用户名: 密码: 验证码:
溶胶—凝胶法制备Al掺杂ZnO纳米颗粒膜及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种新型的宽禁带半导体材料,室温时禁带宽度为3.4eV,具有六角纤锌矿结构。ZnO薄膜由于具有优异的压电、光电、气敏、压敏等特性,近年来受到广泛关注。Al~(3+)掺杂的ZnO(简称AZO)薄膜因其具有优良的光电性能已成为研究热点之一。此外,ZnO是对人体完全无毒的绿色材料,其在生物方面的应用也极具潜力。随着纳米技术和薄膜技术的飞速发展,研究发现独特的极性晶体结构使ZnO具有形态各异的纳米结构,并随之产生许多奇特的光学特性和量子效应,极大的提高了器件的性能。因此,ZnO低维材料的应用研究已经成为当前的热点,具有重要的实际意义。
     本文采用溶胶-凝胶法,选择二水合乙酸锌(Zn(CH_3COO)_2·2H_2O)作为前驱体,无水乙醇为溶剂,乙醇胺(MEA)作为络合剂(ZnAc∶MEA=1∶1.5),硝酸铝(Al(NO_3)_3·9H_2O)作为Al掺杂来源,配制出锌离子浓度为0.8mol/L并具有不同Al掺杂浓度(0~10%)的透明均质溶胶。分别在玻璃和硅片衬底上成功制备出ZnO薄膜,平均晶粒尺寸在纳米级别。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、电阻率测量、紫外-可见光透射光谱的表征和分析,研究了掺杂对ZnO薄膜结晶状态、电阻率、能带结构的影响。
     结果表明,使用溶胶-凝胶法在非晶玻璃和Si(100)衬底上制备了c轴择优取向生长的AZO薄膜,薄膜为众多纳米颗粒构成的纳米颗粒薄膜。不同浓度的Al掺杂(1-10%)均能提高其导电性能,Al掺杂浓度为1-2%时ZnO薄膜Al掺杂水平相对较高,电阻率显著降低,在掺杂浓度为2%时具有最小值0.671Ω·cm。SEM显示,Al含量的增加使薄膜的平均晶粒尺寸明显减小,掺杂浓度较高(7-10%)时,Al掺杂会影响ZnO薄膜的结晶状态。分析认为,未形成掺杂的Al原子以非晶Al_2O_3的形式在ZnO晶界上形成了对晶界运动的钉扎,导致晶粒尺寸的减小;杂质含量增加与晶粒细化的竞争使Al在ZnO薄膜中的掺杂水平存在极限。Al掺杂会对ZnO的能带结构产生影响,使其在紫外光区的透射率有所增加。
ZnO is a novel kind of semiconductor material,which has hexagonal wurtzite cystal structure,with a wide band-gap of 3.4eV at room temperature.The Al~(3+)-doped ZnO(AZO) thin films have become one of the focuses research because of its excellent optical and electrical properties.ZnO is a green material that is absolutely nontoxic for human being and it is favorable for the potential application in biomaterials.With the fast development of nanotechnology and thin films technology,it is found that due to the unique polar crystal structure,ZnO has rich nanostructures,which bring many peculiar optical properties and quantum effect.This can extremely improve the devices performance.Thus,application researches on low dimensional ZnO materials have become hot topics and have significant values.
     In this paper,ZnO thin films were prepared by sol-gel method. Zn(CH_3COO)_2·2H_2O was employed as the precursor,anhydrous alcohol was the solvent,monoethanolamine was the complexant(ZnAc:MEA=1:1.5) and Al(NO_3)_3·9H_2O was used as the source of the Al-dopant in the experiment to yield the transparent and homogeneous solution with the density of the Zn ion of 0.8 mol/L and different Al-doping concentration from 0-10%.The nanocrystalline ZnO thin films have been successfully prepared with the average grain size in nanoscale,on the substrate of glass and n-type Si(100) wafer respectively.The effect of the doping proportion on the crystallization,electric resistivity and energy band structure of the ZnO thin film were characterized by X-ray diffraction(XRD),scanning electron mocroscope(sem),the electric resistivity measurement and the ultraviolet-visible transmission spectra(UV-Vis).
     The results show that Preferential c-axis oriented AZO thin films were fabricated on the amorphous glass and n-type Si(100) substrates by sol-gel method.The films are the nanocrystalline thin films,which are composed by many nanograins.The conductivity of the films can be improved with different dopant concentration(1-10%). the doping proportion in the ZnO films is relatively high while the Al-doping concentration is 1-2%and the crystallization of the Al-doped ZnO thin films would be affected when the doping concentration lifted(7%-10%).The Al-doping can dramatically decrease the electric resistivity and the minimum value of 0.671Ω·cm was detected with the doping concentration of 2%.EDX mapping shows that the Al component undoped into ZnO lattice is rich on the grain boundary.It is presented that the Al atoms may form a state of amorphous Al_2O_3 and pin the movement of ZnO grain boundary,which leads to the decrease of grain size.The competition between the dopant contents increase and the grain refining makes the Al-doping in ZnO thin film has a maximum.Moreover,the Al-doping can also influence the energy band structure of the ZnO thin film,which increases the transmittivity of the film in the ultraviolet region.
引文
1.S.Nakamura,N.Iwasa,M.Senoh,T.Mukai.Hole compensation mechanism of p-type GaN Films[J],Jpn.J.Appl.Phys.1992,31:1258-1266.
    2.D.C.Reynolds,D.C.Look,B.Jogai.Optically pumped ultraviolet lasing from ZnO[J],Solid State Communications,1996,99(12):873-875.
    3.P.Zu,Z.K.Tang,G.K.L.Wong,M.Kawasaki,A.Ohtomo,H.Koinuma,Y.Segawa.Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature[J],Solid State Communications,1997,103(8):459-463.
    4.F.Robert.Will UV lasers beat the blues[J],Science,1997,276:895.
    5.D.P.Norton,Y.W.Heo,M.P.lvill,K.lp,S.J.Pearton,M.F.Chisholm,T.Steiner.ZnO:growth,doping and processing[J],Materials Today,2004,Jun:34-40.
    6.U.Ozgur,Ya.I.Alivov,C.Liu,A.Teke,M.A.Reshchikov,S.Dogan,V.Avrutin,S.-J.Cho,H.Morkoc.A comprehansive review of ZnO materials and devices[J],J.Appl.Phys.2005,98:041301.
    7.Jun Zhou,Ningsheng Xu,Zhong L.Wang.Dissolving Behavior and Stability of ZnO Wires in Biofluids:A Study on Biodegradability and Biocompatibility of ZnO Nanostructures[J],Adv.Mater.2006.18:2432-35.
    8.李玲,向航.功能材料与纳米材料,北京:化学工业出版社,2002
    9.Paul A.T.近代物理基础及其应用[M].上海:科学技术出版社,1981
    10.王正行.现代物理学[M].北京:北京大学出版社,1995
    11.史斌星.量子物理学[M].北京:清华大学出版社,1982
    12.周琼.纳米科学技术及纳米材料简介[C],见:2000,全国纺织品保健技术交流研讨会论文集
    13.M.H.Huang,S.Mao,H.Feick,et al.Room-temperature ultraviolet nanowire nanolasers[J].Science,2001,292:1897-1899.
    14.Y.W.Zhu,H.Z.Zhang,X.C.Sun,et al.Efficient field emission from ZnO nanoneedle arrays[J].Appl Phys Lett,2003,83:144-146.
    15.Z.W.Pan,Z.R.Dai,and Z.L.Wang,Nanobelts of semiconducting oxides[J].Science,2001,291:1947-1949.
    16.X.Y.Kong,Y.Ding,R.Yang,and Z.L.Wang,Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J].Science,2004,303:1348-1351.
    17.Zhong Lin Wang.Nanostructures of zinc oxide[J],Materials Today,2004,June:24-33.
    18.Ha.Yan,R.He,J.Johnson,et al.Dendritic nanowire ultraviolet laser array[J].J Am Chem Soc,2003,125:4728-4729.
    19.J.T.Lao,J.Y.Huang,D.Z.Wang,et ai.ZnO Nanobridges and Nanonails[J].Nano Lett,2003,3:235-238.
    20.H.T.Ng,J.Li,M.K.Smith,et al.Growth of epitaxial nanowires at the junctions of nanowalls [J].Science 2003,300:1249.
    21.Baik D Gcho S M.Application of sol-gel derived films for ZnO/n-Si junction solar cells Thin Solid Films,1999,354:227.
    22.Nakanishi Y,Miyake A,Kominami H,et al.Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation Applied Surface Science,1999,142:233.
    23.Suzuoki Y,Ohki A,Mizutani T,et al.Electrical properties of ZnO-Bi2O3 thin-film varistors.J.Phys.D:Appl.Phys,1987,20:511.
    24.Lin Feng-Gang,Takao Y,et el.J.Am.Ceram.Soc,1995,78(9):2301.
    25. Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang. Nanobelts of semiconducting oxides[J], Science, 2001,291: 1947-1947.
    26. B. J. Kwon, H. S. Kwack, S. K. Lee, Y. H. Cho, D. K. Hwang, and S. J. Park. Optical investigation of p-type ZnO epilayers doped with different phosphorus concentrations by radio-frequency magnetron sputtering[J], Appl. Phys. Lett. 2007,91: 061903.
    27. L. Han, F. Mei, C. Liu, C. Pedro, E. Alves. Comparison of ZnO thin films grown by pulsed laser deposition on sapphire and Si substrates[J], Physica E, 2008, 40(3): 699-704.
    28. U. Alver, T. Kilinc, E. Bacaksiz, T. Kücük(o|¨)meroglu, S. Nezir, f.H. Mutlu, F. Asian. Synthesis and characterization of spray pyrolysis Zinc Oxide microrods[J], Thin Solid Films, 2007, 515(7-8): 3448-3451.
    29. Mitch M.C. Chou, Liuwen Chang, Hsiao-Yi Chung, Teng-Hsing Huang, Jih-Jen Wu,Chun-Wei Chen. Growth and characterization of nonpolar ZnO (1010) epitaxial film on γ-LiAlO_2 substrate by chemical vapor deposition[J], Journal of Crystal Growth, 2007, 308(2): 412-416.
    30. Bi Zhen, Zhang Jingwen, Yang Xiaodong, Wang Dong, Zhang Xin'an, Zhang Weifeng, Hou Xun. Optical and structural properties of self-assembled ZnO QD chains by L-MBE[J], Journal of Crystal Growth, 2007,303(2): 407-413.
    31. Debasis Bera, Lei Qian, Subir Sabui, Swadeshmukul Santra, Paul H. Holloway. Photoluminescence of ZnO quantum dots produced by a sol-gel process[J], Optical Materials, 2008,30(8): 1233-1239.
    32. Young Yi Kim, Si Woo Kang, Bo Hyun Kong, Hyung Koun Cho. Epitaxial growth of high-temperature ZnO layers on sapphire substrate by magnetron sputtering[J], Physica B: Condensed Matter, 2007,401-402(15): 408-412.
    33. Zhen Guo, Dongxu Zhao, Yichun Liu, Dezhen Shen, Jiying Zhang, BinghuiLi. Visible and ultraviolet light alternative photo detector based on ZnO nanowire/n-Si heterojunction[J]. Appl. Phys. Lett. 2008,93: 163501.
    34. Chopra K L, Major S, Pandya D K. Transparent Conductors-A Status Review[J], Thin Solid Films,1983,102:l-46
    35. Aktaruzzaman A F, Sharma G L, Malhotra L K. Electrical, Optical and Annealing characteristics of ZnO:Al films prepared by spray pyrolysis [J] ,Thin solid Films,1991,198:67-74
    36. Minami T, Nanto H, Sato H, et al. Effect of applied external magnetic field on t he relationship between the arrangement of the substrate and the resistivity of aluminium-doped ZnO thin films prepared by rf magnetrons puttering [J],Thin Solid Films, 1988, 164:275-279
    37. Ghosh S, Sarkar A, Chaudhuri S, et al. Grain boundary scattering in aluminium-doped ZnO films [J], Thin Solid Films, 1991,205:64-68
    38. Sernelin B E,Berggren K F,Jin Z C,et al.Bandgap tailoring of ZnO by means of hervy Al doping.Physics Review B,1988,37(17):10244-10247.
    39. Zafar S, Ferekides C S, Morel D L. Characterization and analysis of ZnO:Al deposited by reactive magnetron sputtering [J], Vac Sci Technol,1995,A13(4):2177-218
    40. Islam M N, Ghosh T B, Chopra K L, et al. XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films [J], Thin Solid Films, 1996,280:20-2
    41. Kim K H, Park K C, Ma D Y. Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering [J],Appl Phys, 1997,81(12):7764-777
    42.T Minami,H Nanto,T Sonoda,et,al.Influence of substrate and target temperatures on properties of transparent and conductive doped ZnO thin films prepared by RF magnetron sputtering[j],Thin Solid Films,1989,171:307-311
    43.Hu J,Gordon R G.Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition[J],J Appl Phys,1992,71(2):880-890
    44.Tang W,Cameron D C.Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process[J],Thin solid Films,1994,238:83-87
    45.Tang W,Cameron D C.Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process[J],Thin solid Films,1994,238:83-87
    46.Chen M,Pei Z L,Wang X,et al.Structural,Electrical,Optical Properties of Transparent Oxide ZnO:Al Films Prepared by Magnetron Reactive Sputtering[J].Vac Scitechnol,2001,A19(3):963-970.
    47.裴志亮,谭辉,陈猛等.透明导电氧化物ZnO:Al(ZAO)薄膜的研究[[J].金属学报,2000,36(1):72-76.
    48.陈猛,白雪冬,黄荣芳等.柔性基片上In2O3:Sn和ZnO:Al薄膜的制备及其光学、电学特性的研究[J].金属学报,1999,35(4):443-448.
    49.江键,巴德纯,闻立时.ZnO:Al的制备和工艺参数对其电阻率的影[J],真空,2000.(6):24-28.
    50.范志新,陈玖琳,孙以才.AZO透明导电薄膜的特性、制备与应用[J].真空,2000(5):10-14.
    51.徐自强,邓宏,谢娟等.掺Al对ZnO薄膜结构和光电性能的影响[J],液晶与显示,2005.20(6):5.3-5.7
    52.姜海青,王连星,赵世民等.乳胶-凝胶法制备Al3+离子掺杂型ZnO薄膜与评价[J],功能材料,2000 31(3)278-280.
    53.John F.Wager.Transparent electronics[J],Science,2003,300:1245-1246.
    54.Y.Park,V.Choong,Y.Gao,B.R.Hsieh,C.W.Tang.Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy[J],Appl.Phys.Lett.1996,68:2699.
    55.Md Nurul Islama,T.B.Ghoshb,,K.L.Choprab and H.N.Acharyab.XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films[J],Thin Solid Films,1996,280(1-2):20-25.
    56.X.Jiang,F.L.Wong,M.K.Fung,S.T.Lee.Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices[J],Appl.Phys.Lett.2003,83:1875.
    57.O.Bamiduro,H.Mustafa,R.Mundle,R.B.Konda,A.K.Pradhan.Metal-like conductivity in transparent Al:ZnO films[J],Appl.Phys.Lett.2007,90:252108.
    58.E.Burstein.Anomalous Optical Absorption Limit in InSb[J],Phys.Rev.1981,93:6321954.
    59.T.S.Moss.Optical Properties of Semi-conductors[J],Proc.Phys.Soc.London,Sect.B 1954,67:7751954.
    60.Marcus C.Newton,Paul A.Warburton.ZnO tetrapod nanocrystals[J],Materials Today,2007,10(5):50-54.
    61.Yong Ding,ZhongLin Wang,Tianjun Sun,Jieshan Qiu.Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires[J],Appl.Phys.Lett.2007,90:153510.
    62.G.H.Lee,T.Kawazoe,M.Ohtsu.Difference in optical bandgap between zinc-blende and wurtzite ZnO structure formed on sapphire(0001) substrate[J],Solid State Communications,2002,124(5-6):163-165.
    63.S.W.H.Eijt,J.de Roode,H.Schut B.J.Kooi,J.Th.M.De Hosson.Formation and stability of rocksalt ZnO nanocrystals in MgO[J],Appl.Phys.Lett.2007,91:201906.
    64.J.Pellicer-Porres,A.Segura,J.F.Satnchez-Royo,J.A.Sans,J.P.Itie,A.M.Flank,P.Lagarde,A.Polian.Tetrahedral versus octahedral Mn site coordination in wurtzite and rocksalt Znl-xMnxO investigated by means of XAS experiments under high pressure[J],Superlattices and Microstructures,2007,42(1-6):251-254.
    65.Xiang Yang Kong,Yong Ding,Rusen Yang,Zhong Lin Wang.Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts[J],Science,2004,303:1348-1351.
    66.林益梅,叶志镇,陈兰兰.ZnO薄膜的缺陷研究进展[J],真空科学与技术学报,2006,26(5):386
    67.Look D C,Hemsky J W,Sizelove J R.Residual native shallow donor in ZnO[J],Phys.Rev.Lett.,1999,82(2):2552-2554
    68.Minami T,Sato H,Nanto H,et al.Highly conductive and transparent silicon doped zinc oxide thin films prepared by RF magnetron sputtering[J],Appl.Phys.1986,25:776-779
    69.Ataev B M,Bagamadova A M,Mamedov V V,et al.Highly conductive and transparent thin ZnO films prepared in situ in a low pressure system[J].Cryst.Growth,1999,198-199(2):1222-1225
    70.Olvera M de la L,Maldonado A,Asomoza R,et al.Characteristics of ZnO thin films obtained by chemical spray.Effect of the molarity and the doping concentration[J].Thin Solid Films,2001,394(1-2):241-248
    71.Hu J H,Gordon R G.Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells[J],Solar Cells,1991,30:437-450
    72.Jeong S H,Kho S,Jung D,et al.Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their surface characteristics[J],Surface and Coatings Technology,2003,174-175:187-192
    73.李彬,材料科学与工程.1990,8(2):26.
    74.R.A.Assink,B.D.Kay,J Non-cryst Solid,1988,99:359.
    75.J.D.Mackenzie,J Non-Cryst Solid.1982,48:56.
    76.D.R.Uhmann,B.J.Zelinski,J Wnek C E.Mat Res Symp Proc,1984,32:59-61
    77.陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001
    78.Seung Hwangbo,Yun-Ji Lee,Kyu-Seog Hwang.Photoluminescence of ZnO layer on commercial glass substrate prepared by sol-gel process[J],Ceramics International,2008,34(5):1237-1239.
    79.A.M.P.Santos,Edval J.P.Santos,Pre-heating temperature dependence of the c-axis orientation of ZnO thin films[J],Thin Solid Films,2008,516(18):6210-6214.
    80.M.Sasani Ghamsari,M.Vafaee.Sol-gel derived zinc oxide buffer layer for use in random laser media[J],Materials Letters,2008,62(12-13):1754-1756.
    81.V.Musat,A.M.Rego,R.Monteiro,E.Fortunato.Microstructure and gas-sensing properties of sol-gel ZnO thin films[J],Thin Solid Films,2008,516(7) 1512-1515.
    82.R.J.Winfield,L.H.K.Koh,Shane O'Brien,Gabriel M.Crean,Excimer laser processing of ZnO thin films prepared by the sol-gel process[J],Applied Surface Science,2007,254(4):855-858.
    83.K.R.Murali.Properties of sol-gel dip-coated zinc oxide thin films[J],Journal of Physics and Chemistry of Solids,2007,68(12):2293-2296.
    84.王德宪.溶胶-凝胶法的化学原理简述[J],玻璃,2002,25(1):35-38
    85.陈光华,邓金祥.纳米薄膜技术与应用[M],化学工业出版社,2004:44
    86.D.A.Skoog,D.M.West,Principles of Instrumental analysis,Holt,Rineheart and Winston,Inc.1971.
    87.周玉,武高辉.材料分析测试技术[M],哈尔滨:哈尔滨工业大学出版社,1998,183.
    88.http://www.britannica.com/EBchecked/topic-art/183561/110970/Scanning-electr on-microscope
    89.T.Minami.New n-type transparent conducting oxides,MRS Bulletin 2000.25(8)38-44
    90.R.H.Mauch,H.W.Schock.10th Eur.Photovoltaic Solar Energy Conf.Lisbon,Portugal,1991,Luwer,Dordrecht,88-91
    91.T.J.Coutts,D.L.Young,X.N.Li.Characterization of transparent conducting oxides.MRS Bulletin,2000,25(8):58-65
    92.刘恩科,朱秉升,罗晋升等.半导体物理学[M],北京电子工业出版社,2003,375
    93.L.J.van der Pauw.A method of meausuring specific resistivity and hall effect of discs of arbitrary shape[J],Philips Research Reports,1958,13:1-9.
    94.L.J.van der Pauw.A method of measuring the resistivity and hall coefficient on lamellae of arbitrary shape[J],Philips Technical Review,1958,20:220-224.
    95.Look D C,Hemsky J W,Sizelove J R.Residual native shallow donor in ZnO[J],Phys.Rev.Lett,1999,82(2):2552-2554
    96.D.Gruber,F.Kraus,J.Muller.A novel gas sensor design based on CH_4/H_2/H_2O plasma etched ZnO thin films,Sens.Actuators B,2003,92:81-89
    97.Victor I.Klimov.Nanocrystal Quantum Dots from fundamental photophysics to multicolor lasing[J],Los Alamos Science.2003,28:214-220.
    98.Wolfgang H.Lawnik,Uta D.Goepel,Anja K.Klauk,Gerhard H.Findenegg.Physisorption of Cyclohexane on a SiO_2/Si Substrate:Evidence of a Wetting Transition above the Triple Point[J],Langmuir,1995,11:3075-3082.
    99.G.Elender and E.Sackmann.Wetting and dewetting of Si/SiO 2-wafers by free and lipidmonolayer covered aqueous solutions under controlled humidity[J],J.Phys.Ⅱ France,1994,4:455-479.
    100.19.Chaeho Kim,D.Jeon.Formation of Pentacene wetting layer on the SiO2 surface and charge trap in the wetting;layer[J],Ultramicroscopy,2008,108(10):1050-1053
    101.余俊,赵青南,赵修建.Al_2O_3掺量及氧气分压对直流磁控溅射法制备铝掺杂氧化锌薄膜性能的影响[J],硅酸盐学报,2004,36(10):1243-1244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700