用户名: 密码: 验证码:
冶金法制备太阳能级硅工艺中湿法提纯及半工业化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光伏产业的大规模发展需要成本低廉、环境友好的多晶硅生产技术。当前,多晶硅主要靠改良西门子法生产,该法生产成本较高,环境压力较大。冶金法是近年来正在发展的一种成本低、能耗低和环境友好的多晶硅制备新技术。湿法提纯是冶金法硅制备太阳能级多晶硅工艺中不可缺少的一环,它能去除冶金级硅中大部分杂质。湿法提纯冶金级硅虽然研究较多,但是主要停留在小规模的工艺研究方面,研究深入不够。
     本文以云南某硅厂生产的冶金级硅为原料,系统性地研究了湿法提纯冶金级硅的机理、工艺并进行了半工业化试验,主要内容如下:
     (1)分析测试了冶金级硅中杂质的赋存状态。在冶金级硅中金属杂质Fe、 Al、Ca、Ti等主要偏聚在晶界处形成二元金属间化合物FeSi、CaSi2和三元金属间化合物Fe5Al8Si7、FeAl3Si2、FeTiSi2等,并首次发现了含P物相SiP。
     (2)计算绘制了冶金级硅中杂质Al、Ca、Ti、P在25℃下的Me-Si-(F)-H2O电位-pH图,并结合已报道的Fe-Si-(F)-H2O系电位-pH图,从热力学角度分析了冶金级硅中杂质Fe、Al、Ca、Ti和P去除需要的浸出剂体系和具体条件,结果表明含氟的强酸性溶液为最佳浸出体系。
     (3)运用双参数模型估算出了FeTiSi2和FeAl3Si2的△fGm分别为-94.23kJ·mol-1和-240.052KJ·mol-1。在此基础上,讨论并提出了杂质相FeSi2、CaSi2、 FeAl3Si2、FeTiSi2、SiP与HC1或HF去除反应机理。
     (4)通过实验验证了理论指出的去除冶金级硅中金属杂质Fe、Al、Ca、Ti的最佳浸出剂体系为HF-HC1混酸,但该体系在常温常压下对非金属杂质B、P的去除效果不明显。在最佳条件3%HF-2%HC1,80%硅粉粒度<75μm,液固比5:1,浸出温度70℃,浸出时间5h,两段浸出,产品中Fe、Al、Ca和Ti的残留分别为5ppmw以内,60ppmw以内,10ppmw以内,5ppmw以内,金属杂质总含量在100ppmw以内。本文还提出了氢氟酸加压去除非金属杂质B、P的工艺,在该工艺中温度对去除非金属杂质B、P影响最大。当在浸出温度为200℃,HF含量为5%,液固比为5:1,硅粉粒度80%<200目,浸出5h后,产品中B、P含量分别从21和81ppmw降低到9.5和18.8ppmw。
     (5)从HF或HCl对冶金级硅中杂质相的去除作用,浸出过程产生的气相组成和溶液中可变价离子(离子形态的铁)的存在状态角度用实验验证了本文提出的杂质相FeSi2、CaSi2、FeAl3Si2、FeTiSi2、SiP与HCl或HF反应去除的化学机理的合理性。
     (6)进行了年产500吨规模的半工业化试验,结果表明HF-HCl体系在最佳的生产条件为1.5%HF-1.5%HCl,硅粉粒度<75μm,液固比5:1,浸出时间4h。在该条件下通过两段浸出,产品中Fe、Al、Ca和Ti的含量分别下降到1OOppmw以内,200ppmw以内,150ppmw以内和5ppmw以内,产品质量达到3.5N。该工艺成本低廉,具有良好的投资前景。
Large-scale development of photovoltaic (PV) industry requires the polysilicon production technology with low cost and environment friendly. At present, the primary technology for production of polysilicon is improvement Siemens method. It restricts the development of PV industry because of its high cost and environmental pressure. With economical and low energy consumption and environmental friendly? metallurgical method for preparation of solar grade silicon (SoG-Si) is a new technology. Hydrometallurgical process is an indispensable part for metallurgical methodes, which can remove the most of impurities in the metallurgical grade silicon (MG-Si). Hydrometallurgical method for purification of MG-Si has been studied long time, but only on the processes in laboratory, being lack of systematic research and semi industrialization. Hydrometallurgical process, the mechanism and semi industrialization for purification of MG-Si have been studied in this paper. The MG-Si produced in Yunnan of china has been used as raw material. The main contents as follows:
     (1) Deportmentes of impurity elements in MG-Si were investigated, and the results show that metal impurities Fe, Al, Ca and Ti was mainly distributed in binary intermetallic FeSi2,CaSi2and ternary FeAl3Si2, FesAl8Si7, FeTiSi2. The SiP phase was first time found in MG-Si.
     (2) Me-Si-(F)-H2O potential-pH diagram for Al, Ca, Ti, Fe and P at25℃have been calculated or quoted. According to those, leaching agents and specific conditions for removal the impurities of Fe, Al, Ca, Ti and P from MG-Si were analyzed under the viewpoint of thermodynamics.
     (3) The AfGm, of FeTiSi2and FeAl3Si2were calculated through two-parameter model, and the results of△fGm of FeTiSi2and FeAl3Si2were-94.23kJ·mol-1and-240.052kJ·mol-1respectively. Based on those, chemical reaction mechanism of the removal of FeAl3Si2, CaSi2, FeSi2and FeTiSi2through leaching by HF or HC1were discussed and proposed.
     (4) Experiments confirmed the theoretical results that the mixed acid system HF-HCl is the most effective leaching agent for removal of metal impurities Fe, Al, Ca, Ti in MG-Si, but the system under normal pressure and temperature is not obvious on the removal of non metal impurities B, P. By leaching MG-Si with3%HF and2%HC1at70℃for5h and using two stage leaching, the content of Fe, Al, Ca and Ti in products were less5ppmw, less60ppmw, less lOppmw and less5ppmw respectively.
     Hydrofluoric acid pressure leaching process for removing the non metal impurities B and P was researched, in the process temperature has the greatest influence on the removal of non metal impurities B, P. When the extraction temperature is200℃, the HF content is5%, the ratio of liquid to solid5:1, powder particle size80%<200mesh, leaching after5h, B and P content in the product are respectively from23and81ppmw decreased to9.5and18.8ppmw.
     (5) Those chemical mechanism, which proposed in this paper, of the removal of impurities phases FeSi2, CaSi2, FeAl3Si2and FeTiSi2by HC1or HF were verified by experiments from three aspects as follows:the effect of HC1or HF on removal impurities phases in MG-Si, the composition of gas generated in the leaching process and the ionic form of iron in leaching solution.
     (6) Semi industrialization experiments with annual output of500ton UMG-Si have been studied. The results showed that the optimal conditions for HF-HCl system were1.5%HF,1.5%HC1, silica fume particle size<75microns, liquid to solid ratio5:1, leaching time for4h. The Fe, Al, Ca and Ti in product were respectively1OOppm or less,200ppmw or less,150ppmw or less,5ppmw or less, and the product quality has reached3.5N after leaching by a two-stage contained under optimum conditions. This process is a technology with low cost and good investment prospect.
引文
[1]Kaminski. A., Vandelle. B., Fave. A., et al. Aluminium BSF in silicon Solar cells [J]. solar Energy Mater Sol Cells,2002,72(1-4):373-379.
    [2]Muller. A., Ghosh. M., Sonnenschein. R., et al. Silicon for photovoltaic applications[J]. Mater Sci Eng B,2006,134(2-3):257-262.
    [3]侯明山,李士琦,刘超等.光伏发电技术清洁度分析[J].太阳能,2010,23:18-22.
    [4]Yuwen Zhao, China Photovoltaic Industry development Status and prospects. The 22nd International Photovoltaic Science and Engineering Conference, November 05-09,2012, Hangzhou, China,1-8.
    [5]http://solar.ofweek.com/2014-02/ART-260018-8420-28776480.html
    [6]http://solar.ofweek.com/2014-02/ART-260018-8420-28776480.html
    [7]中国中小企业信息网.2012年产业回顾之光伏产业.http://www.sme.gov.cn/web/assembly/action/browsePage.do?channelID=1264137934 492&contentID=1355788656154.2012-12-18/2013-8-2.
    [8]马海天,刘晶.2013年多晶硅年度市场分析报告.http://pv.ally.net.cn/html/ 2014/hangye_0114/16402.html.
    [9]中国情报网.2012年中国光伏产业发展回顾与分析.http://www.askci.com/ news/201301/13/131634528657.shtml.2013-1-13/2013-8-2.
    [10]http://solar.ofweek.com/2014-02/ART-260008-8420-28778369.html
    [11]高宏玲.太阳能光伏产业发展情况及展望.太阳能,2012,10:26-31.
    [12]百度百科.光伏产业.http://baike.baidu.com/view/11001.htm.
    [13]钱伯章.世界能源消费现状和可再生能源发展趋势(上)[J].节能与环保,2006,(3):8-12.
    [14]D. M. Chapin., C. S. Fuller., G. L. Pearson., A new silicon p-n junction photo-cell for converting solar radiation into electrical power[J]. Journal of applied physics, 1954,25:676-677.
    [15]高少锋,武蕊.中国太阳能电池的发展现状与趋势[J].天津化工,2012,26(4):14-16.
    [16]http://www.topenergy.org/news_74691.html.
    [17]张剑.冶金提纯法制备太阳能级多晶硅研究:[博士论文].大连:大连理工大学,2009.
    [18]谢光亚,李晓光.中国太阳能光伏产业的国际竞争力研究[J].对外经贸实务,2012,(2):21-24.
    [19]中国有色金属工业协会硅分会.我国多晶硅产业发展建议[J].中国金属通报,2012(10):36-37.
    [20]cpiacn.2011-2012年中国光伏产业发展报告.http://www.chinapv.org.cn/html/news/2012/0523/1933.html.2012-5-23/2013-8-3
    [21]吉川健.借助Al-Si熔体低温凝固精炼太阳能级硅过程物理化学研究:[博士论文].日本东京:东京大学,2005.
    [22]G. Flamanta., Purification of metallurgical grade silicon by a solar process[J]. Solar Energy Materials & Solar Cells,2006 (90):2099-2106.
    [23]阙端麟等编,硅材料科学与技术.杭州:浙江大学出版社,2000.
    [24]Shimura.F., Oxygen in silicon Academic Press INC.1994.
    [25]Yang. Deren., Li. Liben., Ma. Xiangyang., et al. Solar energy materials and solar cells[J].2000,62:37.
    [26]Kishore. I. C., Pastol. J. L., Revel. G., Solar Energy Materials.1989,19:221.
    [27]俞征峰,席珍强,杨德仁等.铸造多晶硅中热旌主形成规律[J].太阳能学报,2005(4):581-583.
    [28]Shimura. F., Oxygen in Silicon(M). Academic Press INC,1994.
    [29]Sun.Q., Yao. K. H., Iagowski. J., Effect of carbon on oxygen precipitation in silicon[J]. Jappl-phys,1990,67:4313-4319.
    [30]Fraundorf. P., Fraundorf. G. K., Shimura. F., Clustering of oxygen atoms around carbon in silicon[J]. Jappl-phys,1985,58:4049-4055.
    [31]席珍强,杨德仁,陈君等.晶体硅中的铁沉淀规律[J].半导体学报,2003(Ⅱ):1166-1170.
    [32]Moiler. H. J., Funke. C., Lawerenz., et al. Oxygen and lattice distortion initial crystalline silicon[J]. Solar Energy Materials & Solar Cells,2002,72:403-416.
    [33]Chen. J., Sekinuchi. T., Nara. S., et al. The characterization of high quality multicrystalline silicon by the electron beam induced current methods[J]. J Phvs Condens Matter,2004,16:211.
    [34]盂凡英,崔容强,孙铁囤.利用高斯分布模型研究多晶硅晶界电学特性[J].上海交通大学学报,2001(6):813-816.
    [35]Plink Christoph., Feick Henning., McHugo Scatt., et al. Out-diffusion and precipitation of copper in silicon[J]. Phys Rev Lett,2000,85:4900-1903.
    [36]梁骏吾.电子级多晶硅的生产工艺[J].中国工程科学,2000,(12):34-29.
    [37]龙桂花,吴彬,韩松,等.太阳能级多晶硅生产技术发展现状及展望[J].中国有色金属学报,2008,18(1):386-392.
    [38]CECCAROLI. B., Manufacturing of solar grade silicon[C]//Europv 2003. Granada,2003.
    [39]何丽雯.太阳能多晶硅的制备生产工艺综述[J].化学工程与装备,2010,(2):117-120.
    [40]HESSF K., SCHINDLBECK E., Feedstock for the Photovoltaic industry[C]// The 2nd Solar Silicon Conference. Munich,2005.
    [41]梁骏吾.光伏产业面临多晶硅瓶颈及对策[J].科技导报,2006,(6):3-4.
    [42]李永青.硅烷法制备多晶硅工艺的探讨[J].河南化工,2010,27(10):28-30.
    [43]百度百科.硅烷法.http://baike.baidu.com/view/5631633.htm.
    [44]陈红雨.电池工业节能减排技术.北京:化学工业出版社,2008.
    [45]马文会,戴永年,杨斌,等.一种制备太阳能级多晶硅的方法:中国,200610010654[P].2006201225
    [46]K. Morita., T. Mikib., Thermodynamics of solar-grade-silicon refining[J]. Intermetallics,2003, (11):1111-1117.
    [47]埃尔凯姆有限公司.太阳能电池的硅原料:中国,200480039417.3[P].2007201224.
    [48]Peter Woditsch, Wolfgang Koch. Solar grade silicon feedstock supply for PV industry[J]. Solar Energy Materials & Solar Cells,2002 (72):11-26.
    [49]Baba. H., Hanazawa. H., Yuge. N., Development of NEDO Melt Purification Proeess for Solar Grade Silicon by Pilot Plant. UK:Glasgow.2000:1675-1678.
    [50]Toshiyuki Nohira, Kouji Yasuda, Yasuhiko Ito. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon[J]. Nature materials, 2003, (2):397-401.
    [51]Kouji Yasuda, Toshiyuki Nohira, Koji Amezawa, et al. Mechanism of Direct Electrolytic Reduction of Solid SiO2 to Si in Molten CaCl2[J]. Journal of The Electrochemical Society,2005,152(4):69-74.
    [52]Sharma. I., Mukherjee. T., A study on purification of metallurgical grade silicon by molten salt Electrorefining[J]. Metallurgical and Materials Transactions B, 1986,17:395-397.
    [53]Nohira.T., Yasuda. K., Ito. Y., Pinpiont and bulk electrochemical reduction of insulating silicon dioxide to silicon[J]. Nature Materials,2003,2:397-401.
    [54]Sharma. I., Mukherjee. T., A study on purification of metallurgical grade silicon by molten salt Electrorefining[J]. Metallurgical and Materials Transactions B, 1986,17:395-397.
    [55]赖延清,田忠良,张治安等,一种熔盐电解法制备太阳级硅材料的方法[P],200710034619,2007.
    [56]田忠良,贾明,赖延清等,熔盐直接电沉积及电解精炼硅研究.中国科技论文 在 线 ,Http://www.paper.edu.cn/index.php/default/releasepaper/content/200906-523.
    [57]张明杰,李继东,陈建设.太阳能电池及多晶硅的生产[J].·材料与冶金学报,2007,6(1):33-38.
    [58]刘仪柯,马文会,戴永年,等.熔盐电解法直接制备太阳能级硅新工艺的探讨[J].有色金属(冶炼部分),2008,(2):31-33.
    [59]罗绮雯,陈红雨,唐明成.冶金法提纯太阳能级硅材料研究进展[J].中国有色冶金,2008,(1):12-14,23.
    [60]马晓东,张剑,李廷举.冶金法制备太阳能级多晶硅的研究进展[J].铸造技术,2008,129(9):1288-1290.
    [61]Voos, W., U.S. Patent 2,972,521,1961.
    [62]Hunt, L. P., Dosaj, V. D., McCormick, J.R., et al. Production of solar grand silicon from purified metallurgical silicon, in:Record of the 12th IEEE Photovoltaic Specialists Conference,1976, pp.125-129.
    [63]Hunt, L.P., Dosaj, V. D., McCormick, J.R., et al. Production of metallurgical grand silicon to solar grade quality, in:Borkowitz, J.B. and Lesk, I.A. (Eds.), Solar Energy, Proc. Intern. Symp., Electrochemical Society, New York,1976,pp.200-215.
    [64]Chu, T.L. and Chu, Shirley S., Partial purification of metallurgical silicon by acid extraction[J]. J.Electrochem. Soc.,1983,130:455-457.
    [65]Dietl, J., Hydrometallurgical purification of metallurgical grade silicon[J]. Sol. Cells.1983,(10):145-154.
    [66]Santos, I.C., Goncalves, A.P., Santos, C.S., et al. Purification of metallurgical grade silicon by acid leaching[J]. Hydrometallurgy.1990,23,237-246.
    [67]F. Margarido, M.O. Figueiredo, A.M. Queiroz, et al. Acid Leaching of Alloys within the Quaternary System Fw-Si-Ca-Al[J]. Ind. Eng. Chem Res,1997,36, 5291-5295.
    [68]S.K. Sahu., E. Asselin., Effect of oxidizing agents on the hydrometallurgical purification of metallurgical grade silicon[J]. Hydrometallurgy,2012,121-124: 120-125.
    [69]Ma, X.D., Zhang, J., Wang, T.M., et al. Hydrometallurgical purification of metallurgical grade silicon[J]. Rare Met,2009,28:221-225.
    [70]于战良.超冶金级硅的制备:[博士论文],昆明:昆明理工大学,2009.
    [71]Yu, Z.L., Ma,W.H., Dai, Y.N., et al. Removal of iron and aluminum impurities from metallurgical grade silicon with hydrometallurgical route[J]. Trans. Nonferrous Met. Soc. China.,2007,17, s1030-s1033.
    [72]Yu, Zh.L., Xie, K.Q., Zheng, Y.H., et al. Kinetics of aluminum removal from metallurgical grade silicon with pressure leaching[J]. The Chinese Journal of Nonferrous Metals,2012, (9):23-27.
    [73]Yu, Z.L., Xei, K.Q., Ma, W.H., et al. Kinetics of iron removal from metallur-gical grade silicon with pressure leaching[J]. Rare Met,2011,30:688-694.
    [74]尹盛,何笑明.用冷等离子体结合湿法冶金制备太阳级硅材料[J].功能材料.2002,33(3):305-306,309.
    [75]张虎.酸浸冶金级硅制备超冶金级硅:[硕士论文].昆明:昆明理工大学,2013.
    [76]H. Zhang, Zh. Wang, W. H. Ma, etal. Chemical Cracking Effect of Aqua Regia on the Purification of Metallurgical Grade Silicon[J]. Ind. Eng. Chem. Res 2013,52: 7289-7296.
    [77]Yan-Hui Sun, Qi-Hui Ye, Chang-Juan Guo, Hong-Yu Chen, Xu Lang, FinlowDavid, Qi-Wen Luo, Chun-Mei Yang. Purification of metallurgical-grade silicon via acid leaching, calcinations and quenching before boron complexation[J]. Hydrometallurgy,2013, (139):64-72.
    [78]IKEDA. T., MAEDA. M., Purification of metallurgical silicon for solar-grade silicon by electron beam button melting[J]. ISIJ International,1992,32(5):635-642.
    [79]PIRES. J. C. S., BRAGA. A. F. B., MEI. P. R., Profile of impurities in polycrystalline silicon samples purified in an electron beam melting furnace[J]. Solar Energy Materials and Solar cells,2003,79(3):347-355.
    [80]PIRES, J. C. S., OTUBO. J., BRAGA. A. F. B., et al. The purification of metallurgical grade silicon by electron beam melting[J]. Journal of Materials Processing Technology,2005,169(1):16-20.
    [81]Xu. P., Wei. D., Yi. T., et al. Removal of aluminum from metallurgical grade silicon using electron beam melting[J]. Vacuum,2011,86:471-475.
    [82]王强,董伟,谭毅.电子束熔炼去除冶金级硅中磷、铝、钙的研究[J].功能材料,2010,41(增刊1):144-147.
    [83]郑淞生,陈朝,罗雪涛,多晶硅冶金法除磷的研究进展.材料导报,2009,23(19):11-14,19.
    [84]DELANNOY. Y., ALEMANY. C., LI. K.I., et al. Plasma-refining process to provide solar-grade silicon[J]. Solar Energy Materials and Solar Cells,2002,72(1-4): 69-75.
    [85]ALEMANY. C., TRASSY. C., PATEYRON B., et al. Refining of metallurgical-grade silicon by inductive plasma[J]. Solar Energy Materials and Solar Cells,2002,72(1-4):41-48.
    [86]Miki. T., Morita. K., Sano.N., Thermodynamics of Phosphorus in Molten Silicon[J]. Metallurgical and Materials Transactions B,1996,27(12):937.
    [87]K. Hananzawa., N. Yuge., Y. Kato., Evaporation of Phosphorus in molten silicon by an electron beam irradiation method[J]. Materials Transactions,2004, 45(3):844-849.
    [88]Wei. K. X., Ma. W. H., Dai. Y. N., et al. Study on Phosphorus Removal from Metallurgical Grade Silicon by Vacuum Distillation[J].中山大学学报(自然科学版),2007年,46(增刊):69-71.
    [89]魏奎先.真空冶金法去除工业硅中易挥发杂质制备太阳能级多晶硅的研究: [博士论文].昆明:昆明理工大学,2010.
    [90]伍继君.冶金法太阳能级多晶硅制备过程中氧化精炼除硼研究:[博士论文].昆明:昆明理工大学,.2012.
    [91]M. D. Johnston., M. Barati., Effect of slag basicity and oxygen potential on the distribution of boron and phosphorus between slag and silicon[J]. Journal of Non-Crystalline Solids,2011,357:970-975.
    [92]M. D. Johnston., M. Barati., Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications[J]. Solar Energy Materials & Solar Cells,2010,94:2085-2090.
    [93]Fujiwara. H., Otsuka.R., Wada.K., et al. silicon purifying method slag for purifying silicon and purified silicon[P]. Japan,066523,2003.
    [94]Wu Jijun, Ma Wenhui, Dai Yongnian, et al. Removing boron from metallurgical grade silicon by vacuum oxidation refining. Proceedings of the 8th Vaccum Metallurgy and Surface Engineering conference, Shenyang China:2007.51.
    [95]LUO Dawei, LIU Ning, LU Yiping, et al. Removal of boron from metallurgical grade silicon by electromagnetic indction slag melting[J]. Transactions of Nonferrous Metals Society of China,2011,21(5):1178-1184.
    [96]Cai Jing, LI Jintang, CHEN Wenhui, et al. Boron removal from metallurgical silicon using CaO-SiO2-CaF2 Slags[J]. Transactions of Nonferrous Metals Society of China,2011,21:1402-1406.
    [97]Yin Changhao, Hu Bingfeng, Huang Ximing. Boron removal from molten silicon using sodium-based slags[J]. Journal of Semiconductors,2011,32(9): 092003-092004.
    [98]罗大伟,张国梁,张剑,等.金法制备太阳能级硅的原理及研究进展[J].铸造技术,2008,29(12):1721-1726.
    [99]伍继君,戴永年,马文会,等.冶金级硅氧化精炼提纯制备太阳能级硅研究进展[J].真空科学与技术学报,2010,(1):43-49.
    [100]Morita. K., Miki. T., Thermodynamics of solar-grade-silicon refining[J]. Intermetallics,2003,11:1111-1117.
    [101]徐云飞,谭毅,姜大川,等.冶金法制备多晶Si杂质去除效果研究[J].特种铸造及有色合金,2007,9:730-732.
    [102]张慧星,谭毅,孙世海,等.定向凝固提纯对工业桂杂质及电阻率的影响[J].机械工程材料,2011,3:52-59.
    [103]Sun. S. H., Tan. Y., Zhang. H. X., et al. Effect of Pulling Rate on Multicrystalline Silicon Ingot during Directional Solidification[J]. Material Science and Forum,2011,675-677:53-56.
    [104]Sun. S. H., Tan. Y., Dong. W., Zhang. J. S., Resistivity Distribution of Multicrystalline Silicon Ingot Grown by Directional Solidification. Journal of Materials Engineering and Performance, DOI:10.1007/s11665-011-9952-x.
    [105]Xing. Q.Z., Dong. W., Shi. S., et al. Effects of Impurities Distribution on the Crystal Structure and Electrical Properties of Multi-crystalline Silicon Ingots[J]. Material Science and Forum,2011,675-677:101-104.
    [106]冀明,董伟,谭毅,等.真空感应熔炼和定向凝固制备多晶硅中铝的除去[J].材料研究学报,2010,(4):373-377.
    [107]Wu. B., Stoddard. N., Ma. R. H., et al. Bulk multicrystalline silicon growth for photovoltaic (PV) application[J]. Journal of Crystal Growth,2008,310: 2178-2184.
    [108]Franks. D., Rettelbach. T., Hassler. C, et al. Silicon ingot casting:process development by numerical simulations[J]. Solar Energy Materials and Soalr Cells, 2002,72:83-92.
    [109]A. Schei, J. K. Tuset, H. Tveit. Production fo High Silicon Alloys. Tapair Forlag, Trondheim, Norway,1998:13-16.
    [110]He Yunping, Yu Zhichun.40 years History of metal Silicon Production in China.8th International Ferroalloys Congress Proceedings (INFCON 8), June 7-10, 1998,99-103.
    [111]A. Schei, H. Rong, A.G.Forwald. Impurity distribution in silicon for the chemical industry, Geiranger, Norway,1992, (7):16-18.
    [112]玛蕾舍娃,工业硅中杂质的分布特性.工业硅技术文集,北京:冶金工业出版社,何允平编,1991.
    [113]Anglezio, J.C., Servant, C., Characterization of metallurgical grade silicon[J]. J. Mater. Res.,1990, (5):1894-1899.
    [114]T.Margaria., J.C. Anglezio., C.Servant., Intermetallic Compounds in Metallurgical silicon. At the infacon 6 confernce, proceedings of 6th international Ferroalloys congress, Cape Town, Vol,1,1992.published by SAIMM, Johannersburg, pages209-214 infacon.6 vol.1,209-214.
    [115]戴永年,二元合金相图.北京:科学出版社,2009:518.
    [116]Tomohito Shimpo, Takeshi Yoshikawa, Kazuki Morita.Thermodynamic Study of the Effect of Calcium on Removal of Phosphorus from Silicon by Acid Leaching Treatment[J]. Metallurgical And Materials Transactions B,2004,35B (4).277-284
    [117]R.W. Olesinski and G.J. Abbaschian. Bull. Alloy Phase Diagrams,5(5), Oct 1984.
    [118]J.L. Murray and A.J. McAlister. Bull. Alloy Phase Diagrams,1984,5(1): 13-18.
    [119]G. I. Kelsall and D.J. Robbins., Thermodynamics of Ti-H2O-F(-Fe) systems at 298K[J]. J. Electroanal. Chem.,1990,283:135-157.
    [120]邱文顺,李运姣 赵中伟,等.298.15K下Li-Ti-H2O系E-pH图及Li4Ti5Oi2的合成[J].中国有色金属学报,2010,20(11):2260-2267.
    [121]Eunyoung Kim, Kwadwo Osseo-Asare. Dissolution windows for hydrometallurgical purification of metallurgical-grade silicon to solar-grade silicon: Eh-pH diagrams for Fe silicides[J]. Hydrometallurgy,2012, (127-128):178-186.
    [122]张青莲,无机化学丛书(第三卷)(M),第一版.北京:科学出版社,1998:242.
    [123]张青莲,无机化学丛书(第九卷)(M),第一版.北京:科学出版社,1998:170.
    [124]赵定国,郭培民,赵沛,金属间化合物的标准熵估算模型[J].北京科技大学学报,2010,32(1):27-31.
    [125]郭培民,赵沛,双参数模型估算复合氧化物的标准生成焓[J].钢铁研究学报,2007,19(5):25-28,33.
    [126]赵定国,郭培民,赵沛.金属间化合物的标准生成焓估算模型[J].中南大学学报(自然科学版),2011,42(6):1578-1583.
    [127]J. Steinmetz., G. Venturini., B. Roques., TiMnSi2 and TiFeSi2 with New Orthorhombic Type Structure[J]. Acta Cryst,1982, B,38:2013-2018.
    [128]F. Weitzer., J.C. Schuster., M. Naka., et al. On the Reaction Scheme and Liquidus Surface in the Ternary System Fe-Si-Ti[J]. Intermetallics,2008, 16:273-282.
    [129]周芝骏,宁崇德,编.钛的性质及其应用(M),第一版.北京:高等教育出版社,1993:5,74.
    [130]韩建勋,贺爱国.含氟废水处理方法[J].有机氟工业,2004,(3):27-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700