用户名: 密码: 验证码:
带杂环的钌(Ⅱ)多吡啶配合物与DNA相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA是遗传信息的载体,化学小分子与DNA相互作用的键合机理有助于人们从分子水平上了解生命现象的本质,在生命科学上具有重要的理论意义和潜在的应用价值。钌(II)多吡啶配合物在光物理、光化学、电化学、分子组装等研究领域占有重要的位置。特别是在DNA结构识别、DNA的电子转移、金属足迹试剂和DNA裂解试剂以及抗癌药物等方面受到人们越来越广泛的重视。因此近年来,对钌(II)多吡啶配合物与DNA相互作用的研究已经引起了人们极大的兴趣。本文分为四章。
     第一章简要介绍了钌(II)多吡啶配合物与核酸作用的研究概况,主要包括钌(II)多吡啶配合物与DNA作用的模式、研究方法及应用等研究进展,以及核酸的组成与结构。
     第二章设计、合成了新的末端带双氧杂环的插入配体bdip及其钌(II)多吡啶配合物[Ru(4,7-dmp)2(bdip)]~(2+)和[Ru(bpy)2(bdip)]~(2+),运用质谱、核磁及元素分析方法对配合物进行了表征,并运用吸收光谱、荧光滴定与淬灭、粘度实验及圆二色谱研究了其与DNA的相互作用,同时用DFT计算较好地解释了部分实验结果。
     第三章在插入配体末端引入一个带甲基的含氧呋喃环,设计并合成了新的配体MFIP及其配合物[Ru(bpy)2(MFIP)]~(2+)(1)和[Ru(phen)2(MFIP)]~(2+)(2)。运用质谱、核磁及元素分析方法对配合物进行了表征。运用粘度方法、吸收光谱、稳态发光及淬灭、圆二色谱及光断裂实验研究了配合物与DNA的相互作用。结果表明在末端杂环上引入甲基后,配合物仍能以插入方式与DNA键合,但键合强度降低。
     第四章在前一章的基础上,研究了[Ru(bpy)2(MFIP)]~(2+)在DNA存在下对金属离子的选择性识别。通过该配合物与Fe~(2+)、Co~(2+)、Ni~(2+)、Cu~(2+)四种金属离子的荧光滴定实验,发现其先DNA结合后,能与Co~(2+)和Ni~(2+)配位,而不与Fe~(2+)及Cu~(2+)配位。在此基础下,设计并合成了新的配合物[Ru(2,9-dmp)2(MFIP)]~(2+),发现此时Ni~(2+)不能与[Ru(2,9-dmp)2(MFIP)]~(2+)配合。从而得出由于较小空间造成配位限制的合理解释,而在辅助配体上引入甲基推动了DNA从而掩盖了这个小空间,使得Ni~(2+)不能与[Ru(2,9-dmp)2(MFIP)]~(2+)配位。另外根据以上结论,分析了类似钌(II)多吡啶配合物与DNA键合的具体过程,提出了一个合理的模型。
DNA is the carrier of genetic information, and it will be helpful to understand the essence of life-phenomenon at the level of molecules of a biologic chemical system by investigating the interactions between small molecule and DNA which have great theoretical significant and potential applied values in biologic science. Ruthenium(II) polypyridyl complexes play an important role in the field of photophysics, photochemistry, electrochemistry, and molecular assembling, etc. In particular, a considerable attention have been attracted in their extensive potentials as DNA structure recognition, DNA mediated electron transfer, DNA footprinting and sequence-specific cleaving agents and anticaner drugs, and so on. Therefore, tremendous interests have been aroused to the interactions of Ruthenium(II) polypyridyl complexes with DNA during the past decades.
     This thesis consists of four chapters.
     In chapter one, an introduction on the proceedings in the studies on the interaction between ruthenium(II) polypyridyl complexes and nucleic acid is given, including the binding patterns of interactions between ruthenium(II) polypyridyl complexes and DNA, the current situation of research methods and applications of ruthenium(II) polypyridyl complexes, and the composition and structure of nucleic acid.
     In chapter two, a new intercalative ligand bdip which containing a two O atom heterolic ring on its end and its Ru(II) polypyridyl complexes [Ru(4,7-dmp)2(bdip)]~(2+) and [Ru(bpy)2(bdip)]~(2+) have been designed, synthesized. These complexes were characterized by mass spectra, NMR and elemental analysis. The DNA-binding properties of these complexes have been studied with UV-Vis, luminescence titration and quenching, viscosity measurements and CD spectra. And a good theoretical explanation for some experimental results was obtained from DFT calculation.
     In chapter three, a new intercalative ligand MFIP which containing a furan ring with a methyl on its end and its Ru(II) polypyridyl complexes [Ru(bpy)2(MFIP)]~(2+) (1) and [Ru(phen)2(MFIP)]~(2+) (2) have been designed and synthesized. These complexes were characterized by mass spectra, NMR and elemental analysis. The DNA-binding properties of these complexes have been studied with viscosity measurements, absorption spectra, steady-state emission and quenching, CD spectra and photoactivated cleavage. The experimental results showed that, when a methyl had been introduced into terminal heterocyclic ring, these complexes were still binding to DNA by intercalation mode, but the binding intensity was decreased.
     In chapter four, based on last chapter, the selectivity of [Ru(bpy)2(MFIP)]~(2+) with DNA to metal ion has been investigated. The effects of four kinds of metal ion (Fe~(2+), Co~(2+), Ni~(2+), Cu~(2+)) on the DNA interaction of [Ru(bpy)2(MFIP)]~(2+) were studied by luminescence titration. It is surprised that after bound to DNA, [Ru(bpy)2(MFIP)]~(2+) could coordinate with Co~(2+) and Ni~(2+) but could not coordinate with Fe~(2+) and Cu~(2+). Based on this result, a new complex [Ru(2,9-dmp)2(MFIP)]~(2+) have been synthesized and characterized. Then the Ni~(2+) absorption titration of [Ru(2,9-dmp)2(MFIP)]~(2+) were carried out, and the result is that [Ru(2,9-dmp)2(MFIP)]~(2+) could not coordinate with Ni~(2+) after bound to DNA. So, a rational explanation that it is a coordination restriction led by small space to these experimental results was obtained. And this factor was vanished due to the push force of methyl, so [Ru(2,9-dmp)2(MFIP)]~(2+) could not coordinate with Ni~(2+). According to these conclusions above, the concrete DNA-binding process of analogous Ru(II) polypyridyl complexes were analyzed, and a rational model about this process was given.
引文
[1]南京大学《无机及分析化学》编写组.无机及分析化学.北京:高等教育出版社, 2000.
    [2]计亮年,黄锦汪,莫庭焕,等.生物无机化学导论[M].广东:中山大学出版社, 2001.
    [3] Atsumi Michiko, Gonz′alez Leticia, Daniel Chantal. Spectroscopy of Ru(II) polypyridyl complexes used as intercalators in DNA: Towards a theoretical study of the light switch effect[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190:310-320
    [4] Antoine Dorcier, Christian G. Hartinger, Rosario Scopelliti, et al. Studies on the reactivity of organometallic Ru–, Rh– and Os–pta complexes with DNA model compounds[J]. Journal of Inorganic Biochemistry, 2008, 102:1066–1076.
    [5] Xu Hong, Zheng Kangcheng, Lin Lijun, et al. Effects of the substitution positions of Br group in intercalative ligand on the DNA-binding behaviors of Ru(II) polypyridyl complexes[J]. Journal of Inorganic Biochemistry, 2004, 98:87–97.
    [6] Liang Minmin, Liu Shili, Wei Mingyuan, et al. Photoelectrochemical Oxidation of DNA by Ruthenium Tris(bipyridine) on a Tin Oxide Nanoparticle Electrode[J]. Anal. Chem., 2006, 78(2):621-623.
    [7] Guo Lianghong, Wei Mingyuan, Chen Hao. Multiple DNA Binding Modes of a Metallointercalator Revealed by DNA Film Voltammetry[J]. J. Phys. Chem. B., 2006, 110(41):20568-20571.
    [8] Bando Toshikazu, Fujimoto Jun, Minoshima Masafumi, et al. Detection of CAG repeat DNA sequences by pyrene-functionalized pyrrole-imidazole polyamides[J]. Bioorganic & Medicinal Chemistry, 2007, 15:6937–6942.
    [9] Shi Huijie, Chen Yu, Gao Feng, et al. Synthesis, DNA-binding and DNA-photocleavage properties of ruthenium(II) mixed-polypyridyl complex [Ru(tbz)2(dppz)]~(2+)[J]. Journal of Molecular Structure. 2008, 892:485–489
    [10] Liu Jie, Zheng Wenjie, Shi Shuo, et al. Synthesis, antitumor activity and structure–activity relationships of a series of Ru(II) complexes[J]. Inorg. Biochem., 2008, 102(2):193-202.
    [11] Yu Huijuan, Huang Shumei, Li Lvying, et al. Synthesis, DNA-binding and photocleavage studies of ruthenium complexes [Ru(bpy)2(mitatp)]~(2+) and [Ru(bpy)2(nitatp)]~(2+)[J]. Journal of Inorganic Biochemistry, 2009, journal homepage: www.elsevier.com/locate/jinorgbio.
    [12] Shi Shuo, Xie Tian, Yao Tianming, et al. Synthesis, characterization, DNA-binding and DNA-photocleavage studies of [Ru(bpy)2(pmip)]~(2+) and [Ru(phen)2(pmip)]~(2+) (pmip = 2-(20-pyrimidyl)- imidazo[4,5-f][1,10]phenanthroline[J]. Polyhedron, 2009, journal homepage: www.elsevier.com/locate/poly.
    [13] Vliet P M, Toekimin S M, Haasnoot J G, et al. mer-[Ru(terpy)C13] (terpy=2,2':6',2"-terpyridine) shows biological activity, forms interstrand cross-links in DNA and binds two guanine derivatives in a trans configuration[J]. Inorganica Chimica Acta, 1995, 231:57-454
    [14] Maheswari P U, Palaniandavar M. DNA binding and cleavage activity of [Ru(NH3)4(diimine)]Cl2 complexes[J]. Inorganica Chimica Acta, 2004, 357:901–912.
    [15] Liu Jingang, Ye Baohui, Li Hong, et al. Synthesis, characterization and DNA-binding properties of novel dipyridophenazine complex of ruthenium( II) : [ Ru ( IP) 2 ( DPPZ) ] 2 +[J]. Journal of Inorganic Biochemistry, 1999, 73:117-122
    [16] Xiong Ya, Ji Liangnian. Synthesis, DNA-binding and DNA-mediated luminescence quenching of Ru(II) polypyridine[J]. Coordination Chemistry Reviews, 1999, 185-186:711-733.
    [17] Zhen Qixiong, Ye Baohui, Zhang Qianling, et al. Synthesis, characterization and the effect of ligand planarity of [Ru(bpy)2L]~(2+) on DNA binding affinity[J]. Journal of Inorganic Biochemistry, 1999, 76:47-53.
    [18] Alessio E, Iengo E, Zorzet S, et al. Antimetastatic properties and DNA interactions of the novel class of dimeric Ru(III) compounds Na2[{trans-RuCl4(Me2SO)}2(m-L)] (Lsditopic, non-chelating aromatic N-ligand). A preliminary investigation[J]. Journal of Inorganic Biochemistry, 2000, 79:173-177.
    [19] Jiang Caiwu, Chao Hui, Hong Xianlan, et al. Enantiopreferential DNA-binding of a novel dinuclear complex [(bpy)2Ru(bdptb)Ru(bpy)2]4+[J]. Inorganic Chemistry Communications, 2003, 6:773-775.
    [20] Moon S J, Kim J M, Choi J Y, et al. [Ru(phen)2DPPZ]~(2+) is in contact with DNA bases when it forms a luminescent complex with single-stranded oligonucleotides[J]. Journal of Inorganic Biochemistry, 2005, 99:994-1000.
    [21] Xu Liancai, Li Jun, Shen Yong, et al. Theoretical Studies on the Excited States, DNA Photocleavage, and Spectral Properties of Complex [Ru(phen)2(6-OH-dppz)]~(2+)[J]. J. Phys. Chem. A, 2007, 111:273-280.
    [22] Liu Yu, Chen Yong, Duan Zhongyu, et al. A Luminescent #-Cyclodextrin-Based Ru(phen)3 Complex as DNA Compactor, Enzyme Inhibitor, and Translocation Tracer[J]. ACS Nano, 2007, 1 (4):313-318.
    [23] Wang Xiaoying, Yun Wen, Dong Ping, et al. A Controllable Solid-State Ru(bpy)3~(2+) Electrochemiluminescence Film Based on Conformation Change of Ferrocene-Labeled DNA Molecular Beacon[J]. Langmuir, 2008, 24: 2200-2205.
    [24] Sun Yujie, Lutterman D A, Turro Claudia. Role of Electronic Structure on DNA Light-Switch Behavior of Ru(II) Intercalators[J]. Inorg. Chem., 2008, 47 (14):6427-6434.
    [25] Zeglis B M, Barton J K. Binding of Ru(bpy) 2(eilatin) ~(2+) to Matched and Mismatched DNA[J]. Inorg. Chem., 2008, 47 (14):6452-6457.
    [26] Wang Shijun, Milam Jenifer, Ohlin A C, et al. Electrochemical and Electrogenerated Chemiluminescent Studies of a Trinuclear Complex, [((phen)2Ru(dpp))2RhCl2]5+, and Its Interactions with Calf Thymus DNA[J]. Anal. Chem. 2009, Published at http://pubs.acs.org.
    [27] Chen Jincan, Chen Lanmei, Xu Liancai, et al. Binding to DNA Purine Base and Structure#Activity Relationship of a Series of Structurally Related Ru(II) Antitumor Complexes: A Theoretical Study[J]. J. Phys. Chem. B, 2008, 112 (32):9966-9974.
    [28] Ryan G J, Quinn Susan, Gunnlaugsson T. Highly Effective DNA Photocleavage by Novel“Rigid”Ru(bpy)3-4-nitro- and -4-amino-1,8-naphthalimide Conjugates[J]. Inorg. Chem., 2008, 47 (2):401-403.
    [29] Han Meijiao, Duan Zhiming, Hao Qiang, et al. Molecular Light Switches for Calf Thymus DNA Based on Three Ru(II) Bipyridyl Complexes with Variations of Heteroatoms[J]. J. Phys. Chem. C, 2007, 111 (44):16577-16585.
    [30] Evans S E, Grigoryan A, Szalai V A. Oxidation of Guanine in Double-Stranded DNA by [Ru(bpy)2dppz]Cl2 in Cationic Reverse Micelles[J]. Inorg. Chem., 2007, 46 (20):8349-8361.
    [31] Sun Bin, Guan Jingxin, Xu Li, et al. DNA Condensation Induced by Ruthenium(II) Polypyridyl Complexes [Ru(bpy)2(PIPSH)]~(2+) and [Ru(bpy)2(PIPNH)]~(2+)[J]. Published at http://pubs.acs.org.
    [32] Liu Yao, Hammitt R, Lutterman D A, et al. Marked Differences in Light-Switch Behavior of Ru(II) Complexes Possessing a Tridentate DNA Intercalating Ligand[J]. Inorg. Chem., 2007, 46 (15):6011-6021.
    [33] Jain A, Slebodnick C, Winkel B S, et al. Enhanced DNA photocleavage properties of Ru(II) terpyridine complexes upon incorporation of methylphenyl substituted terpyridine and/or the polyazine bridging ligand dpp (2,3-bis(2-pyridyl)pyrazine) [J].
    [34] Mei H Y, Barton J K. Chiral probe for A-form helixes of DNA and RNA: tris(tetramethylphenanthroline)ruthenium(II)[J]. J. Am. Chem. Soc., 1986, 108(23):7414-7416.
    [35] Pyle A M, Rehmann J P, Meshoyrer R, et al. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA[J]. J. Am. Chem. Soc., 1989, 111(8):3051-3058.
    [36] Choi S D, Kim S K, Lincoln P, et al. Binding Mode of [Ruthenium(II) (1,10-Phenanthroline)2L]~(2+) with Poly(dT*dA-dT) Triplex. Ligand Size Effect on Third-Strand Stabilization[J]. Biochemistry, 1997, 36(1):214-223.
    [37] Lincoln P, Broo A, Norden B. Diastereomeric DNA-Binding Geometries of Intercalated Ruthenium(II) Trischelates Probed by Linear Dichroism: [Ru(phen)2DPPZ]~(2+) and [Ru(phen)2BDPPZ]~(2+)[J]. J. Am. Chem. Soc., 1996, 118(11):2644-2653.
    [38] Hiort C, Norden B, Rodger A. Enantiopreferential DNA binding of [ruthenium(II)(1,10-phenanthroline)3]~(2+) studied with linear and circular dichroism[J]. J. Am. Chem. Soc., 1990, 112(5):1971-1982.
    [39] Naing K, Takahashi M, Taniguchi M, et al. Interactions of Enantiomeric Ruthenium (II) Complexes with Polynucleotides as Studied by Circular Dichroism, Electric Dichroism Measurements, and Photolysis[J]. Inorg. Chem., 1995, 34(1):350-356.
    [40] Eriksson M, Leijon M, Hiort C, et al. Binding of .DELTA.- and .LAMBDA.-[Ru(phen)3]~(2+) to [d(CGCGATCGCG)]2 Studied by NMR[J]. Biochemistry, 1994, 33(17):5031-5040.
    [41] Collins J G, Sleeman A D, Wringt J R, et al. A 1H NMR Study of the DNA Binding of Ruthenium(II) Polypyridyl Complexes[J]. Inorg. Chem., 1998, 37(11):3133-3141.
    [42] Morgan R J, Chattrtjee S, Baker A D, et al. Effects of ligand planarity and peripheral charge on intercalative binding of Ru(2,2'-bipyridine)2L~(2+) to calf thymus DNA[J]. Inorg. Chem., 1991, 30(12):2687-2692.
    [43] Helfand M S, Totir M A, Carey M P, et al. Following the Reactions of Mechanism-Based Inhibitors withβ-Lactamase by Raman Crystallography[J]. Biochemistry, 2003,42(51):15398-15398.
    [44] Gert Admiraal, Johannis L Van der Veer, Rudolf A G De Graaff, et al. Intrastrand bis(guanine) chelation of trinucleoside diphosphate d(CpGpG) to cis-platinum: an x-ray single-crystal structure analysis[J]. J. Am. Chem. Soc., 1987, 109(2):592-594.
    [45] Zhang C X., Chang P V, Lippard S J. Identification of Nuclear Proteins that Interact with Platinum-Modified DNA by Photoaffinity Labeling[J]. J. Am. Chem. Soc., 2004, 126(21):6536-6537.
    [46] Matsuoka Y, Onodera T, Kojima T, et al. Novel Enzymatic Properties of DNA-Pt Complexes[J]. Biomacromolecules, 2007, 8(9):2684-2688.
    [47] Kelly J M, Tossi A B, Connell D J, et al. A study of the interactions of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation[J]. Nucl. Acids Res., 1985, 13:6017-6034.
    [48] Jang Y J, Kwon B H, Choi B H, et al. Intercalation of bulkyΔ,Δ- andΛ,Λ-bis-Ru(II) complex between DNA base pairs[J]. Journal of Inorganic Biochemistry, 2008, 102:1885-1891.
    [49] Chen Lanmei, Liu Jie, Chen Jincan, et al. Synthesis, characterization, DNA-binding and spectral properties of complexes [Ru(L)4(dppz)]~(2+) (L = Im and MeIm)[J]. Journal of Inorganic Biochemistry, 2008, 102:330–341.
    [50] Yu Huijuan, Chao Hui, Jiang Long, et al. Single oxygen-mediated DNA photocleavage of a di-bithiazolyl ruthenium(II) complex [Ru(btz)2(dppz)]~(2+)[J]. Inorganic Chemistry Communications, 2008, 11:553–556.
    [51] Liu Yunjun, Wei Xinyu, Wu Fuhai, et al. Interaction studies of DNA binding of ruthenium(II) mixed-ligand complexes: [Ru(phen)2(dtmi)]~(2+) and [Ru(phen)2(dtni)]~(2+)[J]. Spectrochimica Acta Part A, 2008,70:171-176.
    [52] Yao Su, Li Hong, Guo Qingyu, et al. DNA-promoted electrochemical assembly of [Ru(bpy)2dpp]3+/~(2+) on the ITO electrode by introducing copper(II) ion[J]. Electrochimica Acta, 2008,53:5169-5173.
    [53] Choi J Y, Lee J M, Lee H, et al. Mixing ratio-dependent energy transfer from DNA-bound 4′,6-diamidino-2-phenylindole to [Ru(1,10-phenanthroline)2dipyrido[3,2-a:2′,3′-c]phenazine]~(2+)[J]. Biophysical Chemistry, 2008, 134:56–63.
    [54] Iwahara J, Clore G M. Direct Observation of Enhanced Translocation of a Homeodomain between DNA Cognate Sites by NMR Exchange Spectroscopy[J]. J. Am. Chem. Soc., 2006, 128(2):404-405.
    [55] Liu Jingang, Ye Baohui, Li Hong, et al. Polypyridyl ruthenium(II) complexes containing intramolecular hydrogen-bond ligand: syntheses, characterization, and DNA-binding properties[J]. J. Inorg. Biochem., 1999, 76(3-4,15):265-271.
    [56] Haq I, Lincoln P, Broo A, et al. Interaction of .DELTA.- and .LAMBDA.-[Ru(phen)2DPPZ]~(2+) with DNA: A Calorimetric and Equilibrium Binding Study[J]. J. Am. Chem. Soc., 1995, 117(17), 4788-4796.
    [57] Kuruvilla E, Joseph J, Ramaiah D. Novel Bifunctional Acridine-Acridinium Conjugates:Synthesis and Study of Their Chromophore-Selective Electron-Transfer and DNA-Binding Properties[J]. J. Phys. Chem. B., 2005, 109(46):21997-22002.
    [58] Tomoya Hirohama, Yuko Kuranuki, Eriko Ebina, et al. Copper(II) complexes of 1,10-phenanthroline-derived ligands: Studies on DNA binding properties and nuclease activity[J]. Journal of Inorganic Biochemistry, 2005, 99(5):1205-1219.
    [59] Yang Guang, Wu Jianzhong, Wang Lei, et al. Binding of novel octahedral metal complexes to DNA[J]. J. Inorg. Biochem., 1997, 67(1):289.
    [60] Cusumano M, Di Pietro M L, Giannetto A. DNA Interaction of Platinum(II) Complexes with 1,10-Phenanthroline and Extended Phenanthrolines[J]. Inorg. Chem., 2006, 45(1):230-235.
    [61] Suman Das, Gopinatha Suresh Kumar. Molecular aspects on the interaction of phenosafranine to deoxyribonucleic acid: Model for intercalative drug–DNA binding[J]. Journal of Molecular Structure, 2008, 872(1,15):56-63.
    [62] Jenkins Y, Friedman A E, Turro N J, et al. Characterization of dipyridophenazine complexes of ruthenium(II): The light switch effect as a function of nucleic acid sequence and conformation[J]. Biochemistry, 1992, 31(44):10809-10816.
    [63] Friedman A E, Chambron J C, Sauvage J P, et al. A molecular light switch for DNA: Ru(bpy)2(dppz)~(2+)[J]. J. Am. Chem. Soc., 1990, 112(12):4960-4962.
    [64] Satyanarayana S, Dabrowiak J C, Chairs J B. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding[J]. Biochemistry, 1993, 32(10):2573-2584.
    [65]沈同,王镜岩,赵邦悌.生物化学[M].北京:人民教育出版社, 1983.
    [66] Barton J K, Dannenberg J J. Enantiomeric selectivity in binding tris(phenanthroline)zinc(II) to DNA[J]. J. Am. Chem. Soc., 1982, 104(18):4967-4969.
    [67] Barton J K, Goldberg J M, Kumar C T. Binding modes and base specificity of tris(phenanthroline)ruthenium(II) enantiomers with nucleic acids: tuning the stereoselectivity[J]. J. Am. Chem. Soc., 1986, 108(8):2081-2088.
    [68] Rehmann J P, Barton J K. Proton NMR studies of tris(phenanthroline) metal complexes bound to oligonucleotides: characterization of binding modes[J]. Biochemistry, 1990, 29(7):1701-1709.
    [69] Kyaw Naing, Masayuki Takahashi, Masahiro Taniguchi, et al. Electric dichroism evidence for intercalation of optically active [Ru(bpy)2(phi)]~(2+)(phi = 9,10-phenanthrenequinone diimine, bpy = 2,2'-bipyridyl) by DNA[J]. J. Chem. Soc., Chem. Commun., 1993, 402.
    [70] Yamagishi A J. Electric dichroism evidence for stereospecific binding of optically active tris chelated complexes to DNA[J]. J. Phys. Chem., 1984, 88(23):5709-5713.
    [71] Eriksson M, Leijon M, Hiort C, et al. Minor groove binding of [Ru(phen)3]~(2+) to [d(CGCGATCGCG)]2 evidenced by two-dimensional NMR[J]. J. Am. Chem. Soc., 1992, 114(12):4933-4934.
    [72] Satyanaryna S, Dabrowiak J C, Chaeres J B. Neither .DELTA.- nor .LAMBDA.-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. [J] Biochemstry, 1992, 31(39):9319-9324.
    [73] Dupureur C M, Barton J K. Structural Studies ofΛ- andΔ-[Ru(phen)2dppz]~(2+) Bound to d(GTCGAC)2: Characterization of Enantioselective Intercalation[J]. Inorg. Chem., 1997, 36(1):33-43.
    [74] Lincoln P, Broo A, Nordén B. Diastereomeric DNA-Binding Geometries of Intercalated Ruthenium(II) Trischelates Probed by Linear Dichroism: [Ru(phen)2DPPZ]~(2+) and [Ru(phen)2BDPPZ]~(2+)[J]. J. Am. Chem. Soc., 1996, 118(11):2644-2653.
    [75] Tuite E, Lincoln P, Nordén B. Photophysical Evidence ThatΔ- andΛ-[Ru(phen)2(dppz)]~(2+) Intercalate DNA from the Minor Groove[J]. J. Am. Chem. Soc., 1997, 119(1):239-240.
    [76] Holmlin R E, Stemp E D A, Barton J K. Ru(phen)2dppz~(2+) Luminescence: Dependence on DNA Sequences and Groove-Binding Agents[J]. Inorg. Chem., 1998, 37(1):29-34.
    [77] Holmlin R E, Dandliker P J, Barton J K. Charge Transfer through the DNA Base Stack. Angew. Chem. Int. Ed. Engl., 1997, 36(24):2714-2730.
    [78] Priyadarshy S, Risser S M, Beratan D N. DNA-mediated electron transfer[J]. J. Biol. Inorg. Chem., 1998, 3(2):196-200.
    [79] Wettig S D, Bare G A, Skinner R J S, et al. Signal Transduction through Dye-Labeled M-DNA Y-Branched Junctions: Switching Modulated by Chemical Reduction of Anthraquinone[J]. Nano Lett., 2003, 3(5):617-622.
    [80] Lewis F D, Letsinger R L. Distance-Dependent Photoinduced Electron Transfer in Synthetic Single-Strand and Hairpin DNA[J]. J. Biol. Inorg. Chem., 1998, 3:215-221.
    [81] Liu T, Barton J K. DNA Electrochemistry through the Base Pairs Not the Sugar-Phosphate Backbone[J]. J. Am. Chem. Soc., 2005, 127(29):10160-10161.
    [82] Wilson E K. DNA: Insulator or wire?[J]. Chem. & Eng. News, 1997, 75(8):33-39.
    [83] Diederichsen U. Charge transfer in DNA:a controversy[J]. Angew. Chem. Int. Ed. Engl., 1997, 36(21):2317-2319.
    [84] Chen Lanmei, Liu Jie, Chen Jincan, et al. Experimental and theoretical studies on the DNA-binding and spectral properties of water-soluble complex [Ru(MeIm)4(dpq)]~(2+)[J]. Journal of Molecular Structure, 2008, 881:156–166.
    [85] Wang Ruiyong, Ji Mina, Wang Ruiqiang, et al. Stopped-flow kinetic fluorimetric studies of the interaction of Ru(II) complex with DNA and its analytical application[J]. Spectrochimica Acta Part A, 2008, 71:1042-1048.
    [86] Tan Caiping, Liu Jie, Li Hong, et al. Differences in structure, physiological stability, electrochemistry, cytotoxicity, DNA and protein binding properties between two Ru(III) complexes[J]. Journal of Inorganic Biochemistry, 2008, 102:347–358.
    [87] Sun Jing, Wu Shuo, Han Yan, et al. Synthesis, crystal structure and DNA-binding studies of a Ru(II) complex containing two main ligands[J]. Inorganic Chemistry Communications, 2008, 11:1382–1384.
    [88] Prussin A J, Zhao Shengliang, Jain A, et al. DNA interaction studies of tridentate bridged Ru(II)–Pt(II) mixed-metal supramolecules. Journal of Inorganic Biochemistry, 2009, 103:427–431.
    [89] Tan Caiping, Liu Jie, Chen Lanmei, et al. Synthesis, structural characteristics, DNA bindingproperties and cytotoxicity studies of a series of Ru(III) complexes. Journal of Inorganic Biochemistry, 2008, 102:1644–1653.
    [90] Cai Z, Li X, Sevilla M D. Excess Electron Transfer in DNA: Effect of Base Sequence and Proton Transfer[J]. J. Phys. Chem. B., 2002, 106(10):2755-2762.
    [91] Moucheron C, Mesmaeker A K D, Choua S. Photophysics of Ru(phen)2(PHEHAT)~(2+): A Novel "Light Switch" for DNA and Photo-oxidant for Mononucleotides[J]. Inorg. Chem., 1997, 36(4):584-592.
    [92] Barton J K, Dannenb J J, Raphael A L. Photoactivated stereospecific cleavage of double-helical DNA by cobalt(III) complexes[J]. J. Am. Chem. Soc., 1984, 106(8):2175-2468.
    [93] Gao Feng, Chao Hui, Zhou Feng, et al. DNA interactions of a functionalized ruthenium(II) mixed-polypyridyl complex [Ru(bpy)2ppd]~(2+)[J]. J. Inorg. Biochem., 2006, 100(9):1487-1494.
    [94] Krotz A H, Hudson B P, Barton J K. Assembly of DNA recognition elements on an octahedral rhodium intercalator: predictive recognition of 5'-TGCA-3' by .DELTA.-[Rh(R,R)-Me2trien]phi]3+[J]. J. Am. Chem. Soc., 1993, 115(26):12577-12578.
    [95] Xiong Ya, Ji Liangnian. DNA-binding and DNA-mediated luminescence quenching of Ru(II) polypyridine complexes[J]. Coord. Chem. Rev., 1999, 185-186:711-733.
    [96] Ji Liangnian, Zou Xiaohua, Liu Jingang. Shape and enantioselective interaction of Ru (II)/Co (III) polypyridyl complexes with DNA[J]. Coord. Chem. Rev., 2001, 216-217:513-536.
    [97] Mei Wenjie, Liu Jian, Zheng Kangcheng, et al. Experimental and theoretical study on DNA-binding and photocleavage properties of chiral complexesΔ- andΛ-[Ru(bpy)2L](L =o-hpip, m-hpip and p-hpip)[J]. J. Chem. Soc., Dalton Trans., 2003:1352-1359.
    [98] Wu Jianzhong, Ye Baohui, Wang Lei, et al. Bis(2,2' -bipyridine) ruthenium(II) complexes with imidazo[J]. J. Chem. Soc.,Dalton Trans., 1997:1395-1401.
    [99] Zhen Qixiong, Ye Baohui, Zhang Qianling, et al. Synthesis characterization and the effect of ligand planarity of [Ru(bpy)2L]~(2+) on DNA binding affinity[J]. J. Inorg. Biochem., 1999, 76(76):47-53.
    [100] Goldstein B M, Barton J K, Berman H M. Crystal and molecular structure of a chiral-specific DNA-binding agent[J]. Inorg. Biochem., 1986, 25(6):842-847.
    [101] Peter J Barnard and Robert S Vagg. A spectroscopic investigation of the self-association and DNA binding properties of a series of ternary ruthenium(II) complexes[J]. Journal of Inorganic Biochemistry, 2005, 99(5):1009-1017.
    [102] Paw W, Eisenberg R. Synthesis, Characterization, and Spectroscopy of Dipyridocatecholate Complexes of Platinum[J]. Inorg. Chem., Inorg. Chem., 1997, 36(11):2287-2293.
    [103] Sullivan B P, Salmon D J, Meyer T J. Mixed phosphine 2,2'-bipyridine complexes of ruthenium[J]. Inorg. Chem.,1978, 17(12):3334-3341.
    [104] Xiao X M, Haga M, Matsunura-Inoue T, et al. Synthesis and Proton Transfer-Linked Redox Tuning of Ruthenium(II)Complexes with Tridentate 2 6-Bis(benzimidazole-2-yl) Pyridine Ligands[J]. J. Chem. Soc., Dalton Trans., 1993, 12(6):2447-2484.
    [105] Juris A, Balzani V, Barigelletti F, et al. Ruthenium(II) polypyridine complexes: photophysics,photochemistry, electrochemistry, and chemiluminescence[J]. Coord. Chem. Rev., 1988, 84:85-227.
    [106] Kalyanasundaram K. Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogs[J]. Coord. Chem. Rev., 1982, 46:159-244.
    [107] Crosby G A. Spectroscopic investigations of excited states of transition-metal complexes[J]. Acc. Chem. Res., 1975, 8:231-241.
    [108] Bolger J, Gourden J, Ishow E, et al. Mononuclear and Binuclear Tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz) Ruthenium and Osmium Complexes[J]. Inorg. Chem., 1996, 35(10):2937-2944.
    [109] Harsh R H, Barton J K. Novel dipyridophenazine complexes of ruthenium(II): exploring luminescent reporters of DNA[J]. J. Am. Chem. Soc., 1992, 114(15):5919-5925.
    [110] Tan Lifeng, Chao Hui, Li Hong, et al. Synthesis, characterization, DNA-binding and photocleavage studies of [Ru(bpy)2(PPIP)]~(2+) and [Ru(phen)2(PPIP)]~(2+)[J]. J. Inorg. Biochem., 2005, 99(2):513-520.
    [111] Tan Lifeng, Chao Hui, Liu Yunjun, et al. DNA-binding and photocleavage studies of [Ru(phen)2(NMIP)]~(2+)[J]. Inorg. Chim. Acta., 2005, 358(7):2191-2198.
    [112] Tokel N E, Bard A J. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride[J]. J. Am. Chem. Soc., 1972, 94(8):2862-2863.
    [113] Knight A W. A review of recent trends in analytical applications of electrogenerated chemiluminescence[J]. Trends. Anal. Chem., 1999, 18(1):47-62.
    [114] Han Heyou, He Zhike, Zeng Yune. Study on the chemiluminescent characteristics of mulitbipyridine ruthenium (II) complexes[J]. Acta. Chim. Sinica., 2001, 59(9):1513-1518.
    [115] Kumar C V, Barton J K, Turro N J. Photophysics of ruthenium complexes bound to double helical DNA[J]. J. Am. Chem. Soc., 1985, 107(19):5518-5523.
    [116] Friedman A E, Kumar C T, Turro N J, et al. Luminescence of Ruthenium (II) Polypyridyls: Evidence for Intercalative Binding to Z-DNA[J]. Nucleic Acids Res., 1991, 19(10):2595-2602.
    [117] Stijn W, Dirk E D, Francis V, et al. A heterogeneous Ru–hydroxyapatite catalyst for mild racemization of alcohols[J]. Journal of Catalysis, 2003, 219(2,25):417-424.
    [118] Opre Z, Grunwaldt J D, Maciejewski M, et al. Promoted Ru–hydroxyapatite: designed structure for the fast and highly selective oxidation of alcohols with oxygen[J]. Journal of Catalysis, 2005, 230(2,10):406-419.
    [119] T?nsuaadu K, Gruselle M, Villain F, et al. A new glance at ruthenium sorption mechanism on hydroxy, carbonate, and fluor apatites: Analytical and structural studies[J]. Journal of Colloid and Interface Science, 2006, 304(2,15):283-291.
    [120] Opre Z, Ferri D, Krumeich F, et al. Insight into the nature of active redox sites in Ru-containing hydroxyapatite by DRIFT spectroscopy[J]. Journal of Catalysis, 2007, 251(1,1):48-58.
    [121] Lecomte J P, Mesmaeker A K, Feeney M M, et al. Ruthenium(II) Complexes with1,4,5,8,9,12-Hexaazatriphenylene and 1,4,5,8-Tetraazaphenanthrene Ligands: Key Role Played by the Photoelectron Transfer in DNA Cleavage and Adduct Formation[J]. Inorg. Chem., 1995, 34(26):6481-6491.
    [122] Alexander L Ruchelman, Sudhir K Singh, Abhijit Ray, et al. 11H-Isoquino[4,3-c]cinnolin-12-ones: novel anticancer agents with potent topoisomerase-I targeting activity and cytotoxicity[J]. Bioorganic & Medicinal Chemistry.,2004, 12(44):795-806.
    [123] Wolf A, Shimer G H, Meehan T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA[J]. Biochemistry, 1987, 26(20):6392-6396.
    [124] Cheng C C, Kuo Y N, Chuang K S, et al. A New CoII Complex as a Bulge-Specific Probe for DNA[J]. Angew. Chem. Int. Ed. Engl., 1999, 38(9):1255-1257.
    [125] Sigman D S, Mazumder A, Perrin D M. Chemical nucleases[J]. Chem. Rev., 1993, 93(6):2295-2316.
    [126] Hickerson R P, Perez R J, Burrows C J. DNA Damage from Sulfite Autoxidation Catalyzed by a Nickel(II) Peptide[J]. J. Am. Chem. Soc., 1997, 119(7):1501-1506.
    [127] Sigman D S, Bruice T W, Mazumder A. Targeted chemical nucleases[J]. Acc. Chem. Res., 1993, 26(3):98-104.
    [128] Tullins T D. Physical studies of protein-DNA complexes by footprinting[J]. Ann. Rev. Biophys. Chem., 1989, 18:213-237.
    [129] Graham D R, Sigman D S. Zinc ion in Escherichia coli DNA polymerase: a reinvestigation[J]. Inorg. Chem., 1984, 23(25):4188-4191.
    [130] Dervan P B. Design of sequence-specific DNA-binding molecules[J]. Science, 1986, 232(4749):464-471.
    [131] Tan Lifeng, Chao Hui, Zhou Yangfan, et al. Synthesis, characterization, DNA-binding and DNA-photocleavage studies of [Ru(bpy)2(BPIP)]~(2+) and [Ru(phen)2(BPIP)]~(2+)(BPIP = 2-(4′-biphenyl)imidazo[4,5-f][1,10]phenanthroline)[J]. Polyhedron,. 2007, 26(13):3029-3036.
    [132] Nilsson R, Merkel P R, Kearns D R. Unambiguous evidence for the participation of singlet oxygen (1Δ) in photodynamic oxidation of amino acids[J]. Photochem. Photobiol., 1972, 16(2):117-124.
    [133] Lesko S A, Lorentzen R J, Ts’o P O. Role of superoxide in deoxyribonucleic acid strand scission[J]. Biochem., 1980, 19(13):3023-3028.
    [134] Cheng C C, Rokita S E, Burrows C J. Nickel(III)-Promoted DNA Cleavage by Ambient Molecular Oxygen[J]. Angew. Chem. Int. Ed. Engl., 1993, 32:277-278.
    [135] Sullivan B P, Salmon D J, Meyer T J. Mixed phosphine 2,2'-bipyridine complexes of ruthenium[J]. Inorg. Chem., 1978, 17(12):3334-3341.
    [136] Reichmann M F, Rice S A, Thomas C A, et al. A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid[J]. Journal of the American Chemical Society, 1954, 76:3047-3053.
    [137] Chaires J B, Dattagupta N, Crothers D M. Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on the interaction of daunomycinwith deoxyribonucleic acid[J]. Biochemistry, 1982, 21:3933-3940.
    [138] Becke A D. A new mixing of Hartree-Fock and local density-functional theories[J]. J. Phys. Chem, 1993, 98:1372-1377.
    [139] Gorling A. Density-functional theory for excited states[J]. Phys. Rev., 1996, 54:3912-3915.
    [140] Schaftenaar G, Noordik J H. Molden: a pre- and post-processing program for molecular and electronic structures[J]. J. Comput.-Aided Mol. Design, 2000, 14:123-134.
    [141] Strekas T C, Baker A D, Morgan R J, et al. Effects of Ligand Planarity and Peripheral Charge on Intercalative Binding of [Ru(bpy)2L]~(2+) to Calf Thymus DNA[J]. Inorg. Chem., 1991, 30:2687-2692.
    [142] Liu Jingang, Zhang Qianling, Shi Xianfa, et al. Interaction of [Ru(dmp)2(dppz)]~(2+) and [Ru(dmb)2(dppz)]~(2+) with DNA: Effects of the Ancillary Ligands on the DNA-Binding Behaviors[J]. Inorganic chemistry, 2001, 40:5045-5050.
    [143] Tysoe S A, Kopelman R, Schelzig Dietrich. Flipping the Molecular Light Switch Off: Formation of DNA-Bound Heterobimetallic Complexes Using Ru(bpy)2tpphz~(2+) and Transition Metal Ions[J]. Inorganic chemistry, 1999, 38:5196-5197.
    [144] Li Jun, Chen Jincan, Xu Liancai, et al. A DFT/TDDFT study on the structures, trend in DNA-binding and spectral properties of molecular“light switch”complexes [Ru(phen)2(L)]~(2+)(L = dppz, taptp, phehat)[J]. Journal of Organometallic Chemistry, 2007, 692(4,15):831-838.
    [145] Collin J P, Sauvage J P. Synthesis and study of mononuclear ruthenium(II) complexes of sterically hindering diimine chelates. Implications for the catalytic oxidation of water to molecular oxyge[J]. Inorg. Chem., 1986, 25(2):135-141.
    [146] Kumar C V, Turro N J, Barton J K. Photophysics of ruthenium complexes bound to double helical DNA[J]. J. Am. Chem. Soc., 1985, 107(19):5518-5523.
    [147] Zhen Qixin, Liu Jianhong, Liu Jianzhong, et al. DNA-binding and photoactivated enantiospecific cleavage of chiral polypyridyl ruthenium(II) complexes[J]. J. Inorg. Biochem., 2004, 98(8):1405-1412.
    [148] Yam V W, Lo K K, Cheung K K, et al. Deoxyribonucleic acid binding and photocleavage studies of rhenium(II) dipyridophenazine complexes[J]. J. Chem. Soc. Dalton. Trans., 1997:2067-2072.
    [149] Mckee M L, Kerwin S M. Synthesis, metal ion binding, and biological evaluation of new anticancer 2-(2#8242-hydroxyphenyl)benzoxazole analogs of UK-1[J]. Bioorganic & medicinal chemistry, 2008, 16:1775-1783.
    [150] Freeman A D, Déclais A C, Lilley D M. Metal ion binding in the active site of the junction-resolving enzyme T7 endonuclease I in the presence and in the absence of DNA[J]. Journal of molecular biology, 2003, 333(1):59-73.
    [151] Wu Jianzhong, Li Yuan, Yu Ying. Effect of copper ion on DNA intercalating behavior of a chelation unsaturated diruthenium polypyridyl complex[J]. Inorganica chimica Acta, 2006, 359:718-720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700