbed high silica zeolites [J]. Water Res., 2004, 38(1): 166-172
    [94] J. Park, H. Choi, K. Ahn, J. Kang. Removal mechanism of natural organic matter and organic acid by ozone in the presence of goethite [J]. Ozone Sci. Eng., 2004, 26(2): 141-152
    [95] J. Park, H. Choi, J. Cho. Kinetic decomposition of ozone and para-chlorobenzoic acid (p-CBA) during catalytic ozonation [J]. Water Res., 2004, 38(9): 2285-2292
    [96] Heinig C. F. Jr. Ozone or O2 and Ag: a new catalyst technology for aqueous phasesanitation [J]. Ozone: Sci. & Eng., 1993, 15(6): 533-546
    [97] Karpel Vel Leitner N., Delouane B., Legube B., Luck F. Effects of catalysts during ozonation of salicylic acid, peptides and humic substances in aqueous solution [J] Ozone: Sci. & Eng., 1999, 21(3): 261-276
    [98] Karpel Vel Leitner N., Delanoe F., Acedo B., Legube B. Reactivity of various Ru/CeO2 catalysts during ozonation of succinic acid aqueous solutions [J]. New Journal of Chem., 2000, 24(4): 229-233
    [99] Delano? F., Acedo B., Karpel Vel Leitner N., Legube B. Relationship between the structure of Ru/CeO2 catalysts and their activity in the catalytic ozonation of succinic acid aqueous solutions[J]. Appl. Catal. B: Environmental, 2001, 29(4): 315-325
    [100] Lin J., Nakajima T., Jomoto T., Hiraiwa K. Effective catalysts for wet oxidation of formic acid by oxygen and ozone [J]. Ozone: Sci. & Eng., 2000, 22(3): 241-247
    [101]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社, 2002: 6-14
    [102] Jorge Villase?or, Patricio Reyes, Gina Pecchi. Catalytic and photocatalytic ozonation of phenol on MnO2 supported catalysts [J]. Catalysis Today, 2002, 76(2): 121-131
    [103] Masato Shiraga, Tomonori Kawabata, Dalin Li, Tetsuya Shishido, Kenji Komaguchi, Tsuneji Sano, Katsuomi Takehira. Memory effect-enhanced catalytic ozonation of aqueous phenol and oxalic acid over supported Cu catalysts derived from hydrotalcite [J]. Applied Clay Science, 2006, 33(3/4): 247-259
    [104]刘正乾,马军,赵雷.石墨负载Pt催化剂的制备表征及活性研究[J].无机化学学报, 2006, 22(12): 2263-2268
    [105] Liu Zhengqian, Ma Jun, Cui Yuhong. Carbon nanotube supported platinum catalysts for the ozonation of oxalic acid in aqueous solutions [J]. Carbon, 2008, 46(6): 890-897
    [106] Legube B, Karpel Vel Leitner N. Catalytic ozonation: A promising advanced oxidation technology for water treatment [J]. Catalysis Today, 1999, 53(1): 61-72
    [107]赵伟荣.阳离子红X-GRL染料的UV、O3、O3/UV氧化处理研究[D].浙江:浙江大学博士学位论文, 2004
    [108] Zhang Qinghong, Gao Lian, Guo Jingkun. Effects of calcination on the photocatalyticproperties of nanosized TiO2 powders prepared by TiCl4 hydrolysis [J]. Applied Catalysis B: Environmental, 2000, 26(3): 207-215
    [109] Choi H, Al-abed S, Agarwal S, Dionysiou D. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination [J]. Chemistry of Materials, 2008, 20(11): 3649-3655
    [110]张泽南. X射线衍射在纳米材料物理性能测试中的应用[J].浙江工业大学学报, 2002, 30(1): 31-35
    [111]景茂祥,沈湘黔,沈裕军.柠檬酸盐凝胶法制备纳米氧化镍的研究[J].无机材料学报, 2004, 19(2): 289-294
    [112] Xu C B, Hamilton S, Ghosh M. Hydro-treatment of Athabasca vacuum tower bottoms in supercritical toluene with microporous activated carbons and metal-carbon composite [J]. Fuel, 2009, 88(11): 2097-2105
    [113] Rinaldi A, Abdullah N, Ali M, Furche A, Hamid S, Su D S, Schl?gl R. Controlling the yield and structure of carbon nanofibers grown on a nickel/activated carbon catalyst [J]. Carbon, 2009, 47(13): 3023-3033
    [114]张清敏,徐濮.扫描电子显微镜和X射线微区分析[M].天津:南开大学出版社, 1988: 9-17
    [115]梁大明.中国煤质活性炭[M].北京:化学工业出版社, 2008: 21-22
    [116]陈诵英,陈平,李永旺,王建国.催化反应动力学[M].北京:化学工业出版社, 2007: 76-81
    [117] Khan M, Jung J. Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase [J]. Chemosphere, 2008, 72(4): 690-696
    [118] Valdés H, Zaror C A. Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: Kinetic approach [J]. Chemosphere, 2006, 65(7): 1131-1136
    [119]肖衍繁,李文斌.物理化学[M].天津:天津大学出版社, 2004: 364-387

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700