用户名: 密码: 验证码:
Mg-Al-Sr-RE合金及其组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是目前实际应用中最轻的金属结构材料,具有比重小,比强度和比刚度高,切削加工性好以及良好的电磁屏蔽性和可回收利用等优点,被广泛地应用于航空航天、3C电子产品及交通运输等领域。但一些常用镁合金性能还不能完全满足汽车传动等部件的要求,主要是这些镁合金强韧性不够理想,特别是高温情况下镁合金的强度比较低、抗蠕变性能差等。
     目前,用途较广、综合性能较好的工业镁合金中主要的合金元素都含有A1。Mg17Al12是Mg-Al系列合金最重要的强化相,但Mg17Al12相的熔点低、热稳定性差,并且常以网状存在。实践表明,合金化可以有效的提高合金的综合力学性能,而镁合金的综合力学性能与其晶粒大小有着极其密切的关系。通过细化镁合金晶粒,可以提高镁合金的综合力学性能。众多的文献研究表明,稀土、碱土元素Sr对镁合金晶粒组织具有较好的细化作用。因此,本文通过采用Mg、Al、Sr、RE合金配比研究来确定Sr、RE在Mg-Al基镁合金中的存在方式以及强化机制。
     本研究采用“对掺法”制备了Mg-Sr中间合金、AJ62镁合金以及不同Y、Nd含量的AJ62合金;通过XRD分析、EDS能谱分析研究了不同Y、Nd含量对AJ62合金微观组织影响,并对其分别进行力学性能测试;通过SEM对拉伸断口形貌进行分析,确定其断裂机制。
     研究结果表明:
     ①Mg-4Sr中间合金相由a-Mg相、Mg17Sr2相组成,Mg17Sr2相主要沿晶界分布;Mg-6Al-2Sr合金中相由a-Mg相、Mg17Al12相以及Al4Sr相组成,其中Al4Sr相主要沿晶界分布;
     ②稀土元素Y具有细化镁合金组织的作用。在Y的添加量为1.5wt%时,AJ62+Y的晶粒最细小。通过XRD和EDS能谱分析表明,Y的添加在合金中形成了Al2Y、Al3Y高温硬质新相,并且在晶界、晶内均有分布。力学性能测试结果表明含1.5wt%Y时AJ62合金的力学性能均达到最优值,抗拉强度比未添加Y时提高了20.6%,屈服强度提高了24.6%,延伸率提高了52.9%。拉伸断口形貌分析确定其断裂机制主要为准解理断裂;
     ③Nd同样具有细化镁合金组织的作用。在Nd含量为0.5wt%时,合金的组织细化效果较好;通过XRD以及EDS能谱分析表明,稀土元素Nd的添加在合金中形成了Al2Nd、Al3Nd高温硬质新相,并在晶界以及晶内分布,力学性能测试结果表明Nd含量在0.5wt%时,镁合金的力学性能最佳,抗拉强度比未添加稀土Nd提高了13.5%,屈服强度提高了15.9%,延伸率提高了49.1%。拉伸断口SEM分析确定其断裂机制为准解理断裂。
Magnesium alloy is one of the lightest metal structure materials in the practical application, which have many special advantages, such as low density, high specific strength, high specific rigidity, good machinability, good electromagnetie shielding performance and easy recycling etc. They have been successfully used in various structures such as navigation, space flight, 3C product, power tool and traffic etc. However, the commercial die casting magnesium alloys fail to meet the requirement of drive train and other systems in automobiles. This is mainly on account of their imperfect strength and toughness, especially the weak strength in high temperature.
     At present, Al is the main alloying elements in the major industrial magnesium alloys. Mg17Al12 is the most important strengthening phase for Mg-Al series alloys, but its low melting point, poor stability and reticular existing in magnesium alloys. Practice shows that alloying can effectively improve the mechanical properties. The sizes of crystalline grains affect the mechanics properties of the magnesium alloys. Research shows that rare earth and alkaline earth elements Sr have a better refinement on magnesium alloys grain organizations. Therefore, this paper adopt the Mg, Al, Sr and RE alloys to determine the existing way and strengthening mechanism of RE and Sr in Mg-Al based Alloys.
     In this paper, Mg-Sr master alloys, AJ62 magnesium alloy and various Y, Nd content of the AJ62 alloy were prepared by "mixture method". Then the microstructure of various Y, Nd content of the AJ62 alloy were analyzed by XRD and EDS, and also the mechanical properties were tested, Finally the fracture morphology were studied and determined the fracture mechanism by SEM.
     The results show that:
     ①Mg-4Sr master alloy is consist of a-Mg, Mg17Sr2, and Mg17Sr2 is distributed along the boundary of matrix grain. Mg-6Al-2Sr is consisted of a-Mg、Mg17Al12 and Al4Sr, and Al4Sr is distributed along grain boundaries.
     ②Y ,rare earth elements, has refining effect on magnesium alloy structure. While adding 1.5wt% Y, the grain of AJ62+Y is finest. XRD and EDS show that new high-temperature and hard phases Al2Y and Al3Y are formed in the alloys, which are distributed in grain boundary and intragranular after adding Y. The mechanical property test shows that containing 1.5wt% Y, AJ62 alloy reached the best mechanical properties, which tensile strength, yielding strength and elongation respectively improves 20.6%,24.6% and 52.9%, and the fracture mechanism mainly are cleavage fracture and quasi-cleavage fracture.
     ③Nd has refining effect on alloy grain structure too. When containing 0.5wt% Nd, the structure refinement effect of the alloy is best; XRD Analysis and EDS spectrum show that with adding Nd the alloy formed the high-temperature and hard new phases Al2Nd and Al3Nd, The mechanical property test shows that containing 0.5wt% Nd, the alloy reached the best mechanical properties, which tensile strength, yielding strength and elongation respectively improves 13.5%, 15.9% and 49.1%, and the fracture morphology mechanism mainly is quasi-cleavage fracture.
引文
[1]向群,屈伟平.镁合金的发展趋势[J].冶金丛刊. 2004, 153(5):35-37.
    [2]刘世友.镁工业生产的应用与发展[M].上海有色金属. 1995.
    [3]陈振华.镁合金[M].化学工业出版社.北京, 2005.
    [4]丁文江.镁合金科学与技术[M].科学出版社.北京, 2007.
    [5]申泽骥,李宝东.铸造镁合金熔炼技术进展[J].特种铸造及有色合金. 2001,1:90-95.
    [6]张津.镁合金及应用[M].化学工业出版社.北京, 2004.
    [7]卫爱丽,付珍,赵浩峰.镁合金的生产及应用[J].铸造设备研究. 2003, 1:34-37.
    [8]蒈炳涛,王辉.镁合金及其在工业中的应用[J].稀有金属. 2004, 28(l):229-232.
    [9]邓玉勇,朱江,李立.新型金属材料镁合金的发展前景[J].分析科技导报. 2002, 10:374.
    [10] Pekguleryuz M O.Magnesium alloys'some potentials for alloy development[J].Light Metal,1992, 12:679-686.
    [11]张津、章宗和等.镁合金及应用. 2004年11月第1版:71-79.
    [12] G.Y. Yuan, Z.L. Liu, Q.D. Wang, W.J. Ding. Microstructure refinement of Mg-AI-Zn-Si alloys[J]. Materials Letters. 2002(56):53-58.
    [13]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社. 2002第一版:28-69.
    [14]张菊梅,蒋百灵,土志虎,袁森.镁合金强韧化的研究现状及发展[J].热加工工艺. 2006,35(8):65-70.
    [15]肖晓玲,罗承萍,刘江文. AZ91镁铝合金中HCP/BCC相界面结构[[J].中国有色金属学报. 2003, (23)2:25-29.
    [16]王越,吴伟,刘正. AZ91Hp非连续析出的组织转变特点[J].沈阳工业大学学报. 2000, 22(6):465-470.
    [17]陈亚军,黄天佑.镁合金应用现状及铸造技术研究进展[J].铜业工程. 2005, 1:45-49.
    [18]王智文,张治民,张星.镁合金的应用现状及其塑性成形技术[J].华北工学院学报. 2005, 1:71-74.
    [19]姚素娟,张英.镁及镁合金的应用与研究[J].世界有色金属. 2005,1:25-30.
    [20]昌宜振,翟春泉,王渠东,曾小勤,朱燕萍.压铸镁合金的应用现状及发展趋势[J].铸造. 1998, 12:50-52.
    [21]李冬升,程晓农.抗蠕变镁合金研究进展[J].材料导报. 2006, 5(20):424-426.
    [22] F.Hnilic,V.Janik,B.Smola,I.Stulikova,V.Ocenasek. Creep behaviour of the creep resistant MgY3Nd2Zn1Mn1 alloy[J]. Materials Science and Engineering A. 2008:265-271.
    [23] V.Raghavan, Aluminum-Magnesium-Strontium[J], Journal of Phase Equilibria and Diffusion 2007, Vol.28 No.5.
    [24] D.Qiu,M.-X.Zhang,J.A.Taylor,H-M.Fu,P.M.Kelly A novel approach to the mechanism for the grain refining effect of melt superheating of Mg–Al alloys[J]. Acta Materialia. 2007, 55:1863–1871.
    [25] P.Chart, A.D.Pelton Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the AI-Mg,AI-Sr,Mg-Sr,and AI-Mg-Sr Systems[J]. Journal of Phase Equilibria. 1994, Vol.15,No.6:591-605.
    [26] Zheng Weichao,Li Shuangshou,Tang Bin,Guo Xutao,Zeng Daben. Effect of Rare Earths on Hot Cracking Resistant Property of Mg-A1 Alloys[J]. Journal of Rare Earths. 2006 (24):346-351.
    [27] Zuzanka Trojanova,Robert Kral,Anthony Chatey. Deformation behaviour of an AJ50 magnesium alloy at elevated temperatures[J]. Materials Science and Engineering 2007,A462:202–205.
    [28] Eric Baril,Pierre Labelle,and Mihriban O.Pekguleryuz. Elevated Temperature Mg-Al-Sr:Creep Resistance,Mechanical Properties,and Microstructure[J]. High-Temperature Magnesium. 2003,11:34-39.
    [29] V.Neubert,I.Stul kova,B.Smola,B.L.Mordike,M.Vlach,A.Bakkar,J.Pelcova. Thermal stability and corrosion behaviour of Mg–Y–Nd and Mg–Tb–Nd alloys[J]. Materials Science and Engineering. 2007(A462):329–333.
    [30] OtaniY,Horfmann.High temperature oxidation behaviour of (Ti1-2Crx)Ncoatings[J]. Thin Solid Films, 1996,287:188.
    [31] Brown R. Magnesium Automotive Meeting[J]. Light Metal Age. 1992,(6):18-24.
    [32]刘光华,稀土固体材料学[M].机械工业出版社.北京, 1997第一版.
    [33] N.Winzer ,A.Atrens ,W.Dietzel ,V.S.Raja ,G.Song ,K.U.Kainer, Characterisation of stress corrosion cracking(SCC)of Mg–Al alloys[J]. Materials Science and Engineering. 2008,11:369-342.
    [34] J.F.NIE,B.C.MUDDLE. Characterisation of Strengthening Precipitate Phases in A Mg-Y-Nd Alloy[J]. Acta mater. 2000,48:1691-1703.
    [35] F.Khomamizadeh,B.Naml,S.Khoshkhooei. Effect of Rare-Earth Element Additions on High-Temperature Mechanical Properties of AZ91 Magnesium Alloy[J]. Metallurgical and Materials Transactions. 2006,11(36A):3490-3494.
    [36] Junhui Li, Abhijit Dasgupta. Failure-Mechanism Models for Creep and Creep Rupture[J]. IEEE Transactions on Rellability. 1993.9,42(3):339-353.
    [37] Masataka Hakamada,Akira Watazu,Naobumi Saito,Hajime Iwasaki. Dynamic recrystallization behavior during compressive deformation in Mg–Al–Ca–RE alloy[J]. J Mater Sci. 2008, 43:2066–2068.
    [38] Mihriban O.Pekguleryuz,A.Arslan Kaya. Creep Resistant Magnesium Alloys for Powertrain Applications[J]. Advanced Engineering Materials. 2003,5,No.12:866-878.
    [39] Sakamoto M, Akiyama S. Journal of Materials Science Letter[M]. 1997, 16: 1048.
    [40] Jae Joong Kim, Do Hyang Kim, K.S. Shin,Nack J. Kim. Modification of Mg2Si Morphology in Squeeze Cast Mg-Al-Zn-Si Alloys by Ca or P Addition[J]. Scripta Materialia. Vol.41,No.3, 1999:333–340.
    [41] G.Ben-Hamu,D.Eliezer,K.S.Shin,S.Cohen. The relation between microstructure and corrosion behavior of Mg–Y–RE–Zr alloys[J]. Journal of Alloys and Compounds. 2007(431):269–276.
    [42] Powell B R, Rezhets V, Luo AA, et al. Creep-resistant Magne-sium Alloy Die Casting[P]. United States Patent 6264763, 2001-07-24.
    [43] M.Aljarrah,M.A.Parvez,Jian Li,E.Essadiqi,M.Medraj. Microstructural characterization of Mg–Al–Sr alloys[J]. Science and Technology of Advanced Materials. 2007(8):237–248.
    [44]赵云虎,王渠东,丁文江,曾小勤,吕宜振,朱燕萍. Be对铸造Mg合金组织和力学性能的影响[J].特种铸造及有色合金. 2003(3):10-12.
    [45]黄晓锋,周宏,何镇明. AZ91D加铈阻燃镁合金氧化膜结构分析[J].中国稀土学报,2002,20(1):49-52.
    [46]辛明德,吉泽升,梁维中,侯乐干.加入Ce和Ca对AZ91D镁合金起燃温度的影响[J].中国有色金属学报. 2003.13(3):731-734.
    [47] Bai Jing, Sun Yangshan,Xue Feng,Xue Shan,Qiang Jing,Tao Weijian. Effect of extrusion on microstructures,and mechanical and creep properties of Mg–Al–Sr and Mg–Al–Sr–Ca alloys[J]. Scripta Materialia. 2006(55):1163–1166.
    [48] A.Janz,J.Grobner,D.Mirkovic,M.Medraj,Jun Zhu,Y.A.Chang,R.Schmid-Fetzer. Experimental study and thermodynamic calculation ofAl-Mg-Sr phase equilibria[J]. Intermetallics. 2007 (15):506-519.
    [49]黄晓锋,王渠东,曾小勤,朱燕萍,卢晨,丁文江.钕对Mg-5Al-1Si高温蠕变及组织性能的影响[J].中国稀土学报. 2004, 22(3):361-364.
    [50] Q.C. Jiang,H.Y. Wang,Y. Wang,B.X. Ma, J.G. Wang. Materials Science and Engineering[M]. A392 (2005) 130–135.
    [51]袁广银,刘满平,王渠东,朱燕萍,丁文江. Mg-Al-Zn-Si合的显微组织细化[J].金属学报. 2002,38(10):1105-1108.
    [52] Fu Penghuai,Peng Liming,Jiang Haiyan,Chang Jianwei,Zhai Chunquan. Effects of heat treatments on the microstructures and mechanical properties of Mg–3Nd–0.2Zn–0.4Zr(wt.%) alloy[J]. Materials Science and Engineering.2007.8:215-220.
    [53] A.Suzuki,N.D.Saddock,L.Riester,E.Lara-Curzio,J.W.Jones,T.M.Pollock. Effect of Sr Additions on the Microstructure and Strength of a Mg-Al-Ca Ternary Alloy[J]. Metallurgical and Materials Transactions. 2007,2(38A):420-427.
    [54] Jing Bai ,Yangshan Sun ,Feng Xue ,Shan Xue ,Jing Qiang ,Tianbai Zhu. Effect of Al contents on microstructures,tensile and creep properties of Mg–Al–Sr–Ca alloy[J]. Journal of Alloys and Compounds. 2007(437):247–253.
    [55] Bai Jing,Sun Yangshan,Xun Shan,Xue Feng,Zhu Tianbai. Microstructure and tensile creep behavior of Mg–4Al based magnesium alloys with alkaline-earth elements Sr and Ca additions. Materials Science and Engineering[J]. 2006 (A419):181–188.
    [56]杜文博,吴玉锋,聂柞仁,苏学宽,左铁镛.稀(碱)土在镁合金中的作用及应用现状[J].稀有金属材料与工程. 2006(9):1345-1348.
    [57] I.P.Moreno,T.K.Nandy,J.W.Jones,J.E.Allison,T.M.Pollock. Microstructural stability and creep of rare-earth containing magnesium alloys[J]. Scripta Materialia. 2003(48):1029–1034
    [58]刘相果,彭晓东,谢卫东,魏群义.金属锶及其合金的研究现状与应用[J].稀有金属. 2008,8:750-755.
    [59] Aliravci C A, Gruzleski J E. Effect of strontium on the shrinkage micro porosity in magnesium sand castings. AFS Transactions[J]. 1992, (115): 353-362.
    [60] Lee Y C, Dahle A K, StJohn D H. The role of solute in grain refinement of magnesium[J]. Metallurgical and Materials Transactions. 2000, 31A(11):2895-2906.
    [61]陈刚.镁锶中间合金的制备技术及应用研究[D].重庆大学硕士论文. 2005.
    [62]徐宋兵.镁铝锶合金的制备与研究[D].重庆大学硕士论文. 2006.
    [63]李海东,彭晓东.碱土镁合金的研究及开发[J].轻金属,2006,6:39-44.
    [64]杨明波,潘复生,李忠盛,程仁菊. Sr对Mg-3Al-1Zn镁合金铸态组织的影响[J].重庆工学院学报(自然科学版). 2007, 21(3):10-12.
    [65] M.A.Parvez,M.Medraj,E.Essadiqi,A.Muntasar,G.Denes. Experimental study of the ternary magnesium–aluminium–strontium system[J]. Journal of Alloys and Compounds. 2005,(402):170–185.
    [66] GUAN Shao-kang,ZHU Shi-jie,WANG Li-guo,YANG Qing,CAO Wen-bo. Microstructures and mechanical properties of double hot-extruded AZ80+xSr wrought alloys. Trans.Nonferrous Met.SOC China[J]. 2007(17):1143-1151.
    [67] Jinghuai Zhang,Jun Wang,Xin Qiu,Deping Zhang,Zheng Tian,Xiaodong Niu,DingxiangTang,Jian Meng. Effect of Nd on the microstructure,mechanical properties and corrosion behavior of die-cast Mg–4Al-based alloy[J]. Journal of Alloys and Compounds. 2007(52):120-128.
    [68] Yu Zhong,Jorge O.Sofo,Alan A.Luo,Zi-Kui Liu. Thermodynamics modeling of the Mg–Sr and Ca–Mg–Sr systems[J]. Journal of Alloys and Compounds. 2006, (421):172–178.
    [69] Brown R E.Magnesium in Australia 1940-1996. 53rd annual world magnesium conference[J].Light Metal Age. 1996, 54:50-58.
    [70]袁广银,刘满平,王渠东等. Mg-Al-Zn-Si合金的显微组织细化[J].金属学报. 2002,38.(10):1105-1108.
    [71] Bob R. Powell, Vadim Rezhets, Michael P. Balogh et al. Microstructure and Creep Behavior in AE42 Magnesium Die-Casting Alloy[J]. JOM. 2002, 8:34-41.
    [72]邓安华.金属材料的成分设计[J].上海金属(有色分册). 1993, 14(5):46-54
    [73]黄德明. Mg-4Al-RE-Ca-Si耐热镁合金的组织与性能[D].四川大学硕士学位论文. 2006.
    [74] Kurfman. VB. Light alloy grain size control and super cooling measurements[J].AFS Transaetions. 1961, 69:234.
    [75] Mingbo Yang, Fusheng Pan, Renju Cheng, Aitao Tang. Comparation about efficiency of Al–10Sr and Mg–10Sr master alloys to grain refinement of AZ31 magnesium alloy[J]. J Mater Sci. 2007, 42: 10074–10079.
    [76] M.Aljarrah,M.Medraj. Thermodynamic modelling of the Mg–Ca,Mg–Sr,Ca–Sr and Mg–Ca–Sr systems using the modified quasichemical model[J]. Computer Coupling of Phase Diagrams and Thermochemistry. 2007(21):256-263.
    [77] F.Czerwinski,A.Zielinska-Lipiec. The microstructure evolution during semisolid molding of creep-resistant Mg–5Al–2Sr alloy[J]. Acta Materialia. 2005(53):3433–3444.
    [78] (日)长崎诚三、平林真(编著),刘安生(译).二元合金状态图集[M].冶金工业出版社. 2004.
    [79]马图哈,丁道云等.非铁金属的结构与性能[M].北京科技出版社,1999.
    [80] PAN Yichuan,LIU Xiangfa,YANG Hua. Sr Microalloying for Refining Grain Size of AZ91D Magnesium Alloy[J]. Journal of Wuhan University of Technology-Mater.Sci.Ed. Feb.2007.
    [81]何肇基.金属力学性能试验[M].冶金工业出版社.北京, 1988, 5.
    [82]崔约贤,王长利.金属断口分析[M].哈尔滨工业大学出版社.哈尔滨,1998.
    [83] X.Tian,L.M.Wang,J.L.Wang,Y.B.Liu,J.An,Z.Y.CAO. The microstructure and mechanical properties of Mg-3Al-3RE alloys[J]. Journal of Alloys and Compounds. 2007,10:1-26.
    [84]钟培道.断裂失效分析-续[J].理化检验-物理分册. 2005, 8:427-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700