用户名: 密码: 验证码:
过渡金属团簇和稀土金属间化合物的计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
考虑到重元素的相对论效应,采用GGA、Perdew-Burke-Enzerhof(PBE)交换关联函数对两个到十四个原子的铱团簇进行了计算:(1)得到结构增长模式:简立方增长方式;具有整数个立方单元组成的团簇具有较大的稳定性,对应着幻数团簇;平方单元是铱团簇结构增长的的基本单元;(2)对于带帽结构,边缘带帽结构比面心带帽结构更稳定;(3)偶数个原子的团簇比其近邻的奇数个原子的团簇要稳定;(4)s-d杂化应该是产生特殊基态电子结构的原因。
     基于密度泛函理论,采用广义梯度近似交换关联函数,研究了掺Y的钯团簇:Pd_(n-1)Y(n=2-9)和Pd_(n-2)Y_2(n=3-9)团簇。我们发现:(1)单掺杂和双掺杂团簇的基态结构和纯钯团簇有类似的几何框架;(2)各种计算结构都表明两种掺杂团簇较之源团簇都具有较高的稳定性;(3)所有的单掺杂团簇具有的1μ_B总磁矩,对于双掺杂团簇,所有异构体都是没有磁性的;(4)其中Y原子易于占据在具有最大近邻原子数的位置。
     利用Chen-M(?)bius晶格反演作用势对UCu_5TAl_6(T=Cr,Mn,Fe)化合物进行了模拟.结果表明:(1)得到了稀土这种永磁材料1:12体系的结构参数,与实验报道符合很好;(2)第四组元择优占据8j晶位;(3)解释了不同原子对振动模式的贡献,其中高频段的振动模式主要由高频局域的Al原子激发,而U和Cu原子主要贡献于较低频率的振动模式,T原子对低频振动模式的贡献较大;(4)研究了这些材料的一些简单的机械性质,结果表明Cr,Mn或Fe原子的加入提高了系统的强度及原子间相互作用力;(5)计算了四元体系的声子态密度,并预测了这些化合物的比热、振动熵和德拜温度等热力学性质,第四组元T对这些材料的低温性质起着很大的决定作用。
The relativistic density functional theory calculations with GGA/PBE/DSPP basis sets were performed to optimize the structures of the Ir_n (n=2-14)clusters. The structural growth pattern is discovered: simple cubic growth mode. Those clusters composed of an integer number of square units are magic clusters with higher stability. Square represents the basic unit in the growth of the Ir_n clusters. For the capped structures, the edge-capped structures are more stable than the face-capped ones, which is not belongs to the Ru and the Co cluster and special for the Ir cluster. The HOMO-LUMO gaps, the average bond lengths and the second-order energy difference are found to show odd-even oscillations. Especially even-numbered clusters are more stable than their neighboring odd-numbered ones. The s-d hybridization should be responsible for the specialty of the ground-state electron configurations.
     Using density-functional methods to study Yttrium-doped Palladium clusters, Pd_(n-1)Y(n=2-9) and Pd_(n-2)Y_2(n=3-9), different stable geometrical configurations originating from one and two Y-atom substitutions in parent Pd_n clusters have been investigated. The calculated fragmentation energies manifest that the two sequences of doped clusters both have remarkably enhanced stabilities. All singly-doped isomers have the total magnetic moments of about 1μ_B. For doubly-doped clusters, all isomers are nonmagnetic. Such regularities have not been previously observed to the best of our knowledge. The Y atoms of both doped cluster sequences prefer to occupy sites with the largest coordination number.
     Based on the interatomic potentials related to the rare earth and transition metals, an atomistic simulation of the structural properties of the UCu_5TAl_6 compounds, where T is Cr, Mn, Fe, has been carried out. In present work, the phase stability, site preference, Curie temperature, and lattice vibrations of 1:12 systems is studied. Especially, it is worth noting that when the quaternary elements preferentially occupy the 8/ sites by the energy criterion. The lattice constants of rare earth compounds are calculated by the inverted potentials and they are all close to the experimental reports. The mechanical properties of UCu_5Al_7and UCu_5TAl_6 (T = Cr, Mn and Fe) have been evaluated using the second derivative method and Cr, Mn or Fe atoms can improve the strength and atomic interaction of the system. We have presented the phonon spectra of quaternary alloys by the inverted potentials. A qualitative analysis is carried out to discuss the contributions of distinct atoms to the vibrational modes on the atomic scale. The vibrational modes are mostly excited by Al atoms in the high frequency localized modes, U and Cu contribute a major part to the modes with lower frequencies. The contribution of the quaternary element T to the higher frequency modes is similar with that of Al, but the intensity of the modes of T is much smaller. The specific heat, vibrational entropy and Debye temperature from our obtained by lattice dynamic data as a function of temperature are also calculated. T may play an important role in the lower-temperature properties of these materials.
引文
[1] J A Alonso. Electronic and Atomic Structure, and Magnetism of Transition-Metal Clusters[J]. Chem. Review, 2000, 100:637-678
    
    [2] V. Kumar and Y. Kawazoe, Atomic and electronic structures of niobium elusters[J]. Phys.. Rev. B, 2002, 65: 125403-125413
    [3] I. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai and H. Matsuda. Mass distributions of copper, silver and gold clusters and electronic shell structure. Int. JMass Spectrom. Ion Processes [J], 1985, 67: 229-236
    [4] I. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai and H. Matsuda, Mass distributions of negative cluster ions of copper, silver, and gold[J]. Int. J .Mass Spectrom. Ion Processes, 1986, 74:33-41
    [5] V. Bonacic-Koutecky, L. Cespiva, P. Fantucci, J. Pittner, J. Koutecky, Effective core potential-configuration interaction study of electronic structure and geometry of small anionic Ag_n clusters: Predictions and interpretation of photodetachment spectra[J]. J. Chem. Phys, 1994, 100:490-506
    [6] V. Bonacic-Koutecky, V. Veyret and R. Mitric, Ab initio study of the absorption spectra of Ag_n (n=5-8) clusters[J]. J. Chem. Phys., 2001, 115:10450-10460
    [7] Rene Fournier, Theoretical study of the structure of silver clusters[J]. J. Chem. Phys., 2001,115:2165-2177
    [8] J. Zhao, Y. Luo and G. Wang, Radiation defects in nano-structured materials[J]. Eur. Phys. J., 2001, D14:309-312
    [9] H.Cheng and L. S.Wang, Dimer Growth, Structural Transition, and Antiferromagnetic Ordering of Small Chromium Clusters[J]. Phys. Rev. Lett., 1996,77:51-54
    [10] J. L. Wang, G H. and J. J. Zhao, Density-functional study of Au_n(n=2-20) clusters: Lowest-energy structures and electronic properties[J]. Phys.. Rev. B., 2002, 66:035418-035423
    
    [11] H. Hakkinen, M. Moseler, and U. Landman, Bonding in Cu, Ag, and Au Clusters: Relativistic Effects, Trends, and Surprises [J]. Phys. Rev. Lett., 2002, 89(3):033401-033404
    
    [12] H.Wu, S. R. Desai, L. S. Wang, Electronic Structure of Small Titanium Clusters: Emergence and Evolution of the 3d Band[J]. Phys. Rev. Lett., 1996, 76(12):212-215
    [13] J. J. Zhao, Q. Qiu, B. L. Wang, J. L. Wang, G. H. Wang, Geometric and electronic properties of titanium clusters studied by ultrasoft pseudopotential[J]. Solid State Communications., 2001,118:157-161
    [14] H. Wu, S. R. Desai, L. S. Wang, Evolution of the Electronic Structure of Small Vanadium Clusters from Molecular to Bulklike[J]. Phys. Rev. Lett., 1996,77:2436-2439
    [15] S. Minemoto, A. Terasaki, H. Imoto and T. J. Kondow, Electronic structure of vanadium tetramer ion studied by optical absorption spectroscopy. J. Chem. Phys. 1998, 109:9737-9743
    [16] H. Q. Sun, Y. Ren, Y. H. Luo, and G H. Wang, Geometry, electronic structure, and magnetism of Rh_n (n=9, 13,15,17,19) clusters[J]. Phys. B. 2001, 293:260-267
    [17]Jason E. Hearn, Roy L. Johnston, Modeling calcium and strontium clusters with many-body potentials[J]. J. Chem. Phys., 1997, 107:4674-4687
    [18]L. liar, C.X. Su, P. B. Armentrout, Collision-induced dissociation of Ti_n~+ (n=2-22) with Xe: Bond energies, geometric structures, and dissociation pathways[J]. J. Chern. Phys. 1992,97:4084-4093
    [19]J. J. Zhao, Density-functional study of structures and electronic properties of Cd clusters[J]. Phys. Rev. A. 2001, 64(4):043204-043208
    [20]M.Castro,C. Jamorski, Dennis R.Salahub, Structure, bonding, and magnetism of small Fe_n, Co_n, and Ni_n clusters, n≤5[J], Chem. Phys. Lett. 1997, 271:133-142
    [21]Sven KrUger, Mauro Stener, and Notker Rosch, Relativistic density functional study of gold coated magnetic nickel clusters[J]. J. Chem. Phys. 2001, 114:5207-5215
    [22]E. K. Parks, L. Zhu, J. Ho and S. J. Riley, The structure of small nickel clusters. Ⅱ. Ni_(16)-Ni_(28)[J]. J. Chem. Phys. 1995, 102:7377-7389.
    [23]F. A. Reuse, S. N. Khanna, Geometry, electronic structure, and magnetism of small Ni_n(n = 2-6, 8, 13) cmsters[J], Chem. Phys. Lett. 1995, 234:77-81
    [24]J. P. Bucher, D. C. Doaglass and L. A. Bloomfield, Magnetic properties of free cobalt clusters[J]. Phys. Rev. Lett. 1991, 66(23):3052-3055
    [25]I. M. L. Billas, A. Chatelain, and W. A. de Heer, Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters[J]. Science 1994(5179), 265:1682-1684
    [26]H. M. Duan and Q. Q. Zheng, Symmetry and magnetic properties of transition metal clusters[J]. Phys.Lett. A., 2001, 280:333-339
    [27]J. L. Rodriguez-Lopez, F. Aguilera-Granja, K. Michaelian and A. Vega, J Alloy.Comp. 369, 93 (2004); Structure and magnetism of cobalt clusters[J]. Phys. Rev. B., 2003, 67(17):174413-174421
    [28]B. V Reddy, S. K. Nayak, S. N. Khanna, B. K. Rao, and P. Jena, Electronic structure and magnetism of Rh_n (n=2-13) clusters[J]. Phys. Rev. B., 1999, 59(7):5214-5222
    [29]A. Sebetic, Z. B. Guven}, Energetics and structures of small clusters: Pt_N, N=2-21[J]. Surface Science., 2003, 525:66-84.
    [30]D. Kaiming J. L. Yang, C.Y. Xiao, and K. L. Wangl Electronic properties and magnetism of ruthenium clusters[J]. Phys. Rev. B., 1996,54(3):2191-2197
    [31]V Kumar and Y Kawazoe, Icosahedral growth, magnetic behavior, and adsorbate-induced metal-nonmetal transition in palladium clusters[J]. Phys. Rev. B., 2002, 66(14):144413-11.
    [32]S. Kruger, S. Vent, F. Nortemann, M. Staufer, and N. Rosch, The average bond length in Pd clusters Pd_n, n = 4-309: A density-functional case study on the scaling of cluster properties[J]. J. Chem. Phys., 2001, 115:2082-2087
    [33]W. D. Knight, K.Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chowand M. L. Cohen, Electronic Shell Structure and Abundances of Sodium Clusters[J]. Phys. Rev. Lett. 1984, 52(24):2141-2143
    [34]W. A. de Heer, W. D. Knight, M. Y. Chou and M. L. Cohen, Electronic Shell Structure and Metal Clusters[J]. Solid StatePhys. 1987, 40 :93-181.
    [35]Eberhardt, W. Clusters as new materials[J]. Surf. Sci. 2002, 500:242-270.
    [36]Yee, C. K.; Jordan, R.; Ulman, A.; White, H.; King, A.; Rafailovich, M.; Sokolov, Novel One-Phase Synthesis of Thiol-Functionalized Gold, Palladium, and Iridium Nanoparticles Using Superhydride[J]. J. Langmuir 1999, 15(10):3486-3491.
    [37]Yang, L.; DePristo, A. E. On the Compact Structure of Small fcc Metal Clusters[J]. J. Catal. 1994, 149:223-228
    [38]Yang, S. H.; Drabold, D. A.; Adams, J. B.; Ordejon, P.; Glassford, K. Density functional studies of small platinum clusters [J]. J. Phys.: Condens. Matter 1997, 9(5):L39-L45.
    [39]Bonet, F.; Delmas, V.; Grugeon, S.; Herrera Urbina, R.; Silvert, P.-y.; Tekaia-Elhsissen, Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol [J]. K. Nanostructured Mater. 1999, 11(8): 1277-1284.
    [40]Gantefor, G.; Eberhardt, W. Localization of 3 d and 4 d Electrons in Small Clusters: The "Roots" of Magnetism[J]. Phys. ReV. Lett. 1996, 76(26):4975-4978.
    [41]Yang, L.; DePristo, A. E. On the factors determining the isomers of metal clusters[J]. J. Chem. Phys. 1994,100(1):725-728.
    [42]Zhang, W.; Zhao, H.; Wang, L. The Simple Cubic Structure of Ruthenium Clusters[J]. J. Phys. Chem. B 2004, 108(7):2140-2147
    [43]Xiao, L.; Wang, L. Structures of Platinum Clusters: Planar or Spherical?[J]. J. Phys. Chem. A,2004, 108(41):8605-8614
    [44]Xiao, L.; Wang, L. From planar to three-dimensional structural transition in gold clusters and the spin-orbit coupling effect[J]. Chem. Phys. Lett. 2004, 392:452-455
    [45]Zhang, W.; Xiao, L.; Hirata, Y.; Pawluk, T.; Wang, L. The simple cubic structure of Ir clusters and the element effect on cluster structures[J]. Chem. Phys. Lett. 2004, 383:67-71.
    [46]Wang, L.; Ge, Q. Studies of rhodium nanoparticles using the first principles density functional theory calculations[J]. Chem. Phys. Lett. 2002, 366(1):368-376.
    [47]Zhang, W.; Ge, Q.; Wang, L. Structure effects on the energetic, electronic, and magnetic properties of palladium nanoparticles[J].J. Chem. Phys. 2003, 118:5793-5801
    [48]Feng.J.N, Huang, X.R, Li. Z.S. A theoretical study on the clusters Ir_n with n = 4, 6, 8, 10[J]. Chem. Phys. Lett. 1997,276:334-338
    [49]Wang, S. C.; Ehrlich, G. Equilibrium shapes and energetics of iridium clusters on Ir(111) [J]. Surf. Sci. 1997,391:89-100.
    [50]Reeves, C. T.; Seets, D. C.; Mullins, C. B. Low translational energy mechanisms in the dissociative chemisorption of methane on iridium and platinum surfaces [J]. J. Mol. Catal. A: Chem. 2001,167(1-2):207-215.
    [51]Seets, D. C.; Wheeler, M. C.; Mullins, C. B. Mechanism of the dissociative chemisorption of methane over Ir(110): trapping-mediated or direct? [J]. Chem. Phys. Lett. 1997, 266:431-436
    [52]Seets, D. C.; Wheeler, M. C.; Mullins, C. B. Trapping-mediated and direct dissociative chemisorption of methane on Ir(110): A comparison of molecular beam and bulb experiments[J].J. Chem. Phys. 1997, 107(10):3986-3998.
    [53]Seets, D. C.; Reeves, C. T.; Ferguson, B. A.; Wheeler, M. C; Mullins, C. B. Dissociative chemisorption of methane on Ir(111): Evidence for direct and trapping-mediated mechanisms[J]. J. Chem. Phys. 1997, 107(23): 10229-10241.
    [54]Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recycable Catalysts for Biphasic Hydrogenation Reactions[J]. J. Am. Chem. Soc. 2002, 124(16):4228-4229
    [55] Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R.; Dupont, The Use of Imidazolium Ionic Liquids for the Formation and Stabilization of Ir and Rh Nanoparticles: Efficient Catalysts for the Hydrogenation of Arenes[J]. J. Chem.Eur. J. 2003, 9(14):3263-3269
    [56] Fonseca, G. S.; Scholten, J. D.; Dupont, Indium Nanoparticles Prepared in Ionic Liquids: An Efficient Catalytic System for the Hydrogenation of Ketones[J]. J. Synth. Lett. 2004, 9:1525-1528.
    [57] Mevellec, V.; Roucoux, A.; Ramirez, E.; Philippot, K.; Chaudret, B. Surfactant-Stabilized Aqueous Iridium(O) Colloidal Suspension: An Efficient Reusable Catalyst for Hydrogenation of Arenes in Biphasic Media[J]. Adv. Synth. Catal.,. 2004, 346(1):72-76
    [58] Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr.; Smith, M. R., III. Remarkably Selective Iridium Catalysts for the Elaboration of Aromatic C-H Bonds[J]. Science., 2002, 295:305-308
    [59] Klei, S. R.; Tilley, T. D.; Bergman, R. G. The Mechanism of Silicon-Hydrogen and Carbon-Hydrogen Bond Activation by Iridium(III): Production of a Silylene Complex and the First Direct Observation of Ir(III)/Ir(V) C-H Bond Oxidative Addition and Reductive Elimination [J]. J. Am. Chem. Soc. 2000, 122(8,): 1816-1817
    [60] Liao, M.-S.; Zhang, Q.-E. Dissociation of methane on different transition metals[J]. J. Mol. Catal. A: Chem. 1998, 136(2): 185-194
    [61] Au, C.-T.; Ng, C.-F.; Liao, M.-S. Methane Dissociation and Syngas Formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: A Theoretical Study [J]. J. Catal. 1999, 185(1): 12-22
    [62] Sitz, G. O.; Mullins, C. B. Molecular Dynamics Simulations of the Influence of Surface Temperature on the Trapping of Methane on Iridium Single-Crystalline Surfaces[J]. J. Phys. Chem. B., 2002, 106(33):8349-8353.
    [63] Strout, D. L.; Zaric, S.; Niu, S.; Hall, M. B. Methane Metathesis at a Cationic Iridium Center [J]. J. Am. Chem. Soc. 1996,118(25):6068-6069
    [64] Endou, A.; Ohashi, N.; Yoshizawa, K.; Takami, S.; Kubo, M.; Miyamoto, A.; Broclawik, E. [J]. J. Chem. Phys. B., 2000, 104:5110
    [65] Endou, A.; Jung, C; Kusagaya, T.; Kubo, M.; Selvam, P.; Miyamoto, A.; Combinatorial computational chemistry approach to the design of metal catalysts for deNO_x[J]. Appl. Surf. Sci. 2004, 223(1-3): 159-167
    [66] M. A. Baldo, M. B. Thompson, and S. R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer[J]. Nature (London) 2000, 403: 750-753
    [67] Habar, S. Ouannasser, L. Stauffer, H. Dreysse and L. T. Wille, Stability of small iridium clusters near the Ir(111) surface[J], Surface Science, 1996, 352-354: 5-8
    [68] Z. Xu, F. S. Xiao, S. K. Purnell, O. Alexeev, S. Kawi, S. E. Deutsch, B. CGates, Size-dependent catalytic activity of supported metal clusters[J]. Nature 1994, 372:346-348
    [69] F. S. Xiao, Z. Xu, O. Alexeev, B. C .Gates, Reactions of Tetrairidium Clusters on the Surface of MgO: Characterization by Infrared Spectroscopy and Chemisorption Measurements [J]. J. Phys. Chem. 1995, 99(5): 1548-1553
    [70] S. D. Maloncy, F. B. M. van Zon, M. J. Kelley, D. C. Koningsbegger, B. CGates, A well-defined supported metal catalyst: Ir4/MgO[J]. Caral. Lett. 1990,5:161-168
    [71]S. D. Maloncy, M. J. Kelley, D. C. Koningsbegger and B. C. Gates, Hexanuclear indium clusters supported on magnesium oxide [J]. J. Phys.Chem., 1991, 95(23): 9406-9411
    [72]P. Gallezot, Molecular Sieves, 3, 257 (2002); A. Zhao, R. E. Jensoft and B. C, Gates, Iridium Clusters in KLTL Zeolite: Synthesis, Structural Characterization, and Catalysis of Toluene Hydrogenation andn-Hexane Dehydrocyclization[J]. J. Cata, 1997, 169:263-274
    [73]R. D. Pergola, L. Garlaschelli, M. Manassero and M. Sansoni. Iridium Cluster Chemistry: The Synthesis and the Solid-State Structure of [Ir_(11)(CO)_(23)]~(3-) [J]. J. Cluster. Science, 1999,10(1):109-119.
    [74]R. D. Pergola, L. Garlaschelli, M. Manassero, M. Sansoni and D. Strumolo, Iridium Cluster Chemistry: The Synthesis and the Solid State Structures of [HIr_5(CO)_(12)]~(2-) and [HIr_4(CO)_(10)PPh_3]~- [J]. J. Cluster. Science, 2001, 12(1):23-34
    [75]R. B. King, Metal cluster topology. 19. Fused octahedra and trigonal bipyramids in iridium carbonyl clusters[J]. Inorg. Chim. Acta, 2002, 334:34-44
    [76]J. N. Feng, X. R. Huang and Z. X. Li, A theoretical study on the clusters Ir_n with n = 4, 6, 8, 10[J]. Chem. Phys. Lett., 1997, 276:334-338
    [77]Z. J. Wu, B. Han, Z. W. Dai, P. C. Jin, Electronic properties of rhenium, osmium and iridium dimers by density functional methods[J]. Chem. Phys. Lett. 2005, 403:367-371
    [78]D.G. Dai, M.Z.Liao, K. balasubramanian, Sixteen electronic states of the iridium trimer (Ir_3) [J]. Chem. Phys. Lett. 1996, 249:141-148
    [79]A.Venturelli and T. B. Rauchfuss, Mobile Metal-Metal Bonds: Studies on Mixed Valence Ir_3 and Ir_4 Clusters [J]. J. Arm. Chem. Soc. 1994, 116(11):4824-4831
    [80]J. L. Jules, J. R. Lombardi, Transition Metal Dimer Internuclear Distances from Measured Force Constants [J]. J. Phys. Chem. A., 2003, 107(9): 1268-1273
    [81]M. D.Morse, Cluster of transition-mental atoms[J]. Chem. Rev., 1986, 86:1049-1109
    [82]J. A. Alonso, Electronic and Atomic structure, and Magnetism of Transition-Metal Cluster[J].Chem. Rev, 2000,100:637-677
    [83]J.M.Seminario. Advences in Quantum Chemistry: Density Functional Theory[M], New York: Academic Press. 1998
    [84]王艺平,董昆明,谭凯等。纳米尺寸团簇Ni_nZ_n(n=3-5)的几何结构与成键规律研究[J].高等学校化学学报。2002,23:453-456
    [85]王延金,曹泽星,张乾二。铜簇Cu_n~-和Cu_nCo~-基铜簇Cu_nCO~-(n=2~7)的结构与光谱性质的密度泛函理论研究[J].高等学校化学学报,2003,24:678-681
    [86]M. S. Stave, A. E. DePristo, The structure of Ni_N and Pd_N clusters: 4≤N≤23[J]. J. Chem Phys., 1992,97:3386-3398
    [87]I. Efremenko, M. Sheintuch, Quantum chemical study of small palladium clusters[J]. Surf.Sci., 1998,414:148-158
    [88]S. K(?)rger, S . Vent, F. N(?)rtemann, et al. The average bond length in Pd clusters Pdn, n=4-309:A density-functional case study on the scaling of cluster properties[J]. J . Chem. Phys., 2001,115:2082-2087
    [89]P. Nava, M. Sierka, R.Ahlrichs, Density functional study of palladium clusters[J]. Phys . Chem.Chem. Phys, 2003, 5:3372-3381
    [90]M. Katagiri, M. Kubo, R. Yamauchi, et al, Molecular Dynamics simulations of metal Clusters and Metal Deposition on Metal Surfaces[J]. J. Appl. Phys., 1995, 34:6866-6872
    [91]M. Celino, G. D. Agostino and V. Rostato, Atomic of a palladium nanostructure[J]. Mater. Sci. Eng. A., 1995, 204:101-106
    [92]C. L. Liu, J. B. Adams and R.W. Siegel, Molecular dynamics simulations of consolidation processes during fabrication of nanophase palladium[J].Nanostruct. Mater.,1994, 4:265-274
    [93]A. Khoutami, B. Legrand, C. Mottet, et al. On the influence of topology on the energy profile in metallic Pd clusters[J]. Surf. Sci., 1994, 352:735-740
    [94]C. Mottet, G. Treglia and B. Legrand, Electronic structure of Pd cluster in the tight-binding approximation: influence of spd-hybridization[J]. Surf. Sci., 1996, 352-354:675-679
    [95]唐涛、陆光大,钯-氢体系的物理化学性质[J].稀有金属,2003,27:278-285
    [96]陈绍华、刑丕峰、陈文梅,用于氢同位素纯化的Pd-Zr选择渗氢复合膜[J].稀有金属,2003,27:817-822
    [97]Du Z, Yang H, Li C, Thermodynamic modeling of the Pd-Y system[J]. J.Alloy Com.,2000,297:185-191
    [98]Herzberg G, [J]. Mol. Spect. Mol. Struct, 1979, 84: 4
    [99]Garcia2Rodeja J , Rey C , Gallego L J et al. Molecular-dynamics study of the structures, binding energies, and melting of clusters of fcc transition and noble metals using the Voter and Chen version of the embedded-atom model[J]. Phys . Rev. B, 1994, 49(12): 8495-8498
    [100]Efremenko I, Moshe S, Quantum chemical study of small palladium clusters [J]. Surf, Sci 1998,414:148-158
    [101]Karabacak M,; zcelik S , G(?)venc Z B, Structures and energetics Of Pd_n (n=2-20) clusters using an embedded-atom model potential [J]. Surf. Sci., 2002, 507:636-642
    [102]Verhaegen G, Smoes S , Drowart J, Mass-Spectrometric Determination of the Dissociation Energy of the Molecules Sc_2, Y_2, La_2, and YLa [J]. J . Chem. Phys, 1964,40:239-241
    [103]Knight L B Jr , Woodward R W, Properties of Sc_3, Y_3, and Sc_(13) molecules at low temperatures, as determined by ESR [J], J. Chem. Phys., 1983,79:5820-5827
    [104]Ding D G, Balasubramanian K, Ionization energies of Y_n(n = 1-4) [J]. Chem. Phys . Lett., 1995,238:203-207
    [105]Ding C G, Yang 3 L, Electronic structure and magnetism of Y_(13) clusters [J]. Phys . Lett. A., 1999,256:417-421
    [106]Durakiewicz T , Halas S, Calculation of ionization potential of small yttrium andlanthanide metal clusters[J].Chem. Phys . Lett., 2001, 341:195-200
    [107]J. Needham, Science and Civilization in China[M].Vol4.1 (Cambridge Universty Press, 1962).
    [108]E.A. Nessbit, et.al., Magnetic moments of alloy and compounds of iron and cobalt with rare earth metal additions [J]. J. Appl. phys., 1959, 30:365-367.
    [109]G. Hoffer, et.al. Maganetocrystalline Anisotropy of YCo_5 and Y_2Co_(17) [J]. IEEE Tran. on Mag, 1966, 7:487-507.
    [110]K.J. Strant, G. Hoffer, J. Olson, W. Ostertag. A Family of Now Cobalt-Base permanent Magnet Materials [J]. J. Appl. Phys, 1967, 38:1001.
    [111] K.J. Strant, Cobat-Rare Earth Alloys as Promising New Permanent [J]. Magnet Materials, Cobalt, 1967, 36:133
    [112] K.H.J. Buschow, W. Luiten, P.A. Naastepad, F.F. Westendorp, Magnet material with a (BH)_(max) of 18.5 million gauss oersteds [J]. Philips Tech. Rew., 1968, 29:336-337.
    [113] K.H.J. Buschow, et al., Permanent magnetic materials of rare earth cobalt compounds [J]. Z. Angew. Phys., 1969, 26:157-160
    [114] K.H.J. Buschow, Intermetallic compounds of rare-earth and 3d transition metals [J]. Rep. Prog. Phys., 1977, 40:1179-1256.
    [115] W.A.J.J. Velge and K.H.J. Buschow, Magnetic and crystallographic properties of some rare earth cobalt compounds with CaZn_5 structure[J]. J. Appl. Phys., 1968, 39:1717.
    [116] F. Rothwarf et al., Magnetic anisotropy in the Th(Co_(1-x)Fe_x)_5 and Y(Co_(1-x)Fe_x)_5 systems [J]. Int. J. Magn., 1973, 4:267-271
    [117] H.P. Klein, A. Menth and R.S. Perkins Magnetocrystalline anisotropy of light rare-earth cobalt compounds [J]. Physica B, 1975, 80:153-163
    [118] J.E. Greedan and V.U.S. Rao, An analysis of the rare earth contribution to the magnetic anisotropy in RCo_5 and R_2Co_(17) compounds [J]. J. Solid St. Chem., 1973, 6:387-395
    [119] S.G. Sankar, et al., Magnetocrystalline anisotropy of SmCo_5 and its interpretation on a crystal-field model [J]. Phys. Rev. B, 1975, 11:435.
    [120] K.H.J. Buschow et al., Crystal-field anisotropy of Sm~(3+) IN SmCo_5[J]. Solid St. Commun., 1974, 15:903-906
    [121] K.J. Strnat, Permanent magnets based on 4f-3d compounds, IEEE Trans[J]. Magn., MAG., 1987, 23:2094
    [122] K.H.J. Buschow, W.A.J.J. Velge, Permanent magnetic materials of rare earth cobalt, compounds[J]. Z. Angew. Phys., 1969, 26:157-160
    [123] S. Yajima and M. Hamano, Magnetocrystalline anisotropy of nonstoichiometric Y_(2+x)Co_(17-2x) [J]. J. Phys. Soc. Japan, 1972, 32:861
    [124] K.H.J. Buschow and A.S. van der Goot, Intermetallic compounds in the system samarium-cobalt [J]. J. Less-Common Metals, 1968, 14:323
    [125] J. Deportes, et al., Influence of substitutional pairs of cobalt atoms on the magnetocrystalline anisotropy of cobalt-rich rare-earth compounds [J]. J. Less-Common Metals, 1976,44:273
    [126] N.P. Thuy et al., 3d anisotropy in R-3d intermetallics [J]. J. de Physique, 1988:C8_499-C8_504
    [127] S.G. Sankar et al., Magnetocrystalline anisotropy of SmCo_5 and its interpretation on a crystal-field model [J]. Phys. Rev. B, 1975, 11:435-439
    [128] H.J. Schaller et al., Magnetic characteristics of some binary and ternary 2:17 compounds [J]. J. Appl. Phys., 1972, 43:3161
    [129] N.P. Thuy et al., The magnetocrystalline anisotropy of Y_2(Co_xFe_(1-x))_(17)[J]. J. Magn. Magn. Mat., 1986, 91:554-557
    [130] R.K. Mishra et al., Microstructure and properties of step aged rare earth alloy magnets [J]. J. Appl. Phys., 52 (1981) 2517
    [131] G.C. Hadjipanayis et al., A study of magnetic hardening in Sm(Co_(0.69)Fe_(0.22)Cu_(0.07)Zr_(0.02))_(7.22) [J]. J. Appl. Phys., 1982, 53(3):2386-2388
    [132] M. Sagawa et al., New material for permanent magnets on a base of Nd and Fe [J]. J. Appl. Phys., 1984, 55(6):2083-2087
    [133] J.J. Croat et al., Pr-Fe and Nd-Fe-based materials: a new class of high-performance permanent magnets [J]. J. Appl. Phys., 1984, 55(6):2078-2082
    [134] N.F. Chaban et al., Dopov. Acad Nauk. USSR, Ser. A Fiz[J]. Mat. Tekh. Nauki, 1979, 10:8730.
    [135] Y.C. Yang, B. Kebe, W.J. James, J. Deportes, and W. Yelon, Structural and magnetic properties of Y(Mn_(1-x)Fe_x)_(12) [J]. J. Appl. Phys. 1981, 52(3):2077-2078
    [136] K.H.J. Buschow, Structure and properties of some novel ternary Fe-rich rare-earth intermetallics [J]. J. Appl. Phys. 1988, 63(8):3130-3135
    [137] D.B. de Mooij, K.H. J. Buschow, Some novel ternary ThMn_(12)-type compounds [J]. J. Less-Common Met. 1988, 136:207
    [138] F.R. de Boer, Y.K. Huang, D.B. de Mooij, and K.H. J. Buschow, Magnetic properties of a series of novel ternary intermetallics (RFe_(10)V_2[J]. J. Less-Common Met. 1987 135:199-204.
    [139] D.B. de Mooij, and K.H. J. Buschow, New dlass of ferromagnetic materials: RFe_(10)V_2, Philips [J]. J. Res., 1987,42:246.
    [140] K.H. J. Buschow, D.B. de Mooij, M. Brouha, H.H.A. Smith, and R.C. Thiel, Magnetic properties of ternary Fe-rich rare earth intermetallic compounds[J]. IEEE Trans. Magn. MAG., 1988, 24(2):1611-1616
    [141] P.C. M. Gubbens, A.M. van der Kraan, and K.H. J. Buschow, RFe_(10)V_3 compounds studied by ~(57)Fe, ~(161)Dy, ~(166)Er and ~(169)Tm Mossbauer spectroscopy [J]. Hyperfine Interactions 1988, 40:389-392
    [142] R.B. Helmholdt, J.J.M. Vleggaar, and K.H. J. Buschow, Crystallographic and magnetic structure of TbFe_(10)V_2 and ErFe_(10)V_2 [J]. J. Less-Common Met. 1988,144:209
    [143] R. Verhoef, F.R. de Boer, Z.D. Zhang, and K.H. J. Buschow, Moment reduction in RFe_(12-x)T_x compounds (R = Gd, Y and T = Ti, Cr, V, Mo, W) [J]. J. Magn. Magn. Mat. 1988, 75(3):319-322
    [144] K.H. J. Buschow, Magnetovolume effects in ternary compounds of the type RFe_(12-x)T_x and R_2Fe_(14) C (R equivalent rare earth, T equivalent Ti, V, Cr, Mo, W, Si)[J]. J. Less-Common Met. 1988,144:65-69.
    [145] B.P. Hu, H.S. Li, J.P. Gavigan, and J.M.D. Coey, Intrinsic magnetic properties of the iron-rich ThMn_(12)-structure alloys R(Fe_(11)Ti); R = Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu [J]. J. Phys. Condens. Mat. 1989, 1:755
    [146] K. Ohashi, T. Yokoyama, R. Osugi, et al, The magnetic and structural properties of R-Ti-Fe ternary compounds [J]. IEEE Trans. Magn. MAG, 1987) 23:3101-3103
    [147] G.C. Hadjipanayis, S.H. Aly, F. S. Cheng, Hard magnetic properties of R-Fe-Ti alloys, Appl. Phys. Lett. 1987, 51:2048-2050.
    [148] Y.C. Yang, L.S. Wang, S. H. Sun, et al, Intrinsic magnetic properties of SmTiFe_(10)[J]. J. Appl. Phys. 1988, 63 :3702-3703
    [149] J.M.D. Coey, H. Sun, Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in ammonia [J]. J. Magn. Magn. Mater. 1990, 87: L251-L254
    [150] H. Sun and J. M. D. Coey, Y. Otani, et al. Magnetic properties of a new series of rare-earth iron nitrides: R_2Fe_(17)N_y (y approximately 2.6)[J]. J. Phys.: Condens. Matter 1990, 2:6465-6470
    [151] Y.C.Yang, Q. Pan, X. D. Zhang, et al, Formation and characterization of hard magnetic materials: Pr(Mo,Fe)_(12)N_x [J]. Appl. Phys. Lett. 1992, 61:2723-2725
    [152] M.S.Anagnostou, C.Christides, D.Niarchos, Nitrogenation of the RFe_(10)Mo_2 (R = rare earth) compounds with ThMn_(12) type structure[J]. Solid State Commun. 1991, 78(8):681-684
    [153] M.Endoh, K.Nakamura, H.Mikami, Nd(Fe,Mo)_(12)N_x compounds and magnets[J]. IEEE Trans. Magn. MAG, 1992, 28:2560-2562
    [154] Y. Z. Wang, B. P. Hu, X. L. Rao, et al, Structural and magnetic properties of NdFe_(12-x)Mo_xN_(1-y) compounds [J]. J. Appl. Phys. 1993, 73:6251-6253
    [155] Y.C.Yang, X.D. Zhang, L.S. Kong, et al., Magnetocrystalline anisotropies of RTiFe_(11)N_x compounds[J]. Appl. Phys. Lett., 1991, 58(18):2042-2044.
    [156] Y.C.Yang, X.D. Pei, et al., Theoretical explanations of magnetocrystalline anisotropy behaviors in RTiFe_(11)N_x compounds[J]. J. Appl. Phys. 1991,70 (10):6574-6576
    [157] J. Yang, S.Z. Dong, W.H. Mao, et al., The effect of hydrogen disproportionation, desorption, and recombination on the structure and magnetic properties of Sm_2Fe_(17)N_x and NdFe_(10)Mo_2N_x compounds[J]. J. Appl. Phys. 1994,76(10):6053-6055.
    [158] S.S.Jaswal, W.B.Yelon, G.C.Hadjipanayis, et al, Electronic and Magnetic structure of the Rare earth compounds R_2Fe_(17)N_x [J]. Phys. Rev. Lett. 1991, 67:644-647
    [159] S. J. Collocott, R. K. Day, J. B. Dunlop, and R. L. Davis, in Proceedings of the 7th International Symposium on Magnetic Anisotropy and Coercivity in R-T Alloys[J]. Canberra. July, 1992, p437.
    [160] J. M. Cadogan, H.-S.Li, R. L. Davis, A. Margarian, J. B. Dunlop, and P. B. Gwan, Structural and magnetic properties of Nd_2(Fe,Ti)_(19) [J]. J. Appl. Phys. 1994, 75(10):7114-7116
    [161] H.S. Li, Suharyana, J.M. Cadogan, et al., Magnetic properties of a novel Pr-Fe-Ti phase [J]. J. Appl. Phys., 1994, 75 (10) 7120-7121
    [162] H.-S. Li, J. M. Cadogan, R. L. Davis, A. Margarian, and J. B. Dunlop, Structural properties of a novel magnetic ternary phase: Nd_3(Fe_(1-x)Ti_x)_(29) (0.04<=x<=0.06)[J]. Solid State Commun. 1994, 90(8):487-492
    [163] C. D. Fuerst, F. E. Pinkerton, J. F. Herbst, On the formation of NdFe_(9.5-x)T_x compounds (T = Ti, Cr, Mn)[J]. J. Magn. Magn. Mater. 1994, 129(2-3):L115-L119
    [164] O. Kalogirou, V. Psycharis, L. Saettas, et al. Existence range, structural and magnetic properties of Nd_3Fe_(27.5)Ti_(1.5-y)Mo_y and Nd_3Fe_(27.5)Ti_(1.5-y)Mo_yN_x (0.0 ≤y≤ 1.5)[J]. J. Magn. Magn. Mater. 1995, 146 (3):335-345.
    [165] D. Courtois, D. Givord, B. Lambert-Andron, E. Bourgeat-Lami, Y. Amako, H.-S. Li, J. M. Cadogan, X-ray and magnetic single-crystal analysis of the crystallographic structure of the Y_3Fe_(0.933)V_(0.067))_(29) compound [J]. J. Magn. Magn. Mater, 1998, 189(2): 173-182
    [166] H. Pan, Y. Chen, X. Han, C. Chen, F. Yang, Structural characterization of the ternary phase R_3(Fe,Mo)_(29) (R = rare earth)[J]. J. Magn. Magn. Mater., 1998, 185(1) :77-84
    [167] F.M. Yang, B. Nasunjilegal, J.L. Wang, H.G. Pan, W.D. Qing, R.W. Zhao, B.P. Hu, Y.Z. Wang, G.C. Liu, H.S. Li, and J.M. Cadogan, Magnetic properties of a novel Sm_3(Fe,Ti)_(29)N_y nitride [J]. J. Appl. Phys. 1994, 76(3):1971-1973
    [168]B.P.Hu, G.C. Liu, Y.Z. Wang, B. Nasunjilegal, R.W. Zhao, F.M. Yang, H.S. Li, and J. M. Cadogan, A hard magnetic property study of a novel Sm_3(Fe,Ti)_(29)Ny nitride[J]. J. Phys.: Condens. Matter., 1994, 6:L197-L200
    [169]潘洪革,浙江大学博士学位论文[C],1996
    [170]V. Papaefthymiou, F.M. Yang et al., Mossbauer studies of R_3(Fe, Ti)_(29) compounds[J]. J. Magn. Magn. Mater., 1995, 140-144:1101-1102
    [171]J.M. Cadogan et al., New rare-earth intermetallic phases R_3(Fe,M)_(29)X_n: (R=Ce, Pr, Nd, Sm, Gd; M=Ti, V, Cr, Mn; and X=H, N, C) [J]. J. Appl. Phys., 1994, 76(10):6138-6143
    [172]X.F. Han, J.L. Wang, et al., Magnetohistory effects and spin reorientations of Nd_3Fe_(29-x)T_x and Nd_3Fe_(29-x)T_xN_4 (T = V and Cr) compounds[J]. J. Appl. Phys., 1997, 81(8):5170-5172.
    [173]J. F. Hu, Y. Z. Wang, Volume expansion and Curie temperature enhancement in R_3(Fe, M)_(29)Z_x (M = Cr, Ti, and Z = N, C) compounds[J]. Journal of Alloys and Compounds 1999, 284:308-311
    [174]肖慎修,王崇德,陈天朗,密度泛函理论的离散变分方法在化学和材料物理学中的应用[M],北京:科学出版社,1998
    [175]肖慎修,量子化学中的离散变分αX方法及计算程序[M],成都:四川大学出版社,1986
    [176]唐敖庆,量子化学,北京:科学出版社[M],1982
    [177]谢希德,陆栋,固体能带理论[M],上海:复旦大学出版社,1998,P1-18
    [178]L. H. Thomas, The calculation of atomic fields[J], Proc. Camb. Soc., 1927, 23:542-548
    [179]E. Fermi, Rend. Accad. Lincei[M], 1927, 6: 602-607
    [180]P. Hohenberg and W. Kohn, Inhomogeneous electron gas[J]. Phys. Rev. 1964,136: B864-B871
    [181]W. Kohn and L. J. Sham, Self-Consistent equations including exchange and correlation effects[J]. Phys. Rev., 1965,140: A1133-A1138
    [182]A. S. Joseph and A. C. Thorsen, De Haas-van Alphen effect and fermi surface in rhenium[J]. Phys. Rev., 1964,133: A1546-A1552
    [183]Thomas L S. Proc Cambridge Philos Soc[M], 1927,23: 542
    [184]Desclaux J P, Pyykk(?) P. Dirac-Fock one-centre calculations. The molecules CuH, AgH and AuH including p-type symmetry functions[J]. Chem Phys Lett,1976, 39:300-303.
    [185]Pyykk(?) P, Desclaux J P. Relativity and the periodic system of elements[J]. Acc Chem. Res, 1979, 12:276-281
    [186]Pyykk(?) P. Relativistic Effects in Structural Chemistry[J]. Chem Rev, 1988, 88: 563-594
    [187]H(?)kkinen H, Moseler M, Landman U. Bonding in Cu, Ag, and Au Clusters: Relativistic Effects, Trends, and Surprises[J]. Phys Rev Lett, 2002, 89: 033401-033404
    [188] Furche F, Ahlrichs R, et al. The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations [J]. J Chem Phys, 2002, 117:6982-6989
    [189] Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys Rev B, 1964, 136:B864-B871
    [190] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys Rev, 1965, 140(4A): Al 133-A1138
    [191] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys Rev A, 1988, 38: 3098-3100
    [192] Burke K, Perdew J P, Wang Y. Electronic Density Functional Theory: Recent Progress and New Directions[J]. 1998, Ed. J. F. Dobson, G. Vignale, and M. P. Das, Plenum .
    [193] Adamo C, Barone V. Exchange functional with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models[J]. J Chem Phys, 1998, 108: 664-675
    [194] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys Rev Lett, 1996, 77: 3865-3868
    [195] Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Phys Rev B, 1986, 33: 8822-8824.
    [196] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys Rev B, 1988, 37: 785-789
    [197] Filippi C, Umrigar C J, Taut M. Comparison of exact and approximate density functional for an exactly soluble model[J]. J Chem Phys, 1994, 100: 12901-12907
    [198] Xu X, Goddard III W A. From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties[J]. Proc Natl Acad Sci USA, 2004, 101: 2673-2677
    [199] Perdew J P, Kurth S, et al. Accurate Density Functional with Correct Formal Properties:A Step Beyond the Generalized Gradient Approximation[J]. Phys Rev Lett, 1999, 82:2544-2547.
    [200] Tao J, Perdew J P, Staroverov V N, et al. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids[J]. Phys Rev Lett, 2003, 91: 146401-146405.
    [201] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem Phys, 1993, 98: 5648-5652.
    [202] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys Rev Lett, 1997, 78: 1396-1397
    [203] Koch W, Holthausen M C. A Chemist's Guide to Density Functional Theory[M]. 2001, Wiley-VCH.
    [204] Ernzerhof M, Scuseria G E. Assessment of the Perdew-Burke-Ernzerh of exchange-correlation functional[J]. J Chem Phys, 1999, 110: 5029-5036
    [205] Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys, 1990, 92: 508-517.
    
    [206] Delley B. Analytic energy derivatives in the numerical local-density-functional approach[J], J Chem Phys, 1991, 94: 7245-7250
    [207] Perdew John P, Wang Y, et al. Accurate and simple analytic representation of theelectron-gas correlation energy[J]. Phys Rev B, 1992,45(23): 13244-13249
    [208] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis[J]. Canadian Journal of Physics, 1980,58(8): 12001-12011.
    [209] P. M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels[J]. Phys. Rev. 1929, 34:57-64.
    [210] H.G. Pan, F.M.Yang, C.P.Chen, X.F.Han, N.Tang, J.F.Hu, J.L.Wang, R.W.Zhao, K.W. Zhou, Q.D.Wang, Formation and mahnetic properties of R_3(Fe, Mo)_(29) intermetallic compounds (R = Nd, Sm and Gd) [J]. J.Magn.Magn.Mater, 1996, 159:352-356
    [211] M. Bom and K. Huang, Dynamical Theory of Crystal lattices[M] (Oxford University Press, Clarendon, 1954
    [212] A. Sanchez, S. Abbet, U. Heiz, W. D. Schneider, H. Hakkinen, R. N. Bamett, and U. Landman, When Gold Is Not Noble: Nanoscale Gold Catalysts[J]. J. Phys. Chem. A., 1999,103:9573-9578
    [213] M. Schmidt, C. Ellert, W. Kronmuller, and H. Haberland, Temperature dependence of the optical response of sodium cluster ions Na_n~+, with 4<~n<~16[J]. Phys. Rev. B, 1999, 59:10970-10979
    [214] J.P. Bucher, D.C. Douglass, L.A. Bloomfield, Magnetic properties of free cobalt clusters[J]. Phys. Rev. Lett ,1991, 66:3052-3055
    [215] I.M.L. Billas, A. Chatelain, W.A. de Heer, Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters[J]. Science., 1994,265:1682-1684
    [216] Qing-Min Ma, Zun Xie, Jing Wang, Ying Liu, You-Cheng Li Structures, stabilities and magnetic properties of small Co clusters[J]. Phys. Lett. A, 2006, 358:289-296
    [217] Shunfang Li, Haisheng Li, Jing Liu, Xinlian Xue, Yongtao Tian, Hao He, and Yu Jia, Structural and electronic properties of Ru_n clusters (n=2-14) studied by first-principles calculations[J]. Phys. Rev. B., 2007,76:045410-045419
    [218] Wenqin Zhang, Haitao Zhao, and Lichang Wang, The Simple Cubic Structure of Ruthenium Clusters[J]. J. Phys. Chem. B., 2004, 108:2140-2147
    [219] Young-Cho Bae, Vijay Kumar, Hiroki Osanai, and Yoshiyuki Kawazoe, Cubic magic clusters of Rhodium stabilized with eight-center bonding: Magnetism and growth[J]. Phys. Rev. B., 2005, 72:125427-125432; Nonicosahedral growth and magnetic behavior of rhodium clusters[J]. Phys. Rev. B., 2004,70:195413-195419
    [220] Wenqin Zhang, Li Xiao, Yasuhiro Hirata, Tiffany Pawluk and Lichang Wang, The simple cubic structure of Ir clusters and the element effect on cluster structure[J]. Chem. Phys. Lett, 2004, 383:67-71
    [221] M. A. Baldo. M.B.Thompson, and S.R.Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer[J]. Nature (London)., 2000, 403:750-753
    [222] Habar, S. Ouannasser, L. Stauffer, H. Dreysse and L.T. Wille, Stability of small iridium clusters near the Ir(111) surface[J]. Surf. Sci., 1996, 352:5-8
    [223] Tsu-Yi Fu and Tien T. Tsong, Structure and diffusion of small Ir and Rh clusters on Ir(001) surfaces [J]. Surf. Sci., 1999,421:157-166
    [224]S. C. Wang and Gert Ehrlich, Atomic jump lengths in surface diffusion: Re, Mo, Ir, and Rh on W(211) [J]. J. Chem. Phys, 1989,91:5087-5096
    [225]S.C. Wang and Gert Ehrlich, Equilibrium shapes and energetics of iridium clusters on Ir(111) [J]. Surf. Sci., 1997, 391:89-100
    [226]M. Okumura, Y. Irie, Y. Kitagawa, T. Fujitani, Y. Maeda, T. Kasai and K. Yamaguchi, DFT studies of interaction of Ir cluster with O_2, CO and NO[J]. Catalysis Today., 2006, 111:311-315
    [227]C. M. Chang and C. M. Wei, Modeling of Ir adatoms on Ir surfaces[J]. Phys. Rev. B., 1996,54:17083-17096
    [228]Chonglin Chen and Tien T, Tsong, Behavior of Ir atoms and clusters on Ir surfaces[J]. Phys. Rev. B., 1990,41:12403-12412
    [229]J. N. Feng, X.R. Huang and Z. X. Li, A theoretical study on the clusters Ir_n with n = 4, 6, 8, 10[J]. Chem. Phys. Lett., 1997, 276:334-338
    [230]张材荣,许广济,寇生中,陈宏善,Irn(n=2-25)团簇基态结构的遗传算法研究[J].原子与分子学报,2006,23:122-126
    [231]R. B. King, Metal cluster topology. 19. Fused octahedra and trigonal bipyramids in iridium carbonyl clusters[J]. Inorg. Chim. Acta., 2002,334:34-44
    [232]Watzky, M. A.; Finke, R. G. Nanocluster Size-Control and "Magic Number" Investigations. Experimental Tests of the "Living-Metal Polymer" Concept and of Mechanism-Based Size-Control Predictions Leading to the Syntheses of Iridium(0) Nanoclusters Centering about Four Sequential Magic Numbers[J]. Chem. Mater. 1997, 9(12):3083-3095.
    [233]Bonet, F.; Delmas, V.; Grugeon, S.; Herrera Urbina, R.; Silvert, P.-y.; Tekaia-Elhsissen K. Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol [J] Nanostructured Mater. 1999, 11 (8): 1277-1284
    [234]Jing Wang, Qing-Min Ma, Zun Xie, Ying Liu, and You-Cheng Li , From SinNi to Ni@Sin: An investigation of configurations and electronic structure[J]. Phys. Rev. B., 2007,76:035406-035413
    [235]D. B. Zhang and J. Shen, Ground state, growth, and electronic properties of small lanthanum clusters[J]. J. Chem. Phys., 2004, 120:5104-5109
    [236]B. Delley, From molecules to solids with the DMol~3 approach[J]. J. Chem. Phys., 2000, 113:7756-7764
    [237]P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77:3865-3868
    [238]R. S. Mulliken, Electronic Population Analysis on LCAO-MO Molecular Wave Functions. Ⅱ. Overlap Populations, Bond Orders, and Covalent Bond Energies[J]. J. Chem. Phys., 1955, 23:1841-1846
    [239]W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects Phys. Rev., 1965, 140:A1133-A1138
    [240]M. Schl(?)ter and L. J. Sham, The birth of elementary-particle physics[J]. Phys.Today.,1982,35:36-43
    [241]B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J. Chem. Phys., 1990, 92:508-517
    [242] Z. J. Wu, B. Han, Z. W. Dai and P. C. Jin, Electronic properties of rhenium, osmium and iridium dimers by density functional methods[J]. Chem.Phys.Lett. 2005,403:367-371
    [243] J. L. Jules, J. R. Lombardi, Transition Metal Dimer Internuclear Distances from Measured Force Constants[J]. J. Phys. Chem. A., 2003, 107:1268-1273
    [244] S. D. Maloncy, F. B. M. van Zon, M. J. Kelley, D. C. Koningsbegger, B. CGates, A well-defined supported metal catalyst: Ir_4/MgO [J]. Caral. Lett. 1990, 5(2): 161-168
    [245] S. D. Maloncy, M. J. Kelley, D. C. Koningsbegger and B. C. Gates, Hexanuclear iridium clusters supported on magnesium oxide [J]. J. Phys. Chem. 1991, 95(23):9406-9411
    [246] Z. Xu, F. S. Xiao, S. K. Purnell, O. Alexeev, S. Kawi, S. E. Deutsch, B.C. Gates, Size-dependent catalytic activity of supported metal clusters[J]. Nuatre., 1994, 372:346-348
    [247] D.M.Wood, Classical Size Dependence of the Work Function of Small Metallic Spheres[J]. Phys. Rev. Lett., 1981,46:749-749
    [248] V. Kumar, K. Esfarjani, and Y. Kawazoe, In Clusters and Nanomaterials[M]. edited by Y. Kawazoe, T. Kondow, and K. Ohno(Springer, Heidelberg, 2002, p. 9
    [249] Hannu Hakkinen and U. Landman, Gold clusters (Au_N, 2<~N<~10) and their anions[J]. Phys. Rev. B., 2000,62:2287-2290
    [250] Wei Fa, Chuanfu Luo and Jinming Dong, Bulk fragment and tubelike structures of Au_N (N=2-26) [J]. Phys. Rev. B., 2005, 72:205428-205431
    [251] J. L. Wang, G. H. Wang, and J. J. Zhao, Structure and electronic properties of Ge_n (n=2-25) clusters from density-functional theory[J]. Phys. Rev. B., 2001, 64:205411-205415
    [252] P. Pyykko, Relativistic effects in structural chemistry[J]. Chem. Rev., 1988, 88:563-594
    
    [253] C. M. Chang, and M.Y. Chou, Alternative Low-Symmetry Structure for 13-Atom[J]. Metal ClustersPhys. Rev. Lett, 2004,93:133401-133404
    [254] S. F. Li and X. G. Gong, Neutral and negatively charged Al_(12)X(X=Si, Ge, Sn, Pb) clusters studied from first principles[J]. Phys. Rev. B., 2006,74:045432-04536
    [255] G. Bravo-Perez, I.L. Garzon, O. Novaro, Chem. Non-additive effects in small gold clusters[J]. Phys. Lett. 1999, 313:655-664
    [256] I. Makkonen, P. Salo, M. Alatalo, T.S. Rahman, Ab initio studies of stepped Pd surfaces with and without S[J]. Phys. Rev. B., 2003, 67:165415-165423
    [257] J.M. Seminario, C.E. De La Cruz, P.A. Derosa, A Theoretical Analysis of Metal-Molecule Contacts[J]. J. Am. Chem. Soc, 2001,123:5616-5617
    [258] M. Valden, J. Aaltonen, E. Kuusisto, M. Pessa, and C. J. Barnes, Molecular beam studies of CO oxidation and CO-NO reactions on a supported Pd catalyst[J]. Surf. Sci. 1994, 307:193-198
    [259] M. Che and C. O. Bennett, The influence of particle size on the catalytic properties of supported metals[J]. Adv. Catal. 1989, 36:55-172
    [260] G. D. Zakumbaeva, N. F. Toktobaeva, A. G. Kubasheva, and I. G. Efremenko, [J]. Nefrekhimiya., 1994, 34:258 (in Russian).
    [261] C. Sousa, V. Bertin, F. Mas, Theoretical Study of the Interaction of Molecular Hydrogen with PdCu(111) Bimetallic Surfaces[J]. J. Phys. Chem. B., 2001,105:1817-1822.
    [262] J.A. Rodrigues, Physical and chemical properties of bimetallic surfaces[J]. Surf. Sci. Rep. 1996,24:223-287
    [263] F. Illas, N. Lopez, J.M. Ricart, A. Clotet, J.C. Conesa, M. Fernandez-Garcia, Interaction of CO and NO with PdCu(111) Surfaces[J]. J. Phys. Chem. B., 1998, 102:8017-8023
    [264] D. C. Douglass, J. P. Bucher, and L. A. Bloomfield, Magnetic studies of free nonferromagnetic clusters[J]. Phys. Rev. B., 1992, 45:6341-6344
    [265] A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A. Bloonfield, Magnetism in 4d-transition mental clusters[J]. Phys. Rev. B., 1994, 49:12295-12298
    [266] T. Taniyama, E. Otha, and T. Sato, Observation of 4d ferromagnetism in free-standing Pd fine particles[J]. Europhys. Lett. 1997, 38:195-200
    
    [267] Guoli Qiu, Mei Wang, Guili Wang, Xianfeng Diao, Dongqiu Zhao, Zuliang Du, Yuncai Li, Structure and electronic properties of Pd_n clusters and their interactions with single S atom studied by density-functional theory[J]. J. Mol. Struct.:THEOCHEM., 2008, 861:131-136
    
    [268] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys. Rev., 1965,140:A1133-A1138
    [269] M. Schluter and L. J. Sham, The birth of elementary-particle physics[J]. Phys Phys. 1982, Today35:36-43
    [270] B. Delley, From molecules to solids with the DMol~3 approach[J]. J. Chem. Phys., 2000, 113:7756-7764
    [271] Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev. B., 1992,45:13244-13249,
    [272] Chinagandham Rajesh, Chiranjib Majumder, Atomic and electronic structures of neutral and charged Pb_n clusters (n=2-15): Theoretical investigation based on density functional theory[J]. J. Chem. Phys., 2007,126:244704-244711
    [273] W. Suski, A. Czopnik, K. Gofryk, M. Solyga, K. Wochowski, T. Mydlarz, UCu_(4+x)Al_(8-x) and its derivatives[J]. Solid State Sci. 2005,7:784-790.
    [274] N.X. Chen, J. Shen and X.P. Su, J. Phys.: Theoretical study of the phase stability, site preference and lattice parameters for Gd(Fe, T)_(12)[J]. condens. Matter., 2001, 13:2727-2736
    [275] P. Qian, N.X. Chen and J. Shen, "Investigation of structural stability and site preference of Dy(Fe,T)_(12) and Dy(Fe,T)_(12)N_x (T = Ti, V, Cr, Nb, Mo)" [J]. Intermetallics, 2005, 13:778-783
    [276] J. Shen, P. Qian, N.X. Chen, Model. "Atomistic simulation on phase stability and site preference of R_2(Co,Mn)_(17) (R = Nd, Sm, Gd)" [J]. Simul. Mater. Sci. Eng.., 2005, 13:239-247.
    J. L. Wang, S. J. Campbell, O. Tegus, C. Marquina and M. R. Ibarra, Magnetovolume effect and magnetic properties of Dy_2Fe_(17-x)Mn_x[J]. Phys. Rev. B., 2007, 75:174423-174432.
    [277] P. Qian, N.X. Chen and J. Shen, "Theoretical study on the structural properties for (La_(1-x)R_x)_2Co_(17-y)Ti_y (R = Sm, Nd)" [J]. J. Alloy. Comp. 2004,377:66-71;
    B. Fuquan, O. Tegusa, W. Dagula, E. Brack, J.C.P. Klaasse, K.H.J. Buschow, Investigation of the R_2S_3-Cu_2S-PbS (R = Y, Dy, Ho and Er) systems[J]. J. Alloy. Comp. 2007, 431:73-84.
    [278] H. Chang, N.X, Chen, J.K. Liang, and G.H. Rao. Theoretical study of the phase forming of NaZn_(13)-type rare-earth intermetallics[J]. J. Phys: Condens. Matter., 2002, 14:1-12.
    [279] P. Qian, N.X. Chen and J. Shen, "Structural imitation and lattice vibration of R_2Co_(17-x)Mn)x (R = Dy, Ho)" [J]. Physics Letter A., 2005, 335:464-470; J.L. Wang, S.J. Campbell, C. Marquina, M.R. Ibarra, Magnetovolume effects in Dy_2Fe_(17-x)Mn_x [J]. J. Magn. Magn. Mater. 2007, 310:e569-e571.
    [280] N.X, Chen, J. Shen and X.L. Wang, Atomistic study of the phase stability and site preference for Gd_3(Fe, M)_(29) (T = V, Ti, Cr, Mo, Cu, Ag) [J]. J. Alloy Comp. 2003, 359:91-98.
    [281] W.X. Li, L.Z. Cao, J. Shen, N.X. Chen, B.D. Liu, J.L. Wang, G.H. Wu, F.M. Yang, and Y.X. Li, Effect of Mo content on the structure stability of R_3(Fe,Co,Mo)_(29)[J]. J. Appl. Phys. 2003,93:6921-6923
    [282] L.Z. Cao, N.X. Chen and J. Shen, Theoretical study of the phase stability and site preference for R_3(Fe, T)_(29) (R = Nd, Sm; T = V, Ti, Cr, Cu, Nb, Mo, Ag) [J]. J. Alloys Comp. 2002, 336:18-28
    [283] S.Q. Hao, N.X. Chen and J. Shen, Atomistic study on the structure and Curie temperature for Nd_2Fe_(17-x)Cr_x ,J. Magn. Magn. Mater[J]. J. Magn. Magn. Mater., 2002, 246:115-123.
    
    B. Fuquan, J.L. Wang, O. Tegusa, W. Dagula, N. Tang, W.Q. Wang, F.M. Yang , E. Brack, F.R. de Boer, K.H.J. Buschow, Magnetic properties of Sm_2Co_(17-x)Cr_x (0 ≤ x ≤ 3.0) compounds[J]. J. Alloy. Comp., 2004, 377:78-81
    [284] N.X. Chen, Modified Mobius inverse formula and its applications in physics[J]. Phys. Rev. Lett., 1990, 64:1193-1195.
    [285] N.X. Chen, Z.D. Chen, Y.C. Wei, Multidimensional inverse lattice problem and a uniformly sampled arithmetic Fourier transform[J]. Phys. Rev. E., 1997, 55 (1):R5-R8
    [286] S. Zhang, N.X. Chen. Ab initio interionic potentials for Nacl by multiple lattice inversion[J]. Phys Rev B., 2003,66:064106-064105
    [287] S. Zhang, N.X. Chen. Lattice inversion for interionic pair potmtials[J]. J Chem Phys., 2003,118:3974-3982
    [288] Y. Liu, N.X. Chen, Y.M. Kang, Virtual Lattice Technique and the Interatomic Potentials of the Zinc- blend- type Binary Compounds[J]. Mod Phys Lett B., 2002, 16:187-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700