用户名: 密码: 验证码:
百日咳杆菌的免疫蛋白质组学研究以及应用生物信息学方法筛选针对百日咳的新抗原和药物靶点
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
百日咳是一种由百日咳杆菌传播,侵袭呼吸道并引发急性呼吸道感染的传染病,每年导致35万儿童死亡,感染百日咳的病例数超过4000万,主要都集中在发展中国家。百日咳疫苗是预防百日咳流行和爆发的最有力的手段。自20世纪50年代百日咳全细胞疫苗即菌体疫苗应用以来,已经极大地降低了百日咳的发病率和死亡率。据世界卫生组织报道,实施百日咳菌体疫苗接种已减少了8561。1万个病例与72.6万例儿童死亡。但是由于接种产生的严重副反应,近年来,百日咳全细胞疫苗正逐渐被第二代百日咳疫苗即无细胞疫苗取代。一直到现在,即使百日咳疫苗已经普遍推广,百日咳仍然是公共健康卫生的一个重大威胁,百日咳发病率一直在显著提高。可能的原因包括:1.目前使用的百日咳全细胞疫苗和无细胞疫苗都不能对儿童产生终生免疫,一般3—5年后保护力就逐渐消失;2.副百日咳杆菌也能引起百日咳,不过症状要比百日咳杆菌引起的要轻,而且病症耐受期也要短。当前使用的百日咳疫苗对越来越来多的副百日咳感染者没有保护力或保护力不足。因此需要进一步提高现有百日咳疫苗的保护效力。由于人是百日咳杆菌的唯一宿主,缺乏合适的动物研究模型,百日咳杆菌的致病机理以及导致宿主产生的免疫机制一直还不是完全清楚,极大地限制了发展百日咳新疫苗。当前对百日咳疫苗的研究主要是融合表达多抗原或DNA疫苗等基因工程疫苗,但这些新疫苗的免疫效果都不令人满意。除了疫苗预防外,药物的预防和治疗也是控制百日咳流行的必不可少的手段。到目前为止,百日咳治疗常用的抗生素(主要是大环内酯类抗生素)都或多或少产生一些严重的副作用,尤其对婴幼儿,而且没有一个大环内酯类抗生素被美国FDA批准应用到6个月以下的婴儿身上。因此,现在急需找到针对百日咳杆菌和副百日咳杆菌的疫苗候选抗原和药物靶点。
     免疫蛋白质组学技术,融合了抗体识别的特异性和高分辨率能力的2D双向电泳和精确的质谱分析,广泛应用于筛选疫苗抗原、诊断抗原、新型药物和临床标志物等研究。在本研究中,免疫蛋白质组学技术被首次应用鉴定百日咳杆菌的免疫原性蛋白。百日咳杆菌的膜蛋白和胞外分泌蛋白分别用经典的TritonX-114和TCA—丙酮沉淀法制备。免疫印迹使用免疫百日咳全细胞疫苗的儿童血清。MADLI-TOF/MS质谱—共鉴定出了32个免疫原性蛋白,包括27个膜蛋白和11个胞外蛋白。在这些免疫原性蛋白中,69KDa蛋白或粘附素、血清抗性蛋白和外膜孔蛋白是已知的百日咳杆菌重要的毒力因子,其中粘附素还是百日咳无细胞疫苗的重要成分之一;血清抗性蛋白也是百日咳杆菌抵抗宿主机体内补体杀伤作用的决定因素。而编码外膜配体结合蛋白的基因是唯一一个被鉴定出的是Bvg—中间相的基因,Bvg—中间相被认为是百日咳杆菌从体外传播进入到人体内起始粘附过程的一个重要的中间环节。蛋白合成延伸因子Tu/Ts、3-磷酸甘油醛和分子伴侣蛋白GroEL是在许多病原微生物免疫蛋白质组学研究中都被鉴定出具有强免疫原性的标志性蛋白,在本研究中,也被鉴定出来了。乳酸脱氢酶、琥珀酸脱氢酶、异柠檬酸脱氢酶、乙醇脱氢酶、谷氨酸脱氢酶、异丙基异构酶、青霉素结合蛋白和ATP结合蛋白虽然是首次在百日咳杆菌中被证实具有免疫原性,但是这些免疫原性蛋白已经在其他一个或多个病原微生物的免疫蛋白质组学研究中被鉴定出来了。其他被发现具有免疫原性的蛋白还包括硫酸盐结合蛋白、2-羟基酸脱氢酶、氨基酸周质结合蛋白和假定蛋白BP3575和BP2818等,尤其是假定蛋白BP3575和BP2818,虽然功能未知,但是却具有良好的免疫原性,更值得深入去研究。通过对这些免疫原性蛋白的深入研究有助于更好地了解百日咳杆菌的致病机制以及与宿主的相互作用。为研究新的百日咳疫苗提供一定的理论基础。
     除了免疫蛋白质组学研究外,本研究还整合了生物信息学分析、比较基因组杂交数据、基因表达谱和蛋白质相互作用网络来筛选针对百日咳杆菌和副百日咳杆菌的疫苗候选抗原和药物靶点。在百日咳杆菌3436个ORFs中,总共731个基因,包括671个在百日咳杆菌GMT-1菌株和副百日咳杆菌12822菌株都高度表达基因和81个百日咳杆菌GMT-1菌株的37℃表达上调基因,这37℃表达上调基因同时也存在于副百日咳杆菌基因组,这731个基因被筛选出来作为初步的候选抗原。在去掉胞质蛋白、跨膜结构超过4的内膜蛋白、在137株百日咳杆菌和28株副百日咳杆菌中不保守的蛋白以及与宿主高度同源的蛋白后,最后191个抗原被筛选出来作为针对百日咳杆菌和副百日咳杆菌的候选抗原。这191个候选抗原或者具有高度转录水平,或者和细菌毒力与致病性高度相关,而且这些抗原不仅暴露于细菌表面,还在165株百日咳杆菌和副百日咳杆菌中高度保守,在宿主体内没有高度同源蛋白,不会产生交叉反应,损害宿主。在百日咳杆菌和副百日咳杆菌的蛋白质相互作用网络中,从191个候选抗原进一步鉴定出22个高度连接蛋白,这22个蛋白都参与细菌能量或物质代谢等重要过程,为百日咳杆菌和副百日咳杆菌维持基本的生命活动所必需,能作为合适的百日咳治疗药物靶点。对这191个疫苗候选抗原包括22个潜在的药物靶点的研究能加速发展更有效的百日咳新疫苗和药物。
Whooping cough or pertussis has led to 350,000 children deaths mainly in developing countries and has afflicted up to 40 million children worldwide per year. The introduction of pertussis vaccines in the 1950s has significantly reduced the morbidity and mortality of the disease. In view of their serious side effects in infants and children, the second-generation acellular vaccines have gradually replaced whole-cell pertussis vaccines during recent years. However, despite high vaccination coverage, whooping cough caused by both B. pertussis (B.p) and B. parapertussis (B.pp) is still a serious public health threat and the incidence of pertussis has continued to rise. the main reasons include: 1. the currently used pertussis vaccines does not produce life-long protection, after 3-5 years, the vaccine-induced immunity would be too weak to protect children; 2. Pertussis vaccines have low efficiency against increasing numbers of B.pp infections. So the protective effectiveness of the currently used pertussis vaccines needs to be significantly improved. Because the pathogenicity and immunological mechanism have been not completely clarified, the current researches focusing on developing novel pertussis vaccines, such as fusion expressin of several protective antigens and pertussis DNA vaccine, which could not be satisfactory. In addition to vaccine prevention, drug therapy is also necessary for controlling whooping cough. Macrolide antibiotics have been the antimicrobial of main choice for treatment or postexposure prophylaxis of pertussis, however, macrolide antibiotics frequently produce a lot of serious reverse reactions especially against infants, so no recent macrolide antibiotics have been licensed for use in infants aged<6 months by the FDA of the USA. Therefore, there is an urgent need to develop novel vaccine candidates and drug targets against both B.p and B.pp.
     The immunoproteomics techniques, combining specificity of antibody with high resolving power of 2D and precision of mass spectral analysis, has globally applied to search for vaccine candidates、novel drug targets、diagnostic antigens and clinical biomarker. In this article immunoproteomics techniques were firstly used to screen immunogenic proteins from membrane proteins and total extracellular proteins of Bordetella pertussis. The membrane proteins were enriched using Triton X-114 extraction protocol. The total extracellular proteins were isolated using classic TCA method. By using the sera of immunized infants with whole-cell pertussis vaccine, Western blotting was performed with these proteins. Total 32 unique immunogenic proteins including 11 extracellular proteins and 27 membrane proteins were identified successfully by MADLI-TOF/MS. In total immunogenic proteins, 69KDa protein or peractin、serum resistantance protein and outer membrane porin protein were known pertussis virulence factors; putative outer membrane ligand binding protein was important Bvg-intermediate phase protein; elongation factor Tu/Ts、glyceraldehyde-3-phosphate dehydrogenase and chaperonin GroEL which were identified as globally immunogenic proteins in several pathogens such as H.p、Group A streptococcus and Candida albicans, were also identified in our study. Putative L-lactate dehydrogenas、glutamate dehydrogenase、succinate dehydrogenase、isocitrate dehydrogenas、putative penicillin-binding protein precursor firstly identified as immunogenic proteins of B.pertussis have been validated to have immunogenity in other pathogen immunoproteomic researches. Other novel immunogenic proteins included sulfate-binding protein precursor、putative 2-hydroxyacid dehydrogenase、amino acid-binding periplasmic protein、hypothetical protein BP3575 and BP2818. BP3575 and BP2818 with unknown function and strong immunoreactivity should be paid more attention. Further reseach focusing on these immunogenic proteins will devote to known pathogenicity and immunological mechanism of B.pertussis.
     In addition to immunoproteomic analysis, this preliminary work also integrates results from in silico analysis, comparative genomic hybridization, global transcriptional profiling and protein-protein interaction (PPI) networks to screen potential vaccine candidates and drug targets from B.p against both B.p and B.pp. Of 3436 open reading frames (ORFs) in B.p, 671 had high transcriptional levels in the B.p GMT-1 and B.pp 12822 strain, and 81 Bvg-activated (up-regulated) B.p genes were also found in the genome of B.pp. Seven hundred and thirty-three unique genes, 671 highly expressed and 81 Bvg-activated, were regarded as the preliminary vaccine candidates. When cytoplasmic proteins, inner membrane proteins (IMPs) with transmembrane topologies>4, highly variable B.p genes among the 165 B.p and B.pp strains, and human homologs in B.p were subtracted from these 733 candidates, 191 genes remained. These 191 were thus identified as the final vaccine candidates against both B.p and B.pp. They had high transcriptional levels in both species, or were associated with virulence and pathogenesis. Moreover, the proteins encoded by these genes were not only potentially surface-exposed in the bacteria, but also well-conserved among the 165 B.p and B.pp strains. We also constructed two PPI networks of B.p and B.pp. Among the 191 vaccine candidates, 22 proteins that were highly essential in both these networks were regarded as suitable drug targets against the two species.
     Using the theory of reverse vaccinology, 191 potential cross-protective vaccine candidates against both B.p and B.pp were identified among the 3436 ORFs in the B.p genome. Of these 191 vaccine candidates, 22 with high essentiality can be used as suitable drug targets for both species. Further research focusing on the 191 vaccine candidates could accelerate the development of more effective pertussis vaccines and drug therapy against B.p and B.pp infection in the future.
引文
1. Lander ES, Linton LM, Birren B et al: Initial sequencing and analysis of the human genome. Nature 2001, 409(6822): 860-921.
    2. Hattori M: [Finishing the euchromatic sequence of the human genome]. Tanpakushitsu Kakusan Koso 2005, 50(2): 162-168.
    3. Fleischmann RD, Adams MD, White O, et al: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269(5223): 496-512.
    4. Nowak R: Entering the postgenome era. Science 1995, 270(5235): 368-369, 371.
    5. Pandey A, Mann M: Proteomics to study genes and genomes. Nature 2000, 405(6788): 837-846.
    6. Wilkins MR, Sanchez JC, Gooley AA, et al: Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996, 13: 19-50.
    7. Wilkins MR, Ou K, Appel RD, et al: Rapid protein identification using N-terminal "sequence tag" and amino acid analysis. Biochem Biophys Res Commun 1996, 221(3): 609-613.
    8. Wilkins MR, Pasquali C, Appel RD, et al: From proteins to proteomes: large scale protein identification by two-dimensional eleetrophoresis and amino acid analysis. Biotechnology (N Y) 1996, 14(1): 61-65.
    9. Anderson NL, Anderson NG: Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 1998, 19(11): 1853-1861.
    10. Kahn P: From genome to proteome: looking at a cell's proteins. Science 1995, 270(5235): 369-370.
    11. Tyers M, Mann M: From genomies to proteomics. Nature 2003, 422(6928): 193-197.
    12. Bader GD, Heilbut A, Andrews B, et al: Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Bio12003, 13(7): 344-356.
    13. Gelfi C, Righetti PG: Preparative isoelectrie focusing in immobilized pH gradients. Ⅱ. A case report. J Biochera Biophys Methods 1983, 8(2): 157-172.
    14. Hoving S, Gerrits B, Voshol H, et al: Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics 2002, 2(2): 127-134.
    15. Yan JX, Sanchez JC, Binz PA, et al: Method for identification and quantitative analysis of protein lysine methylation using matrix-assisted laser desorption/ionization--time-of-flight mass spectrometry and amino acid analysis. Electrophoresis 1999, 20(4-5): 749-754.
    16. Metodiev MV, Timanova A, Stone DE: Differential phosphoproteome profiling by affinity capture and tandem matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 2004, 4(5): 1433-1438.
    17. Cramer R, Gobom J, Nordhoff E: High-throughput proteomics using matrix-assisted laser desorption/ionization mass spectrometry. Expert Rev Proteomics 2005, 2(3): 407-420.
    18. Shui W, Liu Y, Fan H, Bao H, et al: Enhancing TOF/TOF-based de novo sequencing capability for high throughput protein identification with amino acid-coded mass tagging. J Proteome Res 2005, 4(1): 83-90.
    19. Krah A, Jungblut PR: Immunoproteomics. Methods Mol Med 2004, 94:19-32.
    
    20. Purcell AW, Gorman JJ: Immunoproteomics: Mass spectrometry-based methods to study the targets of the immune response. Mol Cell Proteomics 2004, 3(3): 193-208.
    21. Hess JL, Blazer L, Romer T, et al: Immunoproteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2005, 815(1-2):65-75.
    22. Falisse-Poirrier N, Ruelle V, ElMoualij B, et al: Advances in immunoproteomics for serological characterization of microbial antigens. J Microbiol Methods 2006, 67(3):593-596.
    23. Haas G, Karaali G, Ebermayer K, et al: Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics 2002, 2(3):313-324.
    24. Jungblut PR, Grabher G, Stoffler G: Comprehensive detection of immunorelevant Borrelia garinii antigens by two-dimensional electrophoresis. Electrophoresis 1999, 20(18):3611-3622.
    25. Romer TG, Boyle MD: Application of immunoproteomics to analysis of post-translational processing of the antiphagocytic M protein of Streptococcus. Proteomics 2003, 3(1):29-35.
    26. Pitarch A, Abian J, Carrascal M, et al: Proteomics-based identification of novel Candida albicans antigens for diagnosis of systemic candidiasis in patients with underlying hematological malignancies. Proteomics 2004,4(10):3084-3106.
    27. Chen Z, Peng B, Wang S, Peng X: Rapid screening of highly efficient vaccine candidates by immunoproteomics. Proteomics 2004,4(10):3203-3213.
    28. Ying TY, Wang JJ, Wang HL, et al: Immunoproteomics of membrane proteins of Shigella flexneri 2a 2457T. World J Gastroenterol 2005, 11(43):6880-6883.
    29. Ying T, Wang H, Li M, et al: Immunoproteomics of outer membrane proteins and extracellular proteins of Shigella flexneri 2a 2457T. Proteomics 2005, 5(18):4777-4793.
    30. Paul-Satyaseela M, Karched M, Bian Z, et al: Immunoproteomics of Actinobacillus actinomycetemcomitans outer-membrane proteins reveal a highly immunoreactive peptidoglycan-associated lipoprotein. J Med Microbiol 2006, 55(Pt 7):931-942.
    31. Boyle MD, Hess JL, Nuara AA, Buller RM: Application of immunoproteomics to rapid cytokine detection. Methods 2006, 38(4):342-350.
    32. Senzilet LD, Halperin SA, Spika JS, et al: Pertussis is a frequent cause of prolonged cough illness in adults and adolescents. Clin Infect Dis 2001, 32(12):1691-1697.
    33. Mattoo S, Cherry JD: Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005, 18(2):326-382.
    34. the world health report 2004 : World Health Organlization; 2006.
    35. Dominguez D: The reemergence of pertussis in immunized populations: a case study. Clin Lab Sci 2005,18(4):233-237.
    36. de Melker HE, Schellekens JF, Neppelenbroek SE, et al: Reemergence of pertussis in the highly vaccinated population of the Netherlands: observations on surveillance data. Emerg Infect Dis 2000, 6(4):348-357.
    37. Mooi FR, van Loo IH, King AJ: Adaptation of Bordetella pertussis to vaccination: a cause for its reemergence? Emerg Infect Dis 2001, 7(3 Suppl):526-528.
    38. Tiwari T, Murphy TV, Moran J: Recommended antimicrobial agents for the treatment and postexposure prophylaxis of pertussis: 2005 CDC Guidelines. MMWR Recomm Rep 2005, 54(RR-14):1-16.
    39. Relman DA, Domenighini M, Tuomanen E, et al: Filamentous hemagglutinin of Bordeteila pertussis: nucleotide sequence and crucial role in adherence. Proc Natl Acad Sci U S A 1989, 86(8):2637-2641.
    40. Charles IG, Dougan G, Pickard D, et al: Molecular cloning and characterization of protective outer membrane protein P.69 from Bordeteila pertussis. Proc Natl Acad Sci U S A 1989, 86(10):3554-3558.
    41. Robinson A, Ashworth LA, Irons LI: Serotyping Bordeteila pertussis strains. Vaccine 1989,7(6):491-494.
    42. Livey I, Duggleby CJ, Robinson A: Cloning and nucleotide sequence analysis of the serotype 2 fimbrial subunit gene of Bordeteila pertussis. Mol Microbiol 1987, 1(2):203-209.
    43. Mooi FR, van der Heide HG, ter Avest AR, et al: Characterization of fimbrial subunits from Bordeteila species. Microb Pathog 1987,2(6):473-484.
    44. Finn TM, Stevens LA: Tracheal colonization factor: a Bordeteila pertussis secreted virulence determinant. Mol Microbiol 1995,16(4):625-634.
    45. Locht C, Keith JM: Pertussis toxin gene: nucleotide sequence and genetic organization. Science 1986, 232(4755):1258-1264.
    46. Nicosia A, Perugini M, Franzini C, et al: Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication. Proc Natl Acad Sci U S A 1986, 83(13):4631-4635.
    47. Rappuoli R, Nicosia A, Bartoloni A, et al: A recombinant DNA approach to the pertussis vaccine. Ann Sclavo Collana Monogr 1986, 3(1-2):183-189.
    48. Nicosia A, Bartoloni A, Perugini M, et al: Expression and immunological properties of the five subunits of pertussis toxin. Infect Immun 1987, 55(4):963-967.
    49. Glaser P, Ladant D, Sezer O, et al: The calmodulin-sensitive adenylate cyclase of Bordeteila pertussis: cloning and expression in Escherichia coli. Mol Microbiol 1988, 2(1): 19-30.
    50. Iida T, Okonogi T: Lienotoxicity of Bordeteila pertussis in mice. J Med Microbiol 1971, 4(1):51-61.
    51. Fernandez RC, Weiss AA: Cloning and sequencing of a Bordeteila pertussis serum resistance locus. Infect Immun 1994, 62(11):4727-4738.
    52. Nakase Y, Tateishi M, Sekiya K, Kasuga T: Chemical and biological properties of the purified O antigen of Bordeteila pertussis. Jpn J Microbiol 1970, 14(1):1-8.
    53. Locht C, Antoine R, Jacob-Dubuisson F: Bordeteila pertussis, molecular pathogenesis under multiple aspects. Curr Opin Microbiol 2001,4(1):82-89.
    54. Krah A, Miehlke S, Pleissner KP, et al: Identification of candidate antigens for serologic detection of Helicobacter pylori-infected patients with gastric carcinoma. Int J Cancer 2004, 108(3):456-463.
    55. Pedersen SK, Sloane AJ, Prasad SS, et al: An immunoproteomic approach for identification of clinical biomarkers for monitoring disease: application to cystic fibrosis. Mol Cell Proteomics 2005, 4(8): 1052-1060.
    56. Cullen PA, Cordwell SJ, Bulach DM, et al: Global analysis of outer membrane proteins from Leptospira interrogans serovar Lai. Infect Immun 2002, 70(5):2311-2318.
    
    57. Sinha S, Kosalai K, Arora S, et al: Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics. Microbiology 2005, 151(Pt 7):2411-2419.
    58. Redhead K: Serum antibody responses to the outer membrane proteins of Bordetella pertussis. Infect Immun 1984,44(3):724-729.
    59. Redd SC, Rumschlag HS, Biellik RJ, et al: Immunoblot analysis of humoral immune responses following infection with Bordetella pertussis or immunization with diphtheria-tetanus-pertussis vaccine. J Clin Microbiol 1988,26(7):1373-1377.
    60. Hanski E, Farfel Z: Bordetella pertussis invasive adenylate cyclase. Partial resolution and properties of its cellular penetration. J Biol Chem 1985, 260(9):5526-5532.
    61. Li LJ, Dougan G, Novotny P, Charles IG: P.70 pertactin, an outer-membrane protein from Bordetella parapertussis: cloning, nucleotide sequence and surface expression in Escherichia coli. Mol Microbiol 1991, 5(2):409-417.
    62. Montaraz JA, Novotny P, Ivanyi J: Identification of a 68-kilodalton protective protein antigen from Bordetella bronchiseptica. Infect Immun 1985,47(3):744-751.
    63. Cherry JD: Comparative efficacy of acellular pertussis vaccines: an analysis of recent trials. Pediatr Infect DisJ 1997, 16(4 Suppl):S90-96.
    64. Gustafsson L, Hallander HO, Olin P, et al: A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N Engl J Med 1996, 334(6):349-355.
    65. Cherry JD, Gombein J, Heininger U, et al: A search for serologic correlates of immunity to Bordetella pertussis cough illnesses. Vaccine 1998, 16(20): 1901-1906.
    66. Storsaeter J, Hallander HO, Gustafsson L, et al: Levels of anti-pertussis antibodies related to protection after household exposure to Bordetella pertussis. Vaccine 1998, 16(20):1907-1916.
    67. Hellwig SM, Rodriguez ME, Berbers GA, et al: Crucial role of antibodies to pertactin in Bordetella pertussis immunity. J Infect Dis 2003,188(5):738-742.
    68. Everest P, Li J, Douce G, Charles I, et al: Role of the Bordetella pertussis P.69/pertactin protein and the P.69/pertactin RGD motif in the adherence to and invasion of mammalian cells. Microbiology 1996, 142 (Pt 11):3261-3268.
    69. Mooi FR, van Oirschot H, Heuvelman K, et al: Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun 1998, 66(2):670-675.
    70. Thomas MG, Redhead K, Lambert HP: Human serum antibody responses to Bordetella pertussis infection and pertussis vaccination. J Infect Dis 1989, 159(2):211-218.
    71. Roberts M, Fairweather NF, Leininger E, et al: Construction and characterization of Bordetella pertussis mutants lacking the vir-regulated P.69 outer membrane protein. Mol Microbiol 1991, 5(6):1393-1404.
    72. Stehr K, Cherry JD, Heininger U, et al: A comparative efficacy trial in Germany in infants who received either the Lederle/Takeda acellular pertussis component DTP (DTaP) vaccine, the Lederle whole-cell component DTP vaccine, or DT vaccine. Pediatrics 1998, 101(1 Pt 1):1-11.
    73. Henderson IR, Nataro JP: Virulence functions of autotransporter proteins. Infect Immun 2001, 69(3): 1231-1243.
    74. Oliver DC, Huang G, Nodel E, et al: A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol Microbiol 2003, 47(5): 1367-1383.
    75. Oliver DC, Huang G, Fernandez RC: Identification of secretion determinants of the Bordetella pertussis BrkA autotrausporter. J Bacteriol 2003, 185(2): 489-495.
    76. Fernandez RC, Weiss AA: Susceptibilities of Bordetella pertussis strains to antimicrobial peptides. Antiraicrob Agents Chemother 1996, 40(4): 1041-1043.
    77. van den Berg BM, Beekhuizen H, Mooi FR, et al: Role of antibodies against Bordetella pertussis virulence factors in adherence of Bordetella pertussis and Bordetella parapertussis to human bronchial epithelial cells. Infect Immun 1999, 67(3): 1050-1055.
    78. Smith AM, Guzman CA, Walker MJ: The virulence factors of Bordetella pertussis: a matter of control. FEMS Microbiol Rev 2001, 25(3): 309-333.
    79. Cummings CA, Bootsma HJ, Relman DA, et al: Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. J Bacteriol 2006, 188(5): 1775-1785.
    80. Williams CL, Boucher PE, Stibitz S, Cotter PA: BvgA functions as both an activator and a repressor to control Bvg phase expression of bipA in Bordetella pertussis. Mol Microbiol 2005, 56(1): 175-188.
    81. Stockbauer KE, Fuchslocher B, Miller JF, et al: Identification and characterization of BipA, a Bordetella Bvg-intermediate phase protein. Mol Microbiol 2001, 39(1): 65-78.
    82. Vergara-Irigaray N, Chavarri-Martinez A, Rodriguez-Cuesta J, et al: Evaluation of the role of the Bvg intermediate phase in Bordetella pertussis during experimental respiratory infection. Infect lmmun 2005, 73(2): 748-760.
    83. Horovitz A: Structural aspects of GroEL function. Curr Opin Struct Biol 1998, 8(1): 93-100.
    84. Grallert H, Buchner J: Review: a structural view of the GroE chaperone cycle. J Struct Biol 2001, 135(2): 95-103.
    85. Ferrero RL, Thiberge JM, Kansau I, et al: The GroES homolog of Helicobacter pylori confers protective immunity against mucosal infection in mice. Proc Natl Acad Sci U S A 1995, 92(14): 6499-6503.
    86. Cole JN, Ramirez RD, Currie B J, et al: Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus, Infect Immun 2005, 73(5): 3137-3146.
    87. Pancholi V, Fischetti VA: Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Proc Natl Acad Sci U S A 1993, 90(17): 8154-8158.
    88. Pancholi V, Fischetti VA: Cell-to-cell signalling between group A streptococci and pharyngeal cells. Role of streptococcal surface dehydrogenase (SDH). Adv Exp Med Biol 1997, 418: 499-504.
    89. Gozalbo D, Gil-Navarro I, Azorin I, et al: The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect lramun 1998, 66(5): 2052-2059.
    90. Waine GJ, Becker M, Yang W, et al: Cloning, molecular characterization, and functional activity of Schistosoma japonicum glyeeraldehyde-3-phosphate dehydrogenase, a putative vaccine candidate against schistosomiasis japonica. Infect Immun 1993, 61(11): 4716-4723.
    91. Ling E, Feldman G, Portnoi M, Dagan R, et al: Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol 2004, 138(2): 290-298.
    92. Shin YS, Lee EG, Shin GW, et al: Identification of antigenic proteins from Neospora eaninum recognized by bovine immunoglobulins M, E, A and G using immunoproteomics. Proteoraics 2004, 4(11): 3600-3609.
    93. Mini R, Bernardini G, Salzano AM, et al: Comparative proteomics and immunoprotenmies of Helicobacter pylori related to different gastric pathologies. J Chromatogr B Analyt Technol Biomed Life Sci 2006, 833(1): 63-79.
    94. Cormolly JP, Comerci D, Alefantis TG. et al: Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development. Proteoraics 2006, 6(13): 3767-3780.
    95. Tareha EJ, Basrur V, Hung CY, et al: Multivalent recombinant protein vaccine against coceidioidomyeosis, lnfect Immun 2006, 74(10): 5802-5813.
    96. Havlasova J, Hernychova L, Brychta M, et al: Proteomic analysis of anti-Francisella tularensis LVS antibody response in murine model of tularemia. Proteomics 2005, 5(8): 2090-2103.
    97. Boonjakuakul JK, Gems HL, Chen YT, et al: Proteomie and immunoblot analysis of Bartonella qnintana total membrane proteins identifies antigens recognized by serum from infected patients. Infect Immun 2007.
    98. Martin JF: New aspects of genes and enzymes for beta-lactam antibiotic biosynthesis. Appl Microbiol Biotechnol 1998, 50(1): 1-15.
    99. Peng X, Ye X, Wang S: Identification of novel immunogenic proteins of Shigella flexneri 2a by proteomic methodologies. Vaccine 2004, 22(21-22): 2750-2756.
    100. Martin PR, Mulks MH: Cloning and characterization of a gene encoding an antigenic membrane protein from Actinobacillus pleuropneumoniae with homology to ABC transporters. FEMS Immunol Med Microbiol 1999, 25(3): 245-254.
    101. Lin YF, Wu MS, Chang CC, et al: Comparative immunoproteomics of identification and characterization of virulence factors from Helicobacter pylori related to gastric, cancer. Mol Cell Proteomics 2006, 5(8): 1484-1496.
    102. Matthysse AG, Yarnall HA, Young N: Requirement. for genes with homology to ABC transport systems for attachment and virulence of Agrobaeterium tumefaciens, J Bacteriol 1996, 178(17): 5302-5308.
    103. Pawelec D, Jakubowska-Mroz J, Jagusztyn-Krynieka EK: Campylobacter jejuni 72Dz/92 cjaC gene coding 28 kDa immunopositive protein, a homologue of the solute-binding components of the ABC transport system. Lett Appl Microbiol 1998, 26(1): 69-76.
    104. Johnson FD, Bums DL: Detection and subcellular localization of three Pt1 proteins involved in the secretion of pertussis toxin from Bordetella pertussis, J Bacteriol 1994, 176(17): 5350-5356.
    105. Craig-Mylius K. A, Weiss AA: Mutants in the ptlA-H genes of Bordetella pertussis are deficient for pertnssis toxin secretion. FEMS Microbiol Lett 1999, 179(2): 479-484.
    106. Bodero MD, Pilonieta MC, Munson GP: Repression of the inner membrane lipoprotein NlpA by Rns in enterotoxigenic Escherichia coli. J Bacteriol 2007,189(5):1627-1632.
    107. Lavander M, Ericsson SK, Broms JE, et al: The twin arginine translocation system is essential for virulence of Yersinia pseudotuberculosis. Infect Immun 2006, 74(3): 1768-1776.
    1. WHO: the world health report 2004-changing history; 2006.
    2. Bergfors E, Trollfors B, Tatanger J, et al: Parapertussis and pertussis: differences and similarities in incidence, clinical course, and antibody responses. Int J Infect Dis 1999, 3(3): 140-146.
    3. Heininger U, Stehr K, Schmitt-Grohe S, et al: Clinical characteristics of illness caused by Bordetella parapertussis compared with illness caused by Bordetella pertussis. Pediatr Infect Dis J 1994, 13(4): 306-309.
    4. Parkhill J, Sebaihia M, Preston A, et al: Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 2003, 35(1): 32-40.
    5. Mattoo S, Cherry JD: Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005, 18(2): 326-382.
    6. Parton R: Review of the biology of Bordetella pertussis. Biologicals 1999, 27(2): 71-76.
    7. Liese JG. Refiner C, Stojanov S, et al: Clinical and epidemiological picture of B pertussis and B parapertussis infections after introduction of acellular pertussis vaccines. Arch Dis Child 2003, 88(8): 684-687.
    8. walker E: pathogenesis and immunity in pertussis john wiley&sons 1988.
    9. Mastrantonio P, Giuliano M, Stefanelli P, et al: Bordetella parapertussis infections. Dev Biol Stand 1997, 89: 255-259.
    10. Stehr K, Cherry JD, Heininger U, et al: A comparative efficacy trial in Germany in infants who received either the Lederle/Takeda acellular permssis component DTP (DTaP) vaccine, the Lederle whole-cell component DTP vaccine, or DT vaccine. Pediatrics 1998, 101(1 Pt 1): 1-11.
    11. He Q, Viljanen MK, Arvilommi H, et al: Whooping cough caused by Bordetella pertussis and Bordetella parapertnssis in an immunized population. Jama 1998, 280(7): 635-637.
    12. Kourova N, Caro V, Weber C, et al: Comparison of the Bordetella permssis and Bordetella parapertussis isolates circulating in Saint Petersburg between 1998 and 2000 with Russian vaccine strains, J Clin Microbiol 2003, 41(8): 3706-3711.
    13. Tiwari T, Murphy TV, Moran J: Recommended antimicrobial agents for the treatment and postexposure prophylaxis ofpertussis: 2005 CDC Guidelines. MMWR Recorara Rep 2005, 54(RR-14): 1-16.
    14. de Melker HE, Schellekens JF, Neppelenbroek SE, et al: Reemergence of pertussis in the highly vaccinated population of the Netherlands: observations on surveillance data. Emerg Infect Dis 2000, 6(4): 348-357.
    15. Dominguez D: The reemergence of pertussis in immunized populations: a case study. Clin Lab Sci 2005, 18(4): 233-237.
    16. Zielinski A: [Pertussis in Poland in 2003]. Przegl Epidemiol 2005, 59(2): 229-234.
    17. Mooi FR, van Loo IH, King A J: Adaptation of Bordetella pertussis to vaccination: a cause for its reemergence? Emerg Infect Dis 2001, 7(3 Suppl): 526-528.
    18. Khelef N, Danve B, Quentin-Millet MJ, et al: Bordetella pertussis and Bordetella parapertussis: two immunologically distinct species. Infect Immun 1993, 61(2): 486-490.
    19. Watanabe M, Nagai M: Reciprocal protective immunity against Bordetella pertnssis and Bordetella parapertussis in a murine model of respiratory infection. Infect Immun 2001, 69(11): 6981-6986.
    20. Mielcarek N, Debrie AS, Raze D, et al: Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough. PLoS Pathog 2006, 2(7): e65.
    21. Erythromycin-resistant Bordetella pertussis--Yuma County, Arizona, May-October 1994. MMWR Morb Mortal Wkly Rep 1994, 43(44): 807-810.
    22. Pizza M, Scarlato V, Masignani V, et al: Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 2000, 287(5459): 1816-1820.
    23. Serruto D, Adu-Bobie J, Capecchi B, et al: Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens. J Biotechnol 2004, 113(1-3): 15-32.
    24. Ross BC, Czajkowski L, Hocking D, et al: Identification of vaccine candidate antigens from a genomic analysis of Porphyromonas gingivalis. Vaccine 2001, 19(30): 4135-4142.
    25. Boshoff HI, Manjunatha UH: The impact of genomics on discovering drugs against infections diseases. Microbes Infect 2006, 8(6): 1654-1661.
    26. Freiberg C, Brotz-Oesterhelt H: Functional genomics in antibacterial drug discovery. Drug Discov, Today 2005, 10(13): 927-935.
    27. Chen Y, Xu D: Computational analyses of high-throughput protein-protein interaction data. Curr Protein Pept Sci 2003, 4(3): 159-181.
    28. Bansal AK: Bioinformatics in microbial biotechnology--a mini review. Microb Cell Fact 2005, 4(1): 19.
    29. He X, Zhang J: Why do hubs tend to be essential in protein networks? PLoS Genet 2006, 2(6): e88.
    30. Batada NN, Hurst LD, Tyers M: Evolutionary and physiological importance of hub proteins. PLoS Comput Biol 2006, 2(7): e88.
    31. Gardy JL, Laird MR, Chen F, Rey S, et al: PSORTb v. 2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinforraatics 2005, 21(5): 617-623.
    32. Yu CS, Lin C J, Hwang JK: Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 2004, 13(5): 1402-1406.
    33. Hua S, Sun Z: Support vector machine approach for protein subcellular localization prediction. Bioinformatics 2001, 17(8): 721-728.
    34. Nair R, Rost B: Mimicking cellular sorting improves prediction of subcellular localization. J Mol Biol 2005, 348(1): 85-100.
    35. Bhasin M, Garg A, Raghava GP: PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005, 21(10): 2522-2524.
    36. Wang J, Sung WK, Krishnan A, et al: Protein subcellular localization prediction for Gram-negative bacteria using amino acid subalphabets and a combination of multiple support vector machines. BMC Bioinformatics 2005, 6: 174.
    37. Szafron D, Lu P, Greiner R, et al: Proteome Analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations. Nucleic Acids Res 2004, 32(Web Server issue): W365-371.
    38. Kall L, Krogh A, Sonnhammer EL: A combined transmembrane topology and signal peptide prediction method. J Mol Biol 2004, 338(5): 1027-1036.
    39. Bendtsen JD, Nielsen H, von Heijne G, et al: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340(4):783-795.
    40. Brinig MM, Cummings CA, Sanden GN, et al: Significant gene order and expression differences in Bordetella pertussis despite limited gene content variation. J Bacteriol 2006, 188(7):2375-2382.
    41. Brinig MM, Register KB, Ackermann MR, et al: Genomic features of Bordetella parapertussis clades with distinct host species specificity. Genome Biol 2006, 7(9):R81.
    42. Cummings CA, Bootsma HJ, Relman DA, Miller JF: Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. J Bacteriol 2006, 188(5):1775-1785.
    43. Grandi G: bioinformatics,DNA microarray and proteomics in vaccine discoveryxompeting or complementary technology?; 2004.
    44. Grifantini R, Bartolini E, Muzzi A, et al: Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat Biotechnol 2002, 20(9):914-921.
    45. Yang HL, Zhu YZ, Qin JH, et al: In silico and microarray-based genomic approaches to identifying potential vaccine candidates against Leptospira interrogans. BMC Genomics 2006,7:293.
    46. Grandi G: Genomics, Proteomics and Vaccines; 2004.
    47. Grandi G: Genomics and proteomics in reverse vaccines. Methods Biochem Anal 2006, 49:379-393.
    48. Yu H, Greenbaum D, Xin Lu H, et al: Genomic analysis of essentiality within protein networks. Trends Genet 2004, 20(6):227-231.
    49. Rappuoli R, Covacci A: Reverse vaccinology and genomics. Science 2003, 302(5645):602.
    50. Serruto D, Rappuoli R: Post-genomic vaccine development. FEBS Lett 2006, 580(12):2985-2992.
    51. Grandi G: genomics and proteomics in reverse vaccinology: Wiley & Sons; 2006.
    52. Gamberini M, Gomez RM, Atzingen MV, et al: Whole-genome analysis of Leptospira interrogans to identify potential vaccine candidates against leptospirosis. FEMS Microbiol Lett 2005,244(2):305-313.
    53. Ariel N, Zvi A, Makarova KS, et al: Genome-based bioinformatic selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun 2003, 71(8):4563-4579.
    54. Gardy JL, Brinkman FS: Methods for predicting bacterial protein subcellular localization. Nat Rev Microbiol 2006,4(10):741-751.
    55. Scarselli M, Giuliani MM, Adu-Bobie J, et al: The impact of genomics on vaccine design. Trends Biotechnol 2005, 23(2):84-91.
    56. Zhang R, Zhang CT: The impact of comparative genomics on infectious disease research. Microbes Infect 2006, 8(6): 1613-1622.
    57. Heininger U, Stehr K, Cherry JD: The efficacy of a whole cell pertussis vaccine and fimbriae against Bordetella pertussis and Bordetella parapertussis infections in respiratory mouse model. Vaccine 1998, 16(13):1255.
    58. Willems RJ, Kamerbeek J, Geuijen CA, et al: The efficacy of a whole cell pertussis vaccine and fimbriae against Bordetella pertussis and Bordetella parapertussis infections in a respiratory mouse model. Vaccine 1998, 16(4):410-416.
    59. Macdonald-Fyall J, Xing D, Corbel M, et al: Adjuvanticity of native and detoxified adenylate cyclase toxin of Bordetella pertussis towards co-administered antigens. Vaccine 2004,22(31-32):4270-4281.
    60. van den Akker WM: The filamentous hemagglutinin of Bordetella parapertussis is the major adhesin in the phase-dependent interaction with NCI-H292 human lung epithelial cells. Biochem Biophys Res Commun 1998, 252(1): 128-133.
    61. Heininger U, Stehr K, Christenson P, et al: Evidence of efficacy of the Lederle/Takeda acellular pertussis component diphtheria and tetanus toxoids and pertussis vaccine but not the Lederle whole-cell component diphtheria and tetanus toxoids and pertussis vaccine against Bordetella parapertussis infection. Clin Infect Dis 1999, 28(3):602-604.
    62. Goodwin MS, Weiss AA: Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect Immun 1990,58(10):3445-3447.
    63. Preston A, Parkhill J, Maskell DJ: The bordetellae: lessons from genomics. Nat Rev Microbiol 2004,2(5):379-390.
    64. Lautrop H: Epidemics of parapertussis. 20 years' observations in Denmark. Lancet 1971, 1(7711):1195-1198.
    65. David S, van Furth R, Mooi FR: Efficacies of whole cell and acellular pertussis vaccines against Bordetella parapertussis in a mouse model. Vaccine 2004,22(15-16):1892-1898.
    66. Roemer T, Jiang B, Davison J, et al: Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 2003, 50(1):167-181.
    67. Opperman T, Ling LL, Moir DT: Microbial pathogen genomes - new strategies for identifying therapeutic and vaccine targets. Expert Opin Ther Targets 2003,7(4):469-473.
    68. Haselbeck R, Wall D, Jiang B, et al: Comprehensive essential gene identification as a platform for novel anti-infective drug discovery. Curr Pharm Des 2002, 8(13): 1155-1172.
    69. De Backer MD, Van Dijck P: Progress in functional genomics approaches to antifungal drug target discovery. Trends Microbiol 2003,11(10):470-478.
    70. Fritz B, Raczniak GA: Bacterial genomics: potential for antimicrobial drug discovery. BioDrugs 2002, 16(5):331-337.
    71. Zalacain M, Biswas S, Ingraham KA, et al: A global approach to identify novel broad-spectrum antibacterial targets among proteins of unknown function. J Mol Microbiol Biotechnol 2003, 6(2):109-126.
    72. Song JH, Ko KS, Lee JY, et al: Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells 2005, 19(3):365-374.
    73. Firon A, Villalba F, Beffa R, et al: Identification of essential genes in the human fungal pathogen Aspergillus fumigatus by transposon mutagenesis. Eukaryot Cell 2003, 2(2):247-255.
    74. Chopra I, Hesse L, O'Neill AJ: Exploiting current understanding of antibiotic action for discovery of new drugs. J Appl Micwbiol 2002, 92 Suppl:4S-15S.
    75. Hermann T: Drugs targeting the ribosome. Curr Opin Struct Biol 2005,15(3):355-366.
    76. Katz AH, Caufield CE: Structure-based design approaches to cell wall biosynthesis inhibitors. Curr Pharm Des 2003,9(11):857-866.
    77. Sun J, Zheng L, Landwehr C, et al: Identification of a novel essential two-component signal transduction system, YhcSR, in Staphylococcus aureus. J Bacteriol 2005, 187(22):7876-7880.
    78. Allsop A, Brooks G, Edwards PD, Kaura AC, Southgate R: Inhibitors of bacterial signal peptidase: a series of 6-(substituted oxyethyl)penems. J Antibiot (Tokyo) 1996, 49(9):921-928.
    1. Fieischmann RD, Adams MD, White O, et al: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269(5223): 496-512.
    2. Finishing the euchromatie sequence of the human genome. Nature 2004, 431(7011): 931-945.
    3. Pandey A, Mann M: Proteomics to study genes and genomes. Nature 2000, 405(6788): 837-846.
    4. Williams KL: Genomes and proteomes: towards a multidimensional view of biology. Electrophoresis 1999, 20(4-5): 678-688.
    5. Tyers M, Mann M: From genomics to proteomics. Nature 2003, 422(6928): 193-197.
    6. Wilkins MR, Sanchez JC, Gooley AA, et al: Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996, 13: 19-50.
    7. Wilkins MR, Ou K, Appel RD, et al: Rapid protein identification using N-terminal "sequence tag" and amino acid analysis. Biochem Biophys Res Commun 1996, 221(3): 609-613.
    8. Wilkins MR, Pasquali C, Appel RD, et al: From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y) 1996, 14(1): 61-65.
    9. Bader GD, Heilbut A, Andrews B, et al: Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol 2003, 13(7): 344-356.
    10. Walsh BJ, Molloy MP, Williams KL: The Australian Proteome Analysis Facility (APAF): assembling large scale proteomics through integration and automation. Electrophoresis 1998, 19(11): 1883-1890.
    11. Hanash S, Celis JE: The Human Proteome Organization: a mission to advance proteome knowledge. Mol Cell Proteoraics 2002, 1(6): 413-414.
    12. Hanash S: Building a foundation for the human proteome: the role of the Human Proteome Organization. J Proteorae Res 2004, 3(2): 197-199.
    13. Smith JC, Northey JG, Garg J, et al: Robust method for proteome analysis by MS/MS using an entire translated genome: demonstration on the ciliome of Tetrahymena thermophila. J Proteorae Res 2005, 4(3): 909-919.
    14. Westbrook JA, Wheeler JX, Wait R, et al: The human heart proteome: Two-dimensional maps using narrow-range immobilised pH gradients. Electrophoresis 2006, 27(8): 1547-1555.
    15. Montelione GT, Anderson S: Structural genomics: keystone for a Human Proteome Project. Nat Struct Biol 1999, 6(1): 11-12.
    16. Shaw AR, Li L: Exploration of the functional proteome: lessons from lipid rafts. Curt Opin Mol Ther 2003, 5(3): 294-301.
    17. Wu W, Hodges E, Hoog C: Thorough validation of siRNA-induced cell death phenotypes defines new anti-apoptotic protein. Nucleic Acids Res 2006, 34(2): e13.
    18. Gelfi C, Righetti PG: Preparative isoclectric focusing in immobilized pH gradients. Ⅱ. A case report. J Biochera Biophys Methods 1983, 8(2): 157-172.
    19. Mann M, Hendrickson RC, Pandey A: Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 2001, 70: 437-473.
    20. O'Cormell KL, Stults JT: Identification of mouse liver proteins on two-dimensional electrophoresis gels by matrix-assisted laser desorption/ionization mass spectrometry, of in situ enzymatic digests. Electrophoresis 1997, 18(3-4): 349-359.
    21. Lernkin P, Merril C, Lipkin L, et al: Software aids for the analysis of 2D gel electrophoresis images. Comput Biomed Res 1979, 12(6): 517-544.
    22. Yang Y, Sujan S, Sun F, et al: Acute metabolic crisis induced by vaccination in seven Chinese patients. Pediatr Neurol 2006, 35(2): 114-118.
    23. Schad M, Lipton MS, Giavalisco P, et al: Evaluation of two-dimensional electrophoresis and liquid chromatography--tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples. Electrophoresis 2005, 26(14): 2729-2738.
    24. Lasserre JP, Beyne E, Pyndiah S, et al: A complexomic study of Eschefichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis. Electrophoresis 2006, 27(16): 3306-3321.
    25. Sahab ZJ, Suh Y, Sang QX: Isoelectric point-based prefractionation of proteins from crude biological samples prior to two-dimensional gel electrophoresis. J Proteome Res 2005, 4(6): 2266-2272.
    26. Katayama M, Nakano H, Ishiuchi A, et al: Protein pattern difference in the colon cancer cell lines examined by two-dimensional differential in-gel electrophoresis and mass spectrometry. Surg Today 2006, 36(12): 1085-1093.
    27. Pasa-Tolic L, Harkewicz R, Anderson GA, et al: Increased proteome coverage for quantitative peptide abundance measurements based upon high performance separations and DREAMS FTICR mass spectrometry. J Am Soc Mass Spectrom 2002, 13(8): 954-963.
    28. Badock V, Steinhusen U, Bommert K, et al: Prefractionation of protein samples for proteome analysis using reversed-phase high-performance liquid chromatography. Electrophoresis 2001, 22(14): 2856-2864.
    29. Opiteek GJ, Ramirez SM, Jorgenson JW, et al, 3rd: Comprehensive two-dimensional high-performance liquid chromatography for the isolation of overexpressed proteins and proteome mapping. Anal Biochem 1998, 258(2): 349-361.
    30. Rozing G, Nagele E, Horth P, et al: Instrumentation for advanced microseparations in pharmaceutical analysis and proteomics. J Biochem Biophys Methods 2004, 60(3): 233-263.
    31. Tabuchi M, Baba Y: A separation carrier in high-speed proteome analysis by capillary electrophoresis. Electrophoresis 2001, 22(16): 3449-3457.
    32. Chen J, Balgley BM, DeVoe DL, et al: Capillary isoelectric focusing-based multidimensional concentration/separation platform for proteome analysis. Anal Chem 2003, 75(13): 3145-3152.
    33. Ihling C, Sinz A: Proteome analysis of Escherichia coli using high-performance liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry. Proteomics 2005, 5(8): 2029-2042.
    34. Dai SY, Fitzgerald MC: A mass spectrometry-based probe of equilibrium intermediates in protein-folding reactions. Biochemistry 2006, 45(42): 12890-12897.
    35. Takatera A, Takeuchi A, Saiki K, et al: Quantification of lysophosphatidylcholines and phosphatidyicholines using liquid chromatography-tandem mass spectrometry in neonatal serum. J Chromatogr B Analyt Technol Biomed Life Sci 2006, 838(1): 31-36.
    36. Saudan C, Kamber M, Barbati G, et al: Longitudinal profiling of urinary steroids by gas chromatography/combustion/isotope ratio mass spectrometry: diet change may result in carbon isotopic variations. J Chromatogr B Analyt Technol Biomed Life Sci 2006, 831(1-2): 324-327.
    37. Arnold FJ, Hofmann F, Bengtson CP, et al: Microelectrode array recordings of cultured hippocampal networks reveal a simple model for transcription and protein synthesis-dependent plasticity. J Physiol 2005, 564(Pt 1): 3-19.
    38. Lagos R, Hoffenbach A, Scemama M, et al: Lot-to-lot consistency of a combined hexavalent diptheria-tetanus-acellular-pertussis, hepatitis B, Inactivated polio and haemophilus B conjugate vaccine, administered to healthy chilean infants at two, four and six months of age. Hum Vaccin 2005, 1(3): 112-117.
    39. Ges IA, Ivanov BL, Schaffer DK, et al: Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosens Bioelectron 2005, 21 (2): 248-256.
    40. Warren EN, Jiang J, Parker CE, Borchers CH: Absolute quantitation of cancer-related proteins using an MS-based peptide chip. Biotechniques 2005, Suppl: 7-11.
    41. Millson SH, Truman AW, King V, et al: A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpklp). Eukaryot Cell 2005, 4(5): 849-860.
    42. Collins MO, Husi H, Yu L, et al: Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 2006, 97 Suppl 1: 16-23.
    43. Karkkainen S, Hiipakka M, Wang JH, et al: Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. EMBO Rep 2006, 7(2): 186-191.
    44. Tenzer A, Hofstetter B, Sauser C, et al: Profiling treatment-specific post-translational modifications in a complex proteome with subtractive substrate phage display. Proteomics 2004, 4(9): 2796-2804.
    45. Lesinski GB, Westerink MA: Novel vaccine strategies to T-independent antigens. J Microbiol Methods 2001, 47(2): 135-149.
    46. Ghose S: British Society for Proteome Research. 12-13th July, 2004, European Bioinformatics Institute, Hinxton, UK. Expert Rev Proteomics 2004, 1(3): 263-265.
    47. Piedra PA, Gaglani MJ, Riggs M, et al: Live attenuated influenza vaccine, trivalent, is safe in healthy children 18 months to 4 years, 5 to 9 years, and 10 to 18 years of age in a community-based, nonrandomized, open-label trial. Pediatrics 2005, 116(3): e397-407.
    48. Shen Y, Smith RD, Unger KK, et al: Ultrahigh-throughput proteomics using fast RPLC separations with ESI-MS/MS. Anal Chem 2005, 77(20): 6692-6701.
    49. Smolka MB, Zhou H, Purkayastha S, et al: Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis. Anal Biochem 2001, 297(1): 25-31.
    50. Yuan Q, Zhao FK: New Frontiers in the Proteome Research Quantitative Proteomics. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2001, 33(5): 477-482.
    51. Ho Y, Gruhler A, Heilbut A, et al: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002, 415(6868): 180-183.
    52. Grunenfelder B, Rummel G, Vohradsky J, et al: Proteomic analysis of the bacterial cell cycle. Proc Natl Acad Sci U S A 2001, 98(8): 4681-4686.
    53. Jungblut PR: Proteome analysis of bacterial pathogens. Microbes Infect 2001, 3(10): 831-840.
    54. Klade CS: Proteomics approaches towards antigen discovery and vaccine development. Curt Opin Mol Ther 2002, 4(3): 216-223.
    55. Krah A, Jungblut PR: Immunoproteomics. MethodsMolMed 2004, 94: 19-32.
    56. Hess JL, Blazer L, Romer T, et al: Immunoproteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2005, 815(1-2): 65-75.
    57. Falisse-Poirrier N, Ruelle V, et al: Advances in immunoproteomics for serological characterization of microbial antigens. J Microbiol Methods 2006, 67(3): 593-596.
    58. Ying TY, Wang JJ, Wang HL, et al: Immunoproteomics of membrane proteins of Shigella flexneri 2a 2457T. World J Gastroentero12005, 11(43): 6880-6883.
    59. Paul-Satyaseela M, Karched M, Bian Z, et al: Immunoproteomics of Actinobacillus actinomycetemcomitans outer-membrane proteins reveal a highly immunoreactive peptidoglycan-associated lipoprotein. J Med Microbio12006, 55(Pt 7): 931-942.
    60. Boyle MD, Hess JL, Nuara AA, et al: Application of immunoproteomics to rapid cytokine detection. Methods 2006, 38(4): 342-350.
    61. Romer TG, Boyle MD: Application of immunoproteomics to analysis of post-translational processing of the antiphagocytic M protein of Streptococcus. Proteomics 2003, 3(1): 29-35.
    62. Chen Z, Peng B, Wang S, et al: Rapid screening of highly efficient vaccine candidates by immunoproteomics. Proteomics 2004, 4(10): 3203-3213.
    63. Lieu TA, Thompson KM, Prosser LA, et al: Emerging issues in vaccine economics: perspectives from the USA. Expert Rev Vaccines 2002, 1(4): 433-442.
    64. Aminian M, Sivam S, Lee CW, et al: Expression and purification of a trivalent pertussis toxin-diphtheria toxin-tetanus toxin fusion protein in Eseheriehia coli. Protein Expr Purif 2006.
    65. Saito M, Kimoto M, Araki T, et al: Proteome analysis of gelatin-bound urinary proteins from patients with bladder cancers. Eur Urol 2005, 48(5): 865-871.
    66. Rezaul K, Wu L, Mayya V, et al: A systematic characterization of mitochondrial proteome from human T leukemia cells. Mol Cell Proteomics 2005, 4(2): 169-181.
    67. Ward DG, Cheng Y, N'Kontehou G, et al: Changes in the serum proteome associated with the development of hepatocellular carcinoma in hepatitis C-related cirrhosis. Br J Cancer 2006, 94(2): 287-292.
    68. Sun J, Liu C, Zhang Y, Ang H: Effect of cyclosporin A eye drop on keratoconjunctivitis sicca and its mechanism. J Huazhong Univ Sci Technolog Med Sci 2005, 25(6): 738-740.
    69. Fang C, Yi Z, Liu F, Lan S, et al: Proteome analysis of human liver carcinoma Huh7 cells harboring hepatitis C virus subgenomic replicon. Proteomics 2006, 6(2): 519-527.
    70. Hoffmann P, Ji H, Moritz RL, et al: Continuous free-flow electrophoresis separation of cytosolie proteins from the human colon carcinoma cell line LIM 1215: a non two-dimensional gel electrophoresis-based proteome analysis strategy. Proteomics 2001, 1(7): 807-818.
    71. Lion N, Rohner TC, Dayon L, et al: Microfluidic systems in proteomics. Electrophoresis 2003, 24(21): 3533-3562.
    72. Konradsen HB, Ejlertsen T, Henriehsen J: [The PRP-D vaccination of Danish children. A study of immunogenicity of a Haemophilus influenzae type b vaccine coadministered with Di-Te-Pol to Danish children]. Ugeskr Laeger 1993, 155(37): 2872-2875.
    73. Patwardhan AJ, Strittmatter EF, Camp DG, 2nd, Smith RD, Pallavicini MG: Comparison of normal and breast cancer cell lines using pmteome, genome, and interactome data. J Proteome Res 2005, 4(6): 1952-1960.
    74. Scarlett CJ, Smith RC, Saxby A, et al: Proteomic classification of pancreatic adenocarcinoma tissue using protein chip technology. Gastroenterology 2006, 130(6): 1670-1678.
    75. Blanco-Colio LM, Martin-Ventura JL, Vivanco F, et al: Biology of atherosclerotic plaques: what we are learning from proteomic analysis. Cardiovasc Res 2006, 72(1): 18-29.
    76. Liao H, Wu J, Kuim E, et al: Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis. Arthritis Rheum 2004, 50(12): 3792-3803.
    77. Tomosugi N, Kitagawa K, Takahashi N, et al: Diagnostic potential of tear proteomic patterns in Sjogren's syndrome. J Proteome Res 2005, 4(3): 820-825.
    78. Miyamae T, Malehorn DE, Lemster B, et al: Serum protein profile in systemic-onset juvenile idiopathic arthritis differentiates response versus nonresponse to therapy. Arthritis Res Ther 2005, 7(4): R746-755.
    79. Xiang Y, Sekine T, Nakamura H, et al: Proteomic surveillance of autoimmunity in osteoarthritis: identification of triosephosphate isomerase as an autoantigen in patients with osteoarthrifis. Arthritis Rheum 2004, 50(5): 1511-1521.
    80. Tilleman K, Van Beneden K, Dhondt A, et al: Chronically inflamed synovium from spondyloarthropathy and rheumatoid arthritis investigated by protein expression profiling followed by tandem mass spectrometry. Proteomics 2005, 5(8): 2247-2257.
    81. Nony P, Girard P, Chabaud S, et al: Impact of osmolality on burning sensations during and immediately after intramuscular injection of 0.5 ml of vaccine suspensions in healthy adults. Vaccine 2001, 19(27): 3645-3651.
    82. Chance MR, Fiser A, Sali A, et al: High-throughput computational and experimental techniques in structural genomics. Genome Res 2004, 14(10B): 2145-2154.
    83. Wu J, Kobayashi M, Sousa EA, et al: Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol Cell Proteomics 2005, 4(9): 1251-1264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700