用户名: 密码: 验证码:
联苯双酯对环孢素A药代动力学的影响及其机制的遗传药理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传药理学研究发现,药物代谢酶和转运体是决定药物体内过程的关键因素,其活性的改变是导致药物相互作用的主要机制。药物代谢酶和转运体的遗传多态性是导致药物相互作用个体差异的重要决定因素。
     环孢素A属于钙调磷酸酶抑制剂家族,主要通过特异性抑制淋巴细胞反应和增生发挥抑制免疫排斥的功效。目前临床上,环孢素A广泛的应用于器官移植术后免疫排斥反应的预防与治疗,该药物在疗效发挥的同时,表现出明显的药物代谢动力学个体差异以及狭窄的治疗窗,由于药物相互作用导致的毒副反应也十分常见。目前的研究证实,环孢素A在人体内的代谢、转运以及与之相关的药物相互作用的发生均与CYP3A4以及P糖蛋白的活性密切相关。针对环孢素A在人体内的药代学以及药效学个体差异所开展的研究也多围绕上述两个功能蛋白开展。
     细胞色素P450(CYP450)酶系由基因超家族编码的酶蛋白组成,参与各种内源性以及外源性物质的生物转化。其中,CYP3A4是P450家族中的重要成员,主要表达在肝脏与小肠,参与了临床50%以上药物的代谢,是环孢素A在人体内生物转化过程中最重要的功能蛋白。目前的研究认为,药物对CYP3A4活性的影响,是导致环孢素A相关药物相互作用的主要原因之一。CYP3A4作为机体重要功能蛋白的一种,其活性在基础状态下也存在显著的个体差异。CYP3A4*18B是由日本学者发现的具有功能意义的突变位点.最近的研究发现,该位点的突变与环孢素A在机体内的药代动力学的个体差异密切相关。其中,基因型为CYP3A4*18突变型纯合子的受试者体内环孢素A的代谢显著加强。
     P—糖蛋白是由多药耐药基因MDR1编码的一种能量依赖型药物外排泵,在肝脏、小肠、肾脏等人体的多种组织中都有分布。对于各种药物在人体的吸收、分布与消除均发挥重要作用。P—糖蛋白活性的高低与环孢素A在机体代谢的个体差异有着直接的联系。
     核受体中的孕烷X受体(pregnane X receptor,PXR)核组成性雄烷受体(constitutive androstane receptor,CAR)对多种CYP450代谢酶以及转运体的转录调节发挥重要作用。目前,利用表达PXR或CAR的CYP450酶以及MDR1荧光素酶报告基因平台,发现通过激动PXR或CAR来发挥对下游靶基因产生诱导效应的化学成分已经成为新药研发以及临床药学研究的重要手段之一。
     联苯双酯(bifendate),是合成五味子素的中间体,是我国研制的降酶药物,常用于肝病的治疗。临床研究发现该药物可以通过稳定肝细胞膜,加强肝细胞损伤的修复,改善肝组织的病理损害。同时联苯双酯作为一种重要的辅助药物,常与环孢素A联合使用,目的是降低环孢素A长期服用带来的肝毒性。临床观察发现,联苯双酯与环孢素A的合用,确实能够降低长期服用环孢素A伴随的肝脏损害,患者体内的环孢素A的血药浓度也出现明显的下降。
     基于以上研究背景,本课题旨在查明联苯双酯对CYP3A4以及药物转运体P—糖蛋白在人体产生的影响以及这种影响对联苯双酯与环孢素A在机体的药物相互作用机制探讨的参考价值。通过双荧光素报告基因在转录调控水平探讨联苯双酯对CYP3A4以及P—糖蛋白的影响;通过严格设计的临床实验,探讨在不同CYP3A4*18B基因型的健康受试者体内,联苯双酯对环孢素A药代动力学的影响;以他林洛尔、咪哒唑仑为探药,在整体药代动力学水平和药物相互作用层面探讨联苯双酯对CYP3A4以及P—糖蛋白活性的影响,为临床上联苯双酯与环孢素A药物相互作用提供分子水平解释,并为临床联苯双酯与环孢素A的合理应用以及基因导向个体化治疗提供指导。从整体水平,为初步探讨联苯双酯与环孢素A药物相互作用的机制提供线索。
     本课题的主要研究结果如下:
     1.在共转染PXR表达质粒和相应启动子的双荧光报告基因检测中,联苯双酯显著增加CYP3A4和MDR1的启动子活性;在共转染CAR表达质粒和相应启动子的双荧光报告基因检测中,联苯双酯对CYP3A4和MDR1的启动子活性没有显著影响。
     2.在不同CYP3A4*18B基因型个体中,研究联苯双酯对环孢素A药代动力学参数的影响。发现联苯双酯能够显著降低环孢素A血药浓度,并且环孢素A体内药代参数的变化程度在CYP3A4*18B基因型间有显著差异。
     3.用他林洛尔作为探药,研究了联苯双酯对人体P—糖蛋白转运体活性的影响,发现联苯双酯降低了他林洛尔的血药浓度,提示联苯双酯在人体内显著的诱导了P—糖蛋白的转运活性。
     4.用咪哒唑仑作为探药,研究了不同CYP3A4*18B基因型个体中联苯双酯对CYP3A4活性的影响,发现咪哒唑仑以及1—羟咪哒唑仑血药浓度在应用联苯双酯后显著降低,并且咪哒唑仑与1—羟咪哒唑仑的AUC_((0-24)),AUC_((0-∞))和Cmax的变化程度在CYP3A4*18B不同基因型间有显著差异,在CYP3A4*18B突变型纯合子型中降低程度最显著。
     5.对PXR 1207 C>T突变在中国汉族人群中的分布频率进行筛查,在80个DNA样本中未发现突变的发生。
     总之,本项目从基因转录调控,临床整体水平为联苯双酯与环孢素A的临床药物相互作用和反应的个体差异提供了遗传药理学的解释,为临床合理使用联苯双酯和环孢素A、β-受体阻滞药物他林洛尔、咪哒唑仑以及其它相关药物提供了实验依据和理论指导。
Pharmacogenetics studies indicate that activity change of drug-metabolizing enzymes and transporter is the major mechanism for clinical drug-drug interactions,which is also the key point for the process of bio-transformation and transporting.The inherited variation in activities of drug-metabolizing enzymes and transporters results in interindividual difference in drug metabolism,disposition and efficacy. CyA is a calcineurin inhibitor,which is developed for the treatment of many immune-mediated diseases,especially for the prevention of allograft rejection after the solid organ transplantation.Leukocytes, special helper CD4+ lymphocytes are the main therapeutic targets of this drug.It is regarded as a highly effective in preventing acute rejection, whereas also characterized by a narrow therapeutic index and variable pharmacokinetic characteristics.The process of biotransformation and transporting of cyclosporine is especially via CYP3A4 and P-gp,on which much attention have been paid.
     The CYP system is consisted of more than 50 isozymes,by which many exogenous agents and drug are metabolized.Expressed both in liver and small intestine,CYP3A subfamily is found to metabolize about 50%-60%drugs,which is the most abundant CYPs.The variations in the oral bioavailability and the systemic clearance of CYP3A substrates may result from the great interindividual differences in their activity.The studies have found that the variation of CYP3A4 activity does result in the cyclosporine related drug-drug interaction.As the major enzyme involved in the metabolism of drugs,the expressing level of CYP3A4 varies up to 40-fold in the human population,which include inducible and constitute levels.CYP3A4~*18B was speculated to be associated with an increase level of CYP3A4 activity,which could increase the metabolism of cyclosporine.
     P-gp is the ATP-binding ex-pumper,which is expressed in liver, small intestine,and kidney and encoded by MDR1.The P-gp played an important role in the process of drug absorption,disposition and elimination.The variation of P-gp activity may lead to the inter-individual difference in the concentration of cyclosporine.
     Nuclear receptors PXR and CAR have become hotpoints for pharmacological research by involving in transcriptional regulation of several drug-metabolizing enzymes and transpoters mentioned above. Due to the dual key roles played by PXR and CAR ligands medicated in pharmagology efficacy as well as herb-drug interactions,finding significantly induction of PXR or CAR targeted CYP450 enzymes and drug transporters through activating PXR or CAR using PXR or CAR expressed dual luciferase reporter gene platform becomes crutial in drug development and clinical pharmacology research.Bifendateis a synthetic intermediate of schisandrin C,which is widely used for the treatment of chronic hepatitis,by lowering alanine transaminase(ALT) in patients. Following the intake of bifendate in rats,it was observed to improve liver function by increasing the detoxification process,reducing pathological lesion,accelerating the hepatocyte regeneration.Bifendate can also function as a membrane-stabilizing agent to prevent the cell from the impairment.After the treatment of bifendate,the protein metabolism process of the hepatitis patients was improved,with serum albumin level increased and globulin level decreased.In China,the combined therapy of bifendate with CyA on the patients with renal transplant is found to decrease the side effect of hepatotoxicity induced by CyA,which is also accompanied by the decreased concentration of cyslosporine.
     Based on above information,our study was aimed to find effects of bifendate on the activity of CYP3A4 and P-gp,and the mechanism of drug-drug interaction between bifendate and cyclosporine.The effects of bifendate on transcription of CYP3A4 and P-g have been explored by dual-luciferase activity dection.In strictly designed clinical experiment, the effect of bifenate on the pharmacokinetic of cyclosporine in relation to CYP3A4~*18B was evaluated.
     Using talinolol and midazolam as the substrate drugs,the potential impact of bifendate on CYP3A4 and P-gp have been clarified.Thepresent study may provide molecular mechanism for the bifendate-cyclosporine interaction,theoretic guidance for combination use of bifendate with cyclosporine,and also the explanation for the bifendate-cyclosporine interaction.
     The present series of studies have found that:
     1.Bifendate(0.1uM) can significantly increase promoter activities of CYP3A4,MDR1 when cotransfected with PXR-expressed plasmid and dual-luciferase reporter plasmid while bifendate can not significantly increase promoter activities of CYP3A4,MDR1 when cotransfected with CAR-expressed plasmid and dual-luciferase reporter plasmid.
     2.Bifendate can decrease the cyclosporine concentration in the CYP3A4~*18B gene dependent manner.
     3.Bifendate significantly decreases plasma concentrations and oral bioavailability of talinolol in all subjects,indicating that bifendate can significantly induce P-gp activity in human.
     4.Bifendate can decrease significantly decrease the plasma concentration of midazolam and 1-OH-midazolam.The variance of AUC(0-24), AUC(0-∞) and Cmax decreased in the CYP3A4~*18B gene dependent manner.
     5.Screening the frequency of PXR 1207 C>T in Chinese healthy subjects, no mutation of 1207 C>T was found.
     The present study has provided explanation for the bifendate-cyclosporine interaction from gene transcription and clinical investigation and offered the experimental and theoretic guidance for combination use of bifendate with cyclosporine,β-receptor antagonist talinolol and midazolam as well as similar drugs.
引文
[1] Pan SY, Yang R, Dong H, et al. Bifendate treatment attenuates hepatic steatosis in cholesterol/bile salt- and high-fat diet-induced hypercholesterolemia in mice. European Journal of Pharmacology, 2006, 552: 170-175.
    [2] Pan SY, Yang R, Nan YF, et al. High doses of bifendate elevate serum and hepatic triglyceride levels in rabbits and mice : animal models of acute hypertriglyceridemia. Acta Pharmacologica Sinica, 2006, 27: 673-678.
    [3] Li Q, Wu XC, Xin HW, et al. Reduction of blood cyclosporine A by bifendate in patients subject to renal transplantation. Chin J Organ Transplant, 2005, 26: 243-245.
    [4] F. Peter Guengerich. Common and Uncommon Cytochrome P450 Reactions Related to Metabolism and Chemical Toxicity. Chem Res Toxicol, 2001, 14: 611-650,
    [5] Nebert WD, Russell DW. Clinical importance of the cytochrome P450. The Lancet, 2002,360: 1155-1162.
    [6] Denisov LG, Markris TM, Sligar SG, et al. Structure and chemistry of Cytochrome P450. Chem Rev, 2005, 105: 2253-2278.
    [7] Aleksandra Galetin, Kiyomi Ito, David Hallifax, et al. CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions. Journal of Pharmacology and experimental therapeutics. 2005, 314: 180-190.
    [8] Dhananjay P, Ashim KM. MDR- and CYP3A4-mediated drug-herb interactions. Life Sciences, 2006, 78: 2131-2145.
    [9] Carol WH, Barbara SW, Sarah AS, et al. Role of P-glycoprotein in Statin Drug Interactions. Pharmacotherapy, 2006, 26: 1601-1607.
    [10] DuBuske, Lawrence M. The Role of P-Glycoprotein and Organic Anion-Transporting Polypeptides in Drug Interactions. Drug Safety, 2005, 28: 789-801.
    [11] Chrostopher JE, Peng H, Fransico S, et al. The role of transporters in drug interactions. European Journal of Pharmaceutical Sciences, 2006, 27: 501-517.
    [12] Kajsa PP, Susanne E, Charlotta O, et al. Evaluation of huma liver Slices and Reporter Gene Assays as Systems for Predicting the Cytochrome P450 Induction Potential of Drugs in Vivo in Humans. Pharmaceutical Research, 2005, 23: 56-59.
    [13] Ding XS, Jeff LS. Repression of PXR-mediated induction of hepatic CYP3A gene expression by protein kinase C. Biochemical Pharmacology, 2005, 69: 867-873.
    [14] Christoph H, Urs AM. Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Archives of Biochemistry and Biophysics, 2004,433:387-396.
    [15] Xiomara CK, William SB. CAR and PXR: Xenosensors of endocrine disrupters? Chemico-Biological Interactions, 2005, 155: 111-128.
    [16] Anthony JZ, Gordon GG, Barry J, et al. Species differences in the induction and activation of the pregnane X receptor (PXR). Toxicology, 2006, 226: 40-41.
    [17] Dvorak Z, Maurel P, Viarem MJ, et al. Expression and transcriptional activities of nuclear receptors involved in regulation of drug-metabolizing enzymes are not altered by colchicine: Focus on PXR, CAR, and GR in primary humanhepatocytes. Cell Biology and Toxicology, 2007, 23: 63-73.
    [19] Miriam NJ, Gail TN, Steven RH. Ligands, ba cteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicology and Applied Pharmacology, 2005, 209: 123-133.
    [20] Ute GA, Annegret M, Ulrike K, et al. Variability in PXR-mediated induction of CYP3A4 by commercial preparations and dry extracts of St. John's wort. Naunyn- Schmiedeberg's Archives of Pharmacology, 2007, 375: 377-382.
    [21] Yang CQ, Park KH, Namgung HU, et al. Effect of bifendate on pharmacokinetics of cyclosporine A in Beagle dogs. Chin Hosp Pharm J, 2006, 26: 566-568.
    [21] Liu ZY, Wang YL, Zhou ZH. Effect of bifenate on pharmacokinetics of cyclosporine A in rabbits. Chin Hosp Pharm J, 2002, 22: 456-458.
    [22] Liu GT. From the study of Fructus Schizandrae to the discovery of biphenyl dimethyl-dicarboxylate. Acta Pharm Sin 1982; 18 : 714-720.
    [23] Liu GT, Wei HL, Song ZY. Further Studies on the protective action of biphenyl dimethy-dicarboxylate (BDD) against experimental liver injury in mice. Acta Pharm Sin 1982; 17, 101-105.
    [24] Guan LP, Nan JX, Jin XJ, Jin QH, Kwak KC, Chai KY, et al. Protective effects of chalcone derivatives for acute liver injury in mice. Arch Pharm Res 2005; 28: 81-86.
    [25] Abdel-salam OM, Sleem AA, Morsy FA. Effect of biphenyldimethyl- dicarboxylate administrate alone or combined with silymarin in the CCL4 model of liver fibrosis in rats. Scientificworldjournal 2007; 7:1242-1255.
    [26] Abdel-Hameid NA. Protective role of dimethyl diphenyl bicarboxylate (DDB) against erythromycin induced hepatotoxicity in male rats. Toxicol In Vitro 2007; 21 (4): 618-625.
    [27] El-Beshbishy HA. The effect of dimethyl dimethoxy biphenyl dicarboxylate (DDB) against tamoxifen-induced liver injury in rats: DDB use is curative or protective. J Biochem Mol Biol 2005; 38 (3): 300-306.
    [28] Liu KT, Cresteil T, Le Provost E, Lesca P. Specific evidence that schizandrins induce a phenobarbital-like cytochrome P-450 form separated from rat liver. Biochem Biophys Res Commun l981; 103 (4): 1131-1137.
    [29] Liu Zhi-Yong, Wang Yun-Li, Zhou Zhong-Hua. Effect of bifendate on pharmacolinetics of cyclosporine A in rabbits. Chin Hosp Pharm J 2002; (22): 8.
    [30] SA el-Sawy, AM el-Shafey, HA el-Bahrawy. (2002) Effect of dimethyl diphenyl bicarboxylate on normal and chemically-injured liver. East-Mediterr-Health-J 2002; 8 (1): 95-104.
    [31] Lu Hong, Li Yan. Effects of dimenthyl diphenyl bicarboxylate on the metabolism and hepatotoxicity of aflatoxin B1 in rats. Acta Pharmaceutica Sinica 2002; 37 (10): 753-757.
    [32] Awni WM. Pharmacodynamic monitoring of cyclosporine. Clin Pharmacokinet; 23 (6): 428-448
    [33] Blanchet B. (2008) Therapeutic monitoring of immunosuppressive drugs: interest of calcineurin activity assessment in liver transplantation. Annales Pharmaceutiques Francaises 2008; 66 (2): 96-101.
    [34] Lin CS, Boltz RZ, Siekierka JJ, Sigal NH. FK-506 and cyclosporine A inhibit highly similar signal transduction pathways in human T lymphocytes. Cell Immunol 1991;133 (2): 269-284.
    [35] Sehajpal PK, Sharma VK, Ingulli E, Stenzel KH, Suthanthiran An. Synergism between the CD3 antigen- and CD2 antigen-derived signals: exploration at the level of induction of DNA-binding proteins and characterization of the inhibitory activity of cyclosporine. Transplantation 1993; 55: 1118-1124.
    [36] Buchler M, Johnston A. Seeking optimal prescription of cyclosporine ME. Ther Drug Monit 2005; 27(1): 3-6.
    [37] Ozbay A, Karamperis N, Jorqensen KA. A review of the immunosuppressive activity of cyclosporine metabolites: new insights into an old issue. Curr Clin Pharmacol 2007; 2 (3): 244-248.
    [38] Brunet M, Crespo M, Millan O, Seron D, Torreqrisa V, Jimenez O, et al . Pharmacokinetics and pharmacodynamics in renal transplant recipients under treatment with cyclosporine and Myfortic. Transplant Proc2007; 39 (7): 2160-2162.
    [39] Kahan BD. Cyclosporine. N Engl J Med 1989; (321): 1725-1738. [40] Dunn CJ, Wagstaff AJ, Perry CM, Plosker GL, Goa KL. (2001) Cyclosporine: an updated review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (neoral) 1 in organ transplantation. Drugs 2001; 61 (13): 1957-2016.
    [41] Chowbay B, Cumaraswamy S, Cheung YB, Zhou Q, Lee EJ. Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporine disposition in heart transplant recipients. Pharmacogenetics 2003; 13 (2): 89-95.
    [42] Hesselink DK, Van Schaik RH, Van der Heiden IP, Van der Werf M, Greqoor PJ, Lindemans J, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003; 74 (3): 245-254.
    [43] Hebert ME Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv Drug Deliv Rev 2997; 27 (2-3): 201-214.
    [44] Pachecka J, Tomaszewski P, Kubiak-Tomaszewska G. Cytochrome P450 polymorphism-molecular, metabolic and pharmacogenetic aspects. I. Mechanisms of activity of cytochrome P450 monoxygenases. Acta Pol Pharm 2008; 65 (3): 303-306.
    [45] Thummel KE, Wilkinson GR. In vitro and in vivo interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 1998; 38: 389-430.
    [46] Ozdemir V, Kalow W, Tang BK, Paterson AD, Walker SE, Endrenyi L, et al . Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 2000; 10 (5): 373-388.
    [47] Fukushima-uesaka H, Saito Y, Watanabe H, Shiseki K, Saeki M, Nakamura T, et al. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat 2004; 23 (1): 100.
    [48] Kronbach T, Fischer V, Meyer UA. Cyclosporine metabolism in human liver: identification of a cytochrome P-450 Ⅲ gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 1988; 43 (6): 630-635.
    [49] Aoyama T, Yamano S, Waxman DJ, et al. Cytochrome P-450 hPCN3, a novel cytochrome P-450 ⅢA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem 1989; 264: 10388-10395.
    [50] Utecht KN, Hiles JJ, Kolesar J. Effect of genetic polymorphisms on the pharmacokinetics of calcineurin inhibitors. Am J Health Syst Pharm 2006; 63 (23): 2340-2348.
    [51] Zhu M, Yeung RY, Lin KF, Li RC. Improvement of phase I drug metabolism with Schisandra chinensis against CCL4 hepatotoxicity in a rat model. Planta Med 2000; 66 (6): 521-525.
    [52] Mu Y, Zhang J, Zhang S, Zhou HH, Toma D, Ren S, et al . Traditional Chinese medicines Wu Wei Zi (Schisandra chinensis Baill) and Gan Cao (Glycyrrhiza uralensis Fisch) activate pregnane X receptor and increase warfarin clearance in rats. J Pharmacol Exp Ther 2006; 316 (3): 1369-1377.
    [53] Kato M. Intestinal first-pass metabolism of CYP3A4 substrates. Drug Metab Pharmacokinet 2008; 23 (2): 87-94.
    [54] Wang SM, Lai MK, Chueh SC, Tai HC, Chung SD. Optimal C2 concentration of cyclosporine corrected with good efficacy and safety in Asian kidney transplant recipients. Transplant Proc 2008; 40 (7): 2243-2244.
    [55] Morris RG. Cyclosporine therapeutic drug monitoring-an established service revisited. Clin Biochem Rey 2003. 24 (2): 33-46.
    [56] Dahan A, Altman H. Food-drug interaction: grapefruit juice augments drug bioavailability-mechanism, extent and relevance. Eur J Clin Nut 2004; 58 (1): 1-9.
    [57] Lorusso P, Heath EI, McGreivy J, Sun YN, Melara R, Yan L, et al . Effect of coadministration of ketoconazole, a strong CYP3A4 inhibitor, on pharmacokinetics and tolerability of motesanib diphosphate (AMG 706) in patients with advanced solid tumors. Invest New Drugs 2008; 26 (5): 455-462.
    [58] Singh YN. Potential for interaction of kava and St. John's wort with drugs. J Ethnopharmacol. 100(1-2): 108-113
    [59] Pollard SG. Pharmacologic monitoring and outcomes of cyclosporine. Transplant Proc 2004; 36 (2): 404-407.
    [60] Venkataramanan R, Komoroski B, Strom S. (2006) In vitro and in vivo assessment of herb drug interactions. Life Sci. 78 (18): 2105-2115.
    [61] Hu WY, Li YW, Hou YN, He K, Chen JF, But PP, et al. The induction of liver microsomal cytochrom P450 by Glycyrrhiza uralensis and glycyrrhetinic acid in mice. Biomed Environ Sci 1999; 12 (1): 10-14.
    [62] Lin G, Nnane IP, Cheng TY The effects of pretreatment with glycyrrhizin and glycyrrhetinic acid on the retrorsine-induced hepatotoxicity in rats. Toxicon 1999; 37: 1259.
    [63] Thummel KE, Wilkinson GR. In vivo and in vitro drug interactions involving human CYP3 A. Annu Rev Pharmacol Toxicol 1998; 38: 389-430.
    [64] Hiseh KP, Lin YY, Cheng CL, et al. Novel mutations of CYP3 A4 in Chinese. Drug Metab Diospo 2001; 29: 268.
    [65] Fukushima-Uesaka H, Saito Y, Watanabe, H, et al. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat 2004; 23 (1): 100.
    [66] Si-Yuan Pan, Rong Yang, Hang Don et al. Bifendate treatmeng attenuates hepatic steatosis in cholesterol/bile salt and hign-fat diet-induced hypercholesterolemia in mice. European Journal of Pharmacology 2006; 552: 170-175.
    [67] Guan LP, Nan JX, Jin XJ, et al. Protective effects of chalcone derivatives for acute liver injury in mice. Arch Pharm Res 2005; 28 (1): 81-86.
    [68] Abdel-salam OM, Sleem AA, Morsy FA. Effect of biphenyldimethyl- dicarboxylate administrate alone or combined with silymarin in the CCL4 model of liver fibrosis in rats. Scientific world journal 2007; 7:1242-1255.
    [69] YAO GUANG-BI. Treatment of chronic hepatitis B in China. Journal of Gastroenterology & Hepatology 2000; 15 (5): 61-66.
    [70] Cui S, Wang M, Fan G. Anti-HBV efficacy of bifendate in treatment of chronic hepatitis B, a primary study. Zhonghua Yi Xue Za Zhi 2002; 82(8): 538-540.[70]
    [71] Yu AR, Wu XC, Li Q, et al. Effects of bifendate on the blood concentration and hepatic toxicity of cyclosporine A in renal transplanted recipients. CHINESE JOURNAL OF CLINICAL PHARMACOLOGY AND THERAPEUTICS 2004; 9 (5): 548-550.
    [72] Mu Y, Zhang J, Zhang S, et al. Traditional Chinese medicines Wu Wei Zi (Schisandra chinensis Baill) and Gan Cao (Glycyrrhiza uralensis Fisch) activate pregnane X receptor and increase warfarin clearance in rats. J Pharmacol Exp Ther 2006;316(3): 1369-1377.
    [73] Hu Yong-Fang, Qiu Wen, Liu Zhao-Qian, et al. EFFECTS OF GENETIC POLYMORPHISMS OF CYP3A4, CYP3A5 AND MDR1 ON CYCLOS- PORINE PHARMACOKINETICS AFTER RENAL TRANSPLANTATION. Clinical and Experimental Pharmacology and Physiology 2006; 33 (11): 1093-1098.
    [74] Kiyomi Ito, Hiroyuki Kusuhara, Yuichi Sugiyama. Effects of Intestinal CYP3A4 and P-Glycoprotein on Oral Drug Absorption-Theoretical Approach. Pharmaceutical Research 1999; 16 (2): 225-231.
    [75] Dany Anglicheau, Christophe Legendre, Philippe Beaune, et al. Cytochrome P450 3A polymorphisms and immunosuppressive drugs: an update. Pharmaco- genomics 2007; 8 (7): 835-849.
    [76] Sean Ekins, Leonid Mirny, Erin G Schuetz. A Ligand-Based Approach to Understanding Selectivity of Nuclear Hormone Receptors PXR, CAR, FXR, LXRα, and LXRβ, Pharmaceutical Research 2002; 19 (12): 1788-1800.
    [77] S Harmsen, I Meijerman, J H Beijnen, et al. The role of nuclear receptors in pharmacokinetic drug-drug interaction in oncology. Cancer Treatment Reviews 2007; 33 (4): 369-380.
    [78] Wang Xue-Ding, Li Jia-Li, Su Qi-Biao, et al. A Pharmacogenetic Study of Pregnane X Receptor (NR1I2) in Han Chiese. Current Drug Metabolism 2007; 8 (8): 778-786.
    [79] SOURGENS H, SCHMIDT J, DERENDORF H. Comparison of talinolol and atenolol effects on blood pressure in relation to lipid and glucose metabolic parameters: Results from the TALIP study. International journal of clinical pharmacology and therapeutics 2003; 41(1): 22-29.
    [80] Alexandru Campeanu. The Cardiac Insufficiency Talinolol Study (CITAS) study design. European Journal of Heart Failure 2001; 3 (3): 377-380.
    [81] Spahn-Langguth H, Baktir G, Radschuweit A, et al. P-glycoprotein transporters and the gastrointestinal tract: evaluation of the potential in vivo relevance of in vitro data employing talinolol as model compound. International journal of clinical pharmacology and therapeutics 1998; 36: 16-24.
    [82] Oertel R, Richter K, Trausch B, et al. Elucidation of the structure of talinolol metabolites in man: determination of talinolol and hydroxylated talinolol metabolites in urine and analysis of talinolol in serum. J Chromatogr B Biomed Appl 1994; 660 (2): 353-363.
    [83] Grammatte T, Oertel R, Terhaag B, et al. Direct demonstration of small intestinal secretion and site-dependent absorption of the beta-blocker talinolol in humans. Clinical pharmacology & Therapeitics 1996; 59: 541-549.
    [84] Ulrike W, Hildegard SL, Ernst M. Evidence fro Intestinal Secretion as an Additional Clearance Pathway of Taliniolol Enatiomers: Concentration- and Dose-dependent Absorption in Vitro and in Vivo. Pharmaceutical Research 1996; 13 (4): 514-522.
    [85] Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacology & therapeutics 2006; 112 (2): 457-473.
    [86] Kristin Westphal, Anita Weinbrenner, Michael Zschiesche, et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: A new type of drug/drug interaction. Clinical Pharmacology & Therapeutics 2000; 68: 345-355.
    [87] UI Schwarz, H Hanso, R Oertel, et al. Induction of Intestinal P-glycoprotein by St John's Wort Reduces the Oral Bioavailability of Talinolol. Clinical Pharmacology & Therapeutics 2007; 81 (5): 669-678.
    [88] Andrew Owen, Becky Chandler, Dave J Back, et al. Expression of pregnane-X-receptor transcript in peripheral blood mononuclear cells and correlation with MDR1 mRNA. Antiviral Therapy 2004; 9: 819-821.
    [89] Thomas Giessmann, Karen May, Christiane Modess, et al. Carbamazepin regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clinical Pharmacology & Therapeutics 2004; 76 (3): 192-200.
    [90] Ute I Schwarz, Diana Seemann, Reinhard Oertel, et al. Grapefruit juice ingestion significantly reduces talinolol bioavailability. Clinical Pharmacology & Therapeutics 2005; 77: 291-301.
    [91] Jeff L Staudinger, Ajay Madan, Kathleen M Carol, et al. Regulation of Drug Transporter Gene Expression by Nuclear Receptors. Drug Metabolism and Disposition 2003; 31 (5): 523-527.
    [92] Nadine Albermann, Friedrich Hubertus Schmitz-Winnenthal, Kaspar Z graggen, et al. Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochemical Pharmacology 2005; 70 (6): 949-958.
    [93] Yoshiyuki Shirasaka, Yan Li, Yuta Shibue, et al. Concentration-Dependent Effect of Naringin on Intestinal Absorption of β1-Adrenoceptor Antagonist Talinolol Mediated by P-Glycoprotein and Organic Anion Transporting Polypeptide (Oatp). Pharmaceutical Research 2009; 26 (3): 560-567.
    [94] WANGER Martin, HALILBASIC Emina, MARSCHALL Hanns-Ulrich, et al. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology 2005; 42: 420-430.
    [95] Bonhomme-Faivre Laurence, Devocelle Aurore, Saliba, Faouzi, et al. MDR-1 C3435T Polymorphism Influences Cyclosporine A Dose Requirement in Liver-Transplant Recipients. Transplantation 2004; 78 (1): 21-25.
    [96] Partha Krishnamurthy, Tao Xie, John D Schuetz. The role of tansporters in cellular heme and porphyrin homeostasis. Pharmacology & Therapeutics 2007; 114 (3): 345-358.
    [97] Katrijn Bogman, Yvonne Zysset, Lukas Degen, et al. P-Glycoprotein and Surfactant: Effect on Intestinal Talinolol Absorption. Clinical Pharmacology & Therapeutics 2005; 77 (1): 24-32.
    [98] Shiew-Mei Huang, Lawrence J Lesko. Drug-Drug, Drug-Dietary Supplement, and Drug-Citrus Fruit and Other Food Interactions: What Have We Learned? The Journal of Clinical Pharmacology 2004; 44: 559-569.
    [99] S-M Huang, J M Strong, L Zhang, et al. New Era in Drug Interaction Evaluation: US Food and Drug Administration Update on CYP Enzymes, Transporters, and the Guidance Process. The Journal of Clinical Pharmacology 2008; 48 (6): 662-670.
    [100] Aleksandra G, Brian HJ. Intestinal and Hepatic Metabolic Activity of Five Cytochrome P450 Enzymes: Impact on Prediction of First-Pass Metabolism. Journal of Pharmacology And Experimental Therapeutics 2006; 318: 1220-1229.
    [101] Sofia B, Christine G, Nadine W, et al. Gene and Protein Expression of P-Glycoprotein, MRP1, MRP2, and CYP3A4 in the Small and Large Human Intestine. Molecular pharmaceutics 2007; 4 (2): 252-257.
    [102] H Glaeser, S Drescher, M Eichelbaum, et al. Influence of rifampicin on the expression and function of human intestinal cytochrome P450 enzymes. Br J Clin Pharmacol 2005; 59 (2): 199-206.
    [103] Ting LS, Villeneuve E, Ensom M, et al. Beyond Cyclosporine: A Systematic Review of Limited Sampling Strategies for Other Immunosuppressants. Therapeutic dru monitoring 2006; 28 (3): 419-430.
    [104] Sally JD, Carol MR, Huguette A, et al. Enhancement of the Therapeutic Index: From Nonmyeloablative and Myeloablative toward Pretargeted Radioimm- unotherapy for Metastatic Prostate Cancer. Clinical cancer research 2005; 11: 7187-7194.
    [105] Helen CM, Faruk O, Malcolm BW, et al. A Randomized, Controlled Trial of CO- Vs C2-guided Therapeutic Drug Monitoring of Cyclosporine in Stable Heart Transplant Patients. The Journal of Heart and Lung Transplantation 2005; 24 (12): 2137-2143.
    [106] Kenneth ET. Gut instincts: CYP3A4 and intestinal drug metabolism. J Clin Invest 2007; 117 (11): 3173-3176.
    [107] Toshiyuki S, Kazumoto I, Kandai N, et al. Prediction of systemic exposure to cyclosporine in Japanese pediatric patients. Journal of Human Genetics 2006; 51 (11): 969-976.
    [108] Ping H, Michael HCB, David JG, et al. Factors influencing midazolam hydroxylation activity in human liver microsomes. Drug Metabolism and Disposition 2006; 34: 1198-1207.
    [109] Ping H, Michael HCB, David JG, et al. Genotype-phenotype Associations of Cytochrome P450 3A4 and 3A5 Polymorphism with Midazolam Clearance in Vivo. Clinical Pharmacology & Therapeutics 2005; 77: 373-387.
    [110] Ellen C, Anne NN, David JK, et al. Comparison of midazolam and simvastatin as cytochrome P450 3A probes. Clinical Pharmacology & Therapeutics 2006; 79: 350-361.
    [111] Xiao YQ, Zheng J, Ming Z, et al. Association of MDR1, CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients. European Journal of Clinical Pharmacology 2008; 64: 1069-1084.
    [112] Dora FL, Lauren EO, Yan LZ, et al. Pomegranate Juice Does Not Impair Clearance of Oral or Intravenous Midazolam, a Probe for Cytochrome P450-3A Activity: Comparison With Grapefruit Juice. The Journal of Clinical Pharmacology 2007; 96 (10): 2808-2817.
    [113] Jawad K, Sardar ZI. Medicinal importance of grapefruit juice and its interaction with various drugs. Nutrition Journal 2007; 6. 33.
    [114] Gurley BJ, Gardner SF, Hubbard MA, et al. Clinical Assessment of Effects of Botanical Supplementation on Cytochrome P450 Phenotypes in the Elderly: St John's Wort, Garlic Oil, Panax ginseng and Ginkgo biloba. Drug & Aging 2005: 22 (6): 525-539.
    [115] Krusekopf S, Roots I. St. John's wort and its constituent hyperforin concordantly regulate expression of genes encoding enzymes involved in basic cellular pathways. Pharmacogenetics and Genomics 2005; 15: 817-829.
    [116] Xiu JX, Xiao HL, Jun HX, et al. Association study of four activity SNPs of CYP3A4 with the precocious puberty in Chinese girls. Neuroscience Letters 2005; 381: 284-288.
    [117] Dieudonne B, Jun YZ, Yezhou S, et al. Impact of a genetic variant in CYP3A4 on risk and clinical presentation of prostate cancer among white and African- American men. Urologic oncology: Seminars and Original Investigations 2006;24: 21-27.
    [118] Chin HL, Konan P, Jin DH, et al. Screening CYP3A single nucleotide polymorphisms in a Han Chinese population with a genotyping chip. Pharmaco- genomics 2005; 6: 731-747.
    [119] Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 1994; 47: 1969-1979.
    [120] Ping H, Michael HCB, David JG, et al. Genotype-phenotype association of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clinical Pharmacology & Therapeutics 2005; 77 (5): 373-387.
    [121] Guobin S, Sheau-Fung T, Douglas BT, et al. Propiconazole-induced cytochrome P450 gene expression and enzymatic activities in rat and mouse liver. Toxicology Letters 2005; 15(2): 277-287.
    [122] Luca G, Milvia Z, Kim C, et al. Gene Expression Profiles in Paraffin-Embedded Core Biopsy Tissue Predict Response to Chemotherapy in Women With Locally Advanced Breast Cancer. Journal of Clinical Oncology 2005; 23: 7265-7277.
    [123] John AL, Lea WE, Ashlee HR, et al. Aromatase cytochrome P450: cloning, intron variation, and ontogeny of gene expression in southern flounder. Journal of Experimental Zoology Part A: Comparative Experimental Biology 2005; 303: 643-656.
    [124] Rodriguez AC, Ingelman SM. Cytochrome P450 pharmcogenetics and cancer. Oncogene 2006; 25: 1679-1691.
    [125] Joshua LS, Sarah EG, Andrey F, et al. Pregnane X receptor (PXR) activation: A mechanism for neuroprotection in a mouse model of Niemann-Pick C disease. PNAS 2009; 106:14-21.
    [126] Yoav ET, Masahiko N. CAR and PXR: The xenobiotic-sensing receptors. Steroids 2007; 72: 231-246.
    [127] Souidi M, Gueguen Y, Linard C, et al. In vivo effects of chronic contamination with depleted uranium on CYP3A and associated nuclear receptors PXR and CAR in the rat. Toxicology 2005; 214: 1-2.
    [128] Yu X, Esther C, William JZ, et al. Crystal structure of the PXR-T1317 complex provides a scaffold to examine the potential for receptor antagonism. Bioorganic & Medicinal Chemistry 2007; 15: 2156-2166.
    [129] Schroeder MN, Virginia EC, Carnahan LB, et al. Human PXR Forms a Tryptophan Zipper-Mediated Homodimer. Biochemistry 2006; 45: 8579-8589.
    [130] Yu X, Linda BM, Jillian O, et al. Crystal Structure of the Pregnane X Receptor-Estradiol Complex Provides Insights into Endobiotic Recognition. Molecular Endocrinology 2007; 21: 1028-1038.
    [131] Satoru K, Kouichi K, Yoshiro S, et al. Functional characterization of four naturally occurring variants of human pregane X receptor (PXR): one variant causes dramatic loss of both DNA binding activity and the transactivation of the CYP3A4 promoter/enhance region.Drug Metabolism and Disposition 2003; 32: 149-154.
    [132] Sihem A, Gordon G, Nick P. Transcriptional regulation of the PXR gene: identification and characterization of a functional peroxisome proliferators- activated receptor binding site within the proximal promoter of PXR. Drug Metabolism and Disposition 2006; 34: 138-144.
    [133] Chang TK, Waxman DJ. Pregnane X receptor-mediated transcription. Methods Enzymol 2005; 400: 588-598.
    [134] Jatinder L, Vishal L, Stephen S, et al. Novel single nucleotide polymorphisms in the promoter and intron 1 of human pregnane X receptor/NRlI and their association with CYP3A4 expression. Drug Metabolism and Disposition 2008; 36: 169-181.
    [135] Wang XD, Deng XY, Chen J, et al. Single Nucleotide Polymorphisms of the Pregnane X Receptor Gene in Han Chinese and a Comparison with Other Ethnic Populations. International Journal of Experimental and Clinical Pharmacology 2008; 81:350-354.
    [1] Noble S, Markham A. Cyclosporin. A review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (Neoral) [J]. Drugs, 1995; 50 (5): 924-941.
    [2] Kamran mahalati, Philip belitsky, Kenneth west, et al. Approaching the Therapeutic Window for Cyclosporine in Kidney Transplantation: A Prospective Study [J]. Journal of the American Society of Nephrology, 2001; 12:828-833.
    [3] G Eineke, M. Schutz, I. Mai, et al. Limitations of C2 monitoring in renal transplant recipients. Nephrol. Dial [J]. Transplant, 2005; 20 (7): 1463-1470.
    [4] Kahan BD, Keown P, Levy GA, et al. Therapeutic drug monitoring of immunosuppressant drugs in clinical practice [J]. Clinical Therapeutics, 2002; 24. 329-350.
    [5] Levy GA. C2 monitoring strategy for optimizing cyclosporine immunosuppression from the Neoral formulation [J]. BioDrugs, 2001; 15: 279-290.
    [6] Keown PA. New concepts in cyclosporine monitoring [J]. Current Opinion in Nephrology and Hypertension, 2002; 11. 619-626.
    [7] Bertilsson G, Heidrich J, Svensson K, et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A4 induction [J]. Proceedings of the National Academy of Sciences, 1998; 95 (21): 12208-12213.
    [8] Blumberg B, Sabbagh Jr W, Juguilon H, et al. SXR, a novel steroid and xenobiotic sensing nuclear receptor [J]. Genes & Development. 1998; 12(20): 3195-3205.
    [9] Gerbal-Chalion S, Daujat M, Pascussi JM, et al. Transcriptional regulation of CYP2C9 gene. Role of glucocorticoid receptor and constitutive androstane receptor [J]. Journal of Biological Chemistry, 2002; 277(1): 209-217.
    [10] Frank J. Gonzalez, Ai-Ming Yu. CYTOCHROME P450 AND XENOBIOTIC RECEPTOR HUMANIZED MICE [J]. Annual Review of Pharmacology and Toxicology, 2006; 46: 41-64.
    [11] Wen Xie, Ronald M. Evans. Pharmacoceutical use of models humanized for the xenobiotic receptor [J]. Drug Discovery Today, 2002; 7(9): 509-515.
    [12] Dae Y Hwang, Kab R. Chae, Dong H. Shin, et al. Xenobiotic Response in humanized Double Transgenic Mice Expressing Tetracycline-Controlled Transactivator and Human CYP1B1 [J]. Archives of Biochemistry and Biophysics, 2001; 395(1): 32-40.
    [13] Ryan E. Watkins, G Bruce Wisely, Linda B. Moore, et al. The Human Nuclear Xenobiotic Receptor PXR: Structural Determinants of Directed Promiscuity [J]. Science ,2001; 292: 2329-2333.
    [14] Xue-Ding Wang, Xiao-Ying Deng, Jie Chen. Single Nucleotide Polymorphisms of the Pregnane X Receptor Gene in Han Chinese and a Comparison with Other Ethnic Populations [J]. Pharmacology 2008; 81(4): 350-354.
    [15] Bosch TM, Deenen M, Pruntel R, et al. Screening for polymorphisms in the PXR gene in a Dutch population [J]. European Journal of Clinical Pharmacology, 2006; 62(5): 395-399.
    [16] Wang XD, Li JL, Su QB, et al. A pharmacogenetic study of pregnane X receptor (NR1I2) in Han Chinese [J]. Current Drug Metabolism, 2007; 9: 778-786.
    [17] Jatinder Lamba, Vishal Lamba, Stephen Strom, et al. Novel Single Nucleotide Polymorphisms in the Promoter and Intron 1 of Human Pregnane X Receptor/NR1I2 and Their Association with CYP3A4 Expression [J]. Drug Metabolism and Disposition, 2008; 36(1): 169-181.
    [18] Yun-Ping Lim, Chin-Hung Liu, Lih-Jen Shyu, et al. Functional characterization of a novel polymorphism of pregnane X receptor, Q158K, in Chinese subjects [J]. Pharmacogenetics & Genomics, 2005; 15(5): 337-341.
    [19] Koyano S, Kurose K, Saito Y, et al. Functional characterization of four naturally occurting variants of human pregnane X receptor (PXR): one variant cause dramatic loss of both DNA binding activity and the transactivation of the CYP3A4 promoter/enhancer region [J]. Drug Metabolism and Disposition, 2004; 32: 149-154.
    [20] Aoyama T, Yamano S, Waxman DJ, et al. Cytochrome P-450 hPCN3, a novel cytochrome P-450 ⅢA gene product that is differentially expressed in adult human liver. cDNA and duced amino acid sequence and distinct specificities of cDNA expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine [J]. Journal of Biological Chemistry, 1989; 264 (18): 10388-10395.
    [21] Ikemura K, Urano K, Matsuda H, et al. Decreased oral absorption of cyclosporine A after liver ischemia-reperfusion injury in rats: The contribution of CYP3A4 and P-glycoprotein to the first-pass metabolism in intestinal epithelial cells [J]. Journal of Pharmacology And Experimental Therapeutics Fast Forward, 2009; 328: 249-255.
    [22] Li H, Jin FIE, Kim W, et al. Involvement of P-glycoprotein, Multidrug Resistance Protein 2 and Breast Cancer Resistance Protein in the Transport of Belotecan and Topotecan in Caco-2 and MDCK II Cells [J]. Pharmaceutical Research, 2008; 25 (11): 2601-2612.
    [23] Zakeri-Milani P, Valizadeh H, Islambulchilar Z, et al. Investigation of intestinal permeability of ciclosporin using the in situ technique in rats and the relevance of P-glycoprotein [J]. Arzneimittelforschung, 2008; 58 (4). 188-192.
    [24] Barry D. Kahan MD, Paul Keown, et al. Therapeutic drug monitoring of immunosuppressant drugs in clinical practice [J]. Clinical therapeutics, 2002; 24 (3): 330-350.
    [25] Michael Oellerich, Victor W Armstrong, Ekkehard Schutz,et al. Therapeutic drug monitoring of cyclosporine and tacrolimus [J]. Clinical Biochemistry, 1998; 31(5): 309-316.
    [26] F Gaspari, MF Anedda, O Signorini, et al. Prediction of cyclosporine area under the curve using a three-point sampling strategy after Neoral administration [J]. Journal of the American Society of Nephrology, 1997; 8: 647-652.
    [27] Oellerich Michael, Armstrong Victor William. Two-Hour Cycloporine Concentration Determination: An Appropriate Tool to Monitor Neoral Therapy? [J]. Therapeutic Drug Monitoring, 2002; 24(1). 40-46.
    [28] A Johnston, DW Holt. Bioequivallence criteria for cyclosporine [J]. Transplantation Proceedings, 1999; 31(3): 1649-1653.
    [29] Dennis A Hesselink, Teun van Gelder, Ron H. N. van Schaik, et al. Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-l, CYP3A4, and CYP3A5 genes [J]. Clinical Pharmacology and Therapeutics, 2004; 76: 545-556.
    [30] Lill Jennifer, Bauer Larry A, Horn John R, et al. Cyclosporine-drug interactions and the influence of patient age [J]. American Journal of Health-system Pharmacy, 2000; 57(17): 1579-1584.
    [31] L Pichard, I Fabre, G fabre, et al. Cycloporine A drug interactions. Screening for inducers and inhibitors of cytochrome P-450 (cycloporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes [J]. Drug metabolism and disposition, 1990; 18(5): 595-606.
    [32] E. Tanaka. Clinical important pharmacokinetic drug drug interactions: role of cytochrome P450 enzymes [J]. Journal of Clinical Pharmacy and Therapeutics, 2002; 23 (6): 403-416.
    [33] Shuichi Fukuen, Tsuyoshi Fukuda, Hideyasu Matsuda, et al. Identification of the novel splicing variants for the hPXR in human livers [J]. Biochemical and Biophysical Research Communications, 2002; 298 (3): 433-438.
    [34] Ping He, Michael H, Court David J,et al. Human pregnane X Receptor: Genetic Polymorphisms, Alternative mRNA Splice Variants, and Cytochrome P450 3A Metabolic Activity [J]. The Journal of Clinical Pharmacology, 2006; 46 (11): 1356-1369.
    [35] Cristi R King, Ming Xiao, Jingsheng Yu, et al. Identification of NR1I2 genetic variation using resequencing [J]. European Journal of clinical pharmacology, 2007; 63: 547-554.
    [36] Lamba J, Lamba V, Schuetz E. Genetic Variants of PXR (NR1I2) and CAR (NR1I3) and Their Implications in Drug Metabolism and Pharmacogenetics [J]. Current Drug Metabolism. 2005; 6 (4): 369-383.
    [37] Satoru Koyano, Kouichi Kurose, Shogo Ozawa, et al. Eleven Novel Single Nucleotide Polymorphisms in the NR1I2 (PXR) Gene, Four which Induce Non-synonymous Amino Acid Alterations [J]. Drug Metabolism and Pharmacokinetics, 2002; 17 (6): 561-565.
    [38] S Y Hor, S C Lee, C I Wong, et al. PXR, CAR and HNF4 genotypes and their association with pharmacokinetics and pharmacodynamics of docetaxel and doxorubicin in Asian patients [J]. The Pharmacogenomics Journal, 2008; 8:139-146.
    [39] Okey Allan B, Boutros Paul C, Harper Patricia A. Polymorphisms of human nuclear receptor that control expression of drug-metabolizing enzymes [J]. Pharmacogenetics & Genomics. 2005; 15 (6): 371-379.
    [40] RE Watkins, SM Noble, MR Redinbo. Structural insights into the promiscuity and function of the human prennane X receptor [J]. Current Opinion in Drug Discovery & Development, 2002; 5(1): 150-158.
    [41] Manisha Lyer, Erica J Reschly, Matthew D Krasowski. Functional evolution of the pregnane X receptor [J]. Expert Opinion on Drug Metabolism & Toxicology. 2006; 2 (3): 381-397.
    [42] Sonoda Junichiro, Evans Ronald M. Biological function and mode of action of nuclear xenobiotic receptors [J]. Pure and applied chemistry, 2003; 75:1733-1742.
    [43] H Masuyama, Y Hiramatsu, Y Mizutani, et al. The expression of pregnane X receptor and its target gene, cytochrome P450 3A1, in perinatal mouse [J]. Molecular and Cellular Endocrinology, 2001; 172 (1). 47-56.
    [44] Paavo Honkakoski, Tatsuya Sueyoshi, Masahiko Negishi. Drug-activated nuclear receptors CAR and PXR [J]. Annuals of Medicine, 2003; 35 (3): 172-182.
    [45] Sonoda J, Rosenfeld J M, Xu L,et al. A Nuclear Receptor-Mediated Xenobiotic Response and Its Implication in Drug Metabolism and Host Protection [J]. Current Drug Metabolism, 2003; 4(1): 59-72.
    [46] Ying Mu, Jinnan Zhang, Shimin Zhang, et al. Traditional Chinese Medicines Wu Wei Zi and Gan Cao Activate Pregnane X Receptor and Increase Warfarin Clearance in Rats [J]. The Journal of Pharmacology and Experimental Therapeutics, 2006; 316 (3): 1369-1377.
    [47] Wang SM., Lai MK., Chueh, SC, et al. Optimal C2 concentration of cyclosporine corrected with good efficacy and safety in Asian kidney transplant recipients [J]. Transplant Proc, 2008; 40 (7): 2243-2244.
    [48] Morris, RG. Cyclosporine therapeutic drug monitoring-an established service revisited [J]. Clin Biochem Rey, 2003; 24 (2): 33-46.
    [49] Carolyn L Cummins, Lara M Mangravite, Leslie Z Benet. Characterizing the Expression of CYP3A4 and Efflux Transporters (P-gp, MRP 1, and MRP 2 ) in CYP3 A4-Transfected Caco-2 cells After Induction with Sodium Butyrate and the Phorbol Ester 12-O-tetradecanoylphorbol-13-Acetate [J]. Pharmaceutical Reseaarch, 2001; 18(8): 1102-1109.
    [1]国家药典委员会编.《中国药典》[M].2005年版一部.北京,化学工业出版社.
    [2]国家药典委员会编.《中国药典》[M].2000年版一部.北京,化学工业出版社.
    [3]国家中医药管理局《中华本草》编委会.中华本草(上册)[M].上海:上海科学技术出版社.
    [4]Adriane Fugh-Berman.Herb-drug interactions[J].THE LANCET,2000;355(9198):134-138.
    [5]R.Guo,M.H.Pittler,E.Ernst.Herb medicines for the treatment of COPD:a systematic review[J].European Respiratory Journal,2006;28:330-338.
    [6]Coxeter P.D,McLachlan A.J,Duke C.C,et al.Herb-Drug Interaction[J].Current Medicinal Chemistry,2004;11(11):1513-1525.
    [7]Shannon F.Manzi,Michael Shannon.Drug Interaction-A Review[J].Clinical Pediatric Emergency Medicine,2005;6(2):93-102.
    [8]Elizabeth M Williamson.Interactions between herbal and conventional medicines [J].Expert Opinion on Drug Safety,2005;4(2):355-378.
    [9]Williamson,Elizabeth M.Drug Interactions Between Herbal and Prescription Medicines[J].Drug Safety,2003;26(15):1078-1092.
    [10]Hu Zeping,Yang Xiaoxia,Ho Paul Chi Lui,et al.Herb-Drug Interactions:A Literature Review[J].Drugs,2005;65(9):1239-1282.
    [11]Jacqueline M.Leung,Samir Dzankic,Kawalpreet Manku,et al.The Prevalence and Predictors of the Use of Alternative Medicine in Presurgical Patients in Five California Hospitals[J].Anesthsia & Analgesia,2001;93:1062-1068.
    [12]Angelo A.Izzo,Franceca Borrelli,Raffaele Capasso.Herbal medicine:the dangers of drug interaction[J].Trends in Pharmacological Sciences,2002;23(8):358-359.
    [13]Edzard Ernst.Herbal medicine:advocates need to put things right[J].Trends in Pharmacological Sciences,2002;23(8):359.
    [14]Lucinda G.Miller.Herbal Medicinals Selected Clinical Considerations Focusing on Known or Potential Drug-Herb Interactions[J].ARCHIVES OF INTERNAL MEDICINE,1998;158(20):2200-2211.
    [15]Angelo A.Izzo,Giulia Di Carlo,Francesca Borrelli,et al.Cardiovascular pharmacotherapy and herbal medicines: the risk of drug interaction [J]. International Journal of Cardiology, 2005; 98(1): 1-14.
    [16] Coon Joanna Thompson, Ernst Edzard. Panax ginseng: A Systematic Review of Adverse Effects and Drug Interactions [J]. Drug Safety, 2002; 25(5): 323-344.
    [17] Renata J.M.Engler. Alternative and complementary medicine: A source of improved therapies of asthma? A challenge for redefining the specialty? [J]. Journal of Allergy and Clinical Immunology, 2000; 106(4): 627-629.
    [18] Merrily A. Kuhn. Herbal Remedies: Drug-Herb Interactions [J]. Critical Care Nurse, 2002; 22: 22-23.
    [19] Bibi Z. Role of cytochrome P450 in drug interactions [J]. Nutrition & Metabolism, 2008; 5: 27.
    [20] Ron H. J. Mathijssen, Jaap Verweij, Peter de Bruijin, et al. Effect of St. John's Wort on Irinotecan Metabolism [J]. JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2002; 94(16): 1247-1249.
    [21] Patrick J Mansky, Stephen E. Straus. St. John's Wort: More implications for Cancer Patients, 2002 94(16): 1187-1188.
    [22] GW Barone, BJ Gurley, BL Ketel, et al. Drug interaction between St. John's wort and Cyclosporine [J]. The Annals of Pharmacotherapy, 2000; 34(9): 1013-1016.
    [23] Ingrid Mai, Steffen Bauer, Elke S, et al. Hyperforin content determines the magnitude of the St John's Wort-cyclosporine drug interaction [J]. Clinical Pharmacology & Therapeutics, 2004; 76: 330-340.
    [24] Johne Andreas, Schmider Jurgen, Brockmoller Jurgen, et al. Decreased Plasma Levels of Amitriptyline and Its Metabolites on Comedication With an Extract From St. John's Wort (Hypericum perforatum) [J]. Journal of Clinical Psychopharmacology, 2002; 22(1): 46-54.
    [25] Markowitz John S, Donovan Jennifer L, DeVane C, et al. Effect of St. John's Wort on Drug Metabolism by Induction of Cytochrome P450 3A4 Enzyme [J]. Obstetrical & Gynecological Survey, 2004; 59(5): 358-359.
    [26] Linda B. Moore, Bryan Goodwin, Stacey A. Jones, et al. St. John's wort induces hepatic drug metabolism through activation of the pregnane X receptor [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000; 97(13): 7500-7502.
    [27] Ryan E. Watkins, Jodi M. Maglich, Linda B. Moore, et al. 2.1 A Crystal Structure of Human PXR in Complex with the St. John's Wort Compound Hyperforin [J]. Bochemistry,2003;42:1430-1438.
    [28]L.Zou,M.R.Harkey,G.L.Henderson.Effects of herbal components on cDNA-expressed cytochrome P450 enzyme catalytic activity[J].Life Sciences,2002;71(13):1579-1589.
    [29]Noriaki Ohnishi,Teruyoshi Yokoyama.Interactions between medicines and functional foods or dietary supplements[J].The Keio Journal of Medicine,2004;53(3):137-150.
    [30]Kazumasa Shinozuka,Keizo Umegaki,Yoko Kubota,et al.Feeding of Ginkgo biloba extract(GBE) enhances gene expression of hepatic cytochrome P-450 and attenuates the hypothensive effect of nicardipine in rats[J].Life Sciences,2002;70(23):2783-2792.
    [31]Tomomi sugiyama,Yoko Kubota,Kazumasa Shinozuka,et al.Induction and recovery of hepatic drug metabolizing enzymes in rats treated with Ginkgo biloba extract[J].Food and Chemical Toxicology,2004;42(6):953-957.
    [32]S.U.Mertens-Talcott,I.Zadezensky,W.V.De Castro,et al.Grapefruit-Drug Interactions:Can Interactions With Drugs Be Avoided?[J].The Journal of Clinical Pharmacology,2006;46(12):1390-1416.
    [33]R.S.Blum.A Comment on "Grapefruit-Drug Interactions:Can Interactions With Drug Be Avoided?"[J].The Journal of Clinical Pharmacology,2007;47(4):536.
    [34]Uwe Fuhr.Drug Interactions with Grapefruit Juice extent,Probable Mechanism and Clinical Relevance[J].Drug Safety,1998;18(4):251-272.
    [35]陈莲珍。警惕药物与葡萄柚汁的相互作用[J)。药物不良反应杂志,2000;2(2):110.
    [36]Davidson,Michiael H.Safety Profiles for the HMG-CoA Reductase Inhibitors:Treatment and Trust[J].Drugs,2001;61(2):197-206.
    [37]Hiroshi IWATA,Yasuhiro TEZUKA,Tepy USIA,et al.Inhibition of human liver microsomal CYP3A4 and CYP2D6 by extracts from 78 herbal medicines[J].Journal of Traditional Medicines,2004;21(1):42-50.
    [38]K.H.Liu,M.J.Kim,B.H.Jeon,et al.Inhibition of human cytochrome P450isoforms and NADPH-CYP reductase in vitro by 15 herbal medicines,including Epimedii herba[J].Journal of Clinical Pharmacy and Therapeutics,2006;31(1):83-91.
    [39]Bent H.Helium,Zhuohan Hu,Odd Georg Nilsen.The Induction of CYP1A2, CYP2D6 and CYP3A4 by Six Trade Herbal Porducts in Cultured Primary Human Hepatocytes [J]. Basic & Clinical Pharmacology & Toxicology, 2006; 100(1): 23-30.
    [40] Raman Venkataramanan, Bernard Komoroski, Stephen Strom. In vitro and in vivo assessment of herb drug interactions [J]. Life Sciences, 2005; 78(18): 2105-2115.
    [41] de Groot Marcel J, Kirton Stewart B, Sutcliffe Michael J. In Silico Methods for Predicting Ligand Binding Determinants of Cytochromes P450 [J]. Current Topics in Medicinal Chemistry, 2004; 4(16): 1803-1824.
    [42] Ernesto Estrada, Alfredo Pena. In silico studies for the rational discovery of anticonvulsant compounds [J]. Bioorganic & Medicinal Chemistry, 2000; 8(12): 2755-2770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700