用户名: 密码: 验证码:
SARS冠状病毒S蛋白抗原表位分析与定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严重急性呼吸综合症(Severe acute respiratory syndrome, SARS)是由SARS冠状病毒(SARS-CoV)引起的人类新发传染病,S、M、N、E蛋白是SARS-CoV病毒粒子的几种主要结构蛋白。用Lasergene软件系统分析SARS病毒结构蛋白S、M、N蛋白,预测了12个抗原表位,用这些预测表位序列设计组合成四个嵌合基因SSCV-A、SSCV-B、SSCV-C、SSCV-D。人工合成后插入pGEX-6p-1的BamHI和XhoI位点间,构建成融合表达质粒,转化宿主菌BL21经IPTG诱导后嵌合基因表达产物为可溶性蛋白。经免疫印迹试验表明嵌合基因表达产物可被SARS康复患者血清所识别,表明重组融合蛋白具有免疫反应性,提示预测表位中含有SARS-CoV结构蛋白的抗原表位。用纯化的重组融合蛋白GST-SSCV-D和GST-SSCV-A为抗原制备了一系列单克隆抗体。抗SSCV-D的单抗有两株,分别为D3D1和D3C5。将6个S蛋白预测表位分别与GST融合表达。在这6个融合蛋白中,GST-S5可以和单克隆抗体D3C5反应,GST-S2可以和单抗D3D1反应。Western blot分析表明两个单抗所识别的表位均为线性表位。两个表位分别位于SARS-CoV纤突蛋白的第447至458氨基酸残基和789至799氨基酸残基。D3D1表位(447~458)正位于S蛋白与受体结合的结构域中。
     2C5是一株SARS-CoV S蛋白特异的有中和活性的单克隆抗体。以2C5为筛选靶分子,筛选噬菌体展示随机7肽库。经三轮淘洗后随机挑选20个噬菌体克隆进行ELISA分析和序列测定。在10个ELISA OD值大于0.2的阳性噬菌体克隆中,有8个噬菌体克隆展示有共同的7肽序列TPEQQFT。展示有该序列的噬菌体克隆能竞争抑制SARS-CoV S蛋白抗原与单抗2C5的结合。与SARS-CoV S蛋白序列比对分析发现该7肽序列散布于S蛋白的第539位到第559位氨基酸上。将S蛋白T_(539)PSSKRFQPFQQFGRDVSDFT_(559)的21肽与GST进行融合表达,得到了可溶解的融合蛋白。该融合蛋白能不能被单抗2C5识别,但经Western blot分析表明该融合蛋白能被灭活SARS冠状病毒免疫鸡血清识别。表明T_(539)PSSKRFQPFQQFGRDVSDFT_(559)是S蛋白的一个线性表位,而TPEQQFT为单克隆抗体2C5的模拟表位。
     SARS冠状病毒S蛋白在病毒与宿主细胞受体结合、细胞膜融合及入侵、诱导机体产生中和抗体中起重要作用。S蛋白受体结合结构域的核心区域为318~510片段。克隆并融合表达了S蛋白318~510片段,分析表明原核表达的受体结合结构域融合蛋白能被SARS康复患者清和高免动物血清所识别。进一步设计了一套23个覆盖整个该受体结合结构域的长为16氨基酸残基的部分重叠的短肽,并进行了融合表达。用23个融合蛋白对受体结合结构域进行抗原表位作图。结果鉴定出两个抗原表位SRBD3(F_(334)PSVYAWERKKISNCV_(349))和表位D3D1(K_(447)LRPFERDI_(455))。
     SARS冠状病毒S蛋白S1部分在与细胞受体结合以及诱导机体产生保护性中和抗体中发挥重要作用。用PCR扩增S1(12~672)及S1N(12~510),S1C(318~672)和SRBD(318~510)四个片段。PCR产物分别克隆到表达载体pGEX-6p-1中,经诱导各融合蛋白均以包涵体形式表达。Western
Severe acute respiratory syndrome (SARS) is a newly emerged human infectious disease caused by the severe acute respiratory syndrome coronavirus (SARS-CoV). And the S, M, N and E protein are four main structural proteins of SARS-CoV. The spike (S) protein of SARS-CoV is a major virion structural protein. It plays an important role in the interaction with receptors and neutralizing antibodies. In the study, six epitopes (S1 S2 S3 S4 S5 S6) of the spike protein of SARS-CoV were predicted by bioinformatics analysis. Firstly, a multi-epitopes chimeric antigen gene was constructed and synthesized. The chimeric antigen gene then fused to downstream GST gene in pGEX-6p-1. The western blot assay demonstrated that SARS patient convalescent serum could recognize the recombinant fusion protein. And six predicted epitopes gene fused to GST expressed in E.coli BL21 respectively. Among six fusion proteins, GST-S5 reacted with monoclonal antibody D3C5 and GST-S2 reacted with monoclonal antibody D3D1 against spike protein of SARS-CoV. The results indicated that the epitopes recognized by monoclonal antibody D3C5 and D3D1 are all lineal epitopes. The two epitopes correspond the sequence of 447 to 458 and 789-799 amino acid of spike protein of SARS-CoV respectively.2C5 is a SARS-CoV spike protein specific neutralizing monoclonal antibody. Based 2C5 as the target molecular, C7C? phage display peptide library were screened. After the third panning 20 phage clones were analyzed and sequenced. Among these 20 clones, there are 7 get the same sequence TPEQQFT and their OD value in ELISA are all over 0.2. And the phages displayed this peptide could inhibit and compete with SARS-CoV spike protein in binding with monoclonal antibody 2C5. Align the peptide with spike protein sequence, we found it may located in amino acid 539 to 559 of spike protein. In further step S539-559 was fused with GST and expressed and purified. But the followed analysis demonstrated that 2C5 did not binding with S539-559. However, this fusion protein could be recognized by immunized chicken sera. So S539-559 is a lineal epitope of spike protein, but not the epitope of 2C5. And the sequence TPEQQFT is a mimic epitope of monoclonal antibody 2C5.Amino acid 318 to 510 is the receptor binding domain of SARS-CoV spike protein. To map the antigenic epitope of this region, a set of 23 partially overlapping fragments spanning the fragment were fused with GST and expressed. With Western blot and ELISA analysis, two antigenic epitopes SRBD3 (334-349) and epitope D3D1 (447-455) were identified. Immunization of mice with each of the two antigenic epitope-fused proteins revealed that all four proteins could elicit spike protein specific antisera.
引文
1.芮伟,张其鹏,石磊等.SARS冠状病毒基因组、蛋白质与侵入宿主细胞过程近况.http://cmbi.bjmu.edu.cn
    2.张其鹏,石磊,芮伟等.SARS冠状病毒基因组初步分析.北京大学学报(医学版),2003,35:128-129
    3. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, and Hilgenfeld R, Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 2003, 300(5626): 1763-7.
    4. Armstrong J, Niemann H, Smeekens S, Rottier P, and Warren G, Sequence and topology of a model intracellular membrane protein, El glycoprotein, from a coronavirus. Nature, 1984, 308(5961): 751-2.
    5. Babcock GJ, Esshaki DJ, Thomas WD, Jr., and Ambrosino DM, Amino Acids 270 to 510 of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Are Required for Interaction with Receptor. J. Virol., 2004, 78(9): 4552-4560.
    6. Berry JD, Jones S, Drebot MA, Andonov A, Sabara M, Yuan XY, Weingartl H, Fernando L, Marszal P, Gren J, Nicolas B, Andonova M, Ranada F, Gubbins MJ, Ball TB, Kitching P, Li Y, Kabani A, and Piummer F, Development and characterisation of neutralising monoclonal antibody to the SARS-coronavirus. J Virol Methods, 2004, 120(1): 87-96.
    7. Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, Murphy BR, Subbarao K, and Moss B, Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. PNAS, 2004, 101 (17): 6641-6646.
    8. Bonavia A, Zelus BD, Wentworth DE, Talbot PJ, and Holmes KV, Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J Virol, 2003, 77(4): 2530-8.
    9. Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, Walmsley SL, Mazzulli T, Avendano M, Derkach P, Ephtimios IE, Kitai I, Mederski BD, Shadowitz SB, Gold WL, Hawryluck LA, Rea E, Chenkin JS, Cescon DW, Poutanen SM, and Detsky AS, Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. Jama, 2003, 289(21): 2801-9.
    10. Bos EC, Luytjes W, van der Meulen HV, Koerten HK, and Spaan WJ, The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology, 1996, 218(1): 52-60.
    11. Bosch BJ, Martina BE, Van Der Zee R, Lepault J, Haijema BJ, Versluis C, Heck A J, De Groot R, Osterhaus AD, and Rottier PJ, Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc Natl Acad Sci U S A, 2004, 101(22): 8455-60.
    12. Bosch BJ, van der Zee R, de Haan CAM, and Rottier PJM, The Coronavirus Spike Protein Is a Class Ⅰ Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. J. Virol., 2003, 77(16): 8801-8811.
    13. Brandenburg AH, de Waal L, Timmerman HH, Hoogerhout P, de Swart RL, and Osterhaus AD, HLA class Ⅰ-restricted cytotoxic T-cell epitopes of the respiratory syncytiai virus fusion protein. J Virol, 2000, 74(21): 10240-4.
    14. Buchholz UJ, Bukreyev A, Yang L, Lamirande EW, Murphy BR, Subbarao K, and Collins PL, Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. PNAS, 2004, 101 (26): 9804-9809.
    15. Bukreyev A, Lamirande EW, Buchholz UJ, Vogel LN, Elkins WR, St Claire M, Murphy BR, Subbarao K, and Collins PL, Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet, 2004, 363(9427): 2122-7.
    16. Cavanagh D, Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol, 2003, 32(6): 567-82.
    17. Cerino A, Meola A, Segagni L, Furione M, Marciano S, Triyatni M, Liang TJ, Nicosia A, and Mondelli MU, Monoclonal antibodies with broad specificity for hepatitis C virus hypervariable region 1 variants can recognize viral particles. J Immunol, 2001, 167(7): 3878-86.
    18. Chang MS, Lu YT, Ho ST, Wu CC, Wei TY, Chen CJ, Hsu YT, Chu PC, Chen CH, Chu JM, Jan YL, Hung CC, Fan CC, and Yang YC, Antibody detection of SARS-CoV spike and nucleocapsid protein. Biochem Biophys Res Commun, 2004, 314(4): 931-6.
    19. Che XY, Qiu LW, Pan YX, Wen K, Hao W, Zhang LY, Wang YD, Liao ZY, Hua X, Cheng VC, and Yuen KY, Sensitive and specific monoclonal antibody-based capture enzyme immunoassay for detection of nucleocapsid antigen in sera from patients with severe acute respiratory syndrome. J Clin Microbiol, 2004, 42(6): 2629-35.
    20. Chen F, Chan KH, Jiang Y, Kao RY, Lu HT, Fan KW, Cheng VC, Tsui WH, Hung IF, Lee TS, Guan Y, Peiris JS, and Yuen KY, In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol, 2004, 31(1): 69-75.
    21. Chen Z, Pei D, Jiang L, Song Y, Wang J, Wang H, Zhou D, Zhai J, Du Z, Li B, Qiu M, Han Y, Guo Z, and Yang R, Antigenicity analysis of different regions of the severe acute respiratory syndrome coronavirus nucleocapsid protein. Clin Chem, 2004, 50(6): 988-95.
    22. Chou TH, Wang S, Sakhatskyy PV, Mboudoudjeck I, Lawrence JM, Huang S, Coley S, Yang B, Li J, Zhu Q, and Lu S, Epitope mapping and biological function analysis of antibodies produced by immunization of mice with an inactivated Chinese isolate of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology, 2005, 334(1): 134-43.
    23. Choy W-Y, Lin S-G, Chan PK-S, Tam JS-L, Lo YMD, Chu IM-T, Tsai S-N, Zhong M-Q, Fung K-P, Waye MM-Y, Tsui SK-W, Ng K-O, Shan Z-X, Yang M, Wu Y-L, Lin Z-Y, and Ngai S-M, Synthetic Peptide Studies on the Severe Acute Respiratory Syndrome (SARS) Coronavirus Spike Glycoprotein: Perspective for SARS Vaccine Development. Clin. Chem., 2004, 50(6): 1036-1042.
    24. Cologna R and Hogue BG, Identification of a bovine coronavirus packaging signal. J Virol, 2000a, 74(1): 580-3.
    25. Cologna R, Spagnolo JF, and Hogue BG, Identification of nucleocapsid binding sites within coronavirus-defective genomes. Virology, 2000b, 277(2): 235-49.
    26. Daniel C, Anderson R, Buchmeier MJ, Fleming JO, Spaan WJ, Wege H, and Talbot PJ, Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of complex tridimensional structure. J Virol, 1993, 67(3): 1185-94.
    27. Daniel C, Lacroix M, and Talbot PJ, Mapping of linear antigenic sites on the S glycoprotein of a neurotropic murine coronavirus with synthetic peptides: a combination of nine prediction algorithms fails to identify relevant epitopes and peptide immunogenicity is drastically influenced by the nature of the protein carrier. Virology, 1994, 202(2): 540-9.
    28. Dell'Orco M, Saldarelli P, Minafra A, Boscia D, and Gallitelli D, Epitope mapping of Grapevine virus A capsid protein. Arch Virol, 2002, 147(3): 627-34.
    29. Di B, Hao W, Gao Y, Wang M, Wang YD, Qiu LW, Wen K, Zhou DH, Wu XW, Lu EJ, Liao ZY, Mei YB, Zheng B J, and Che XY, Monoclonal antibody-based antigen capture enzyme-linked immunosorbent assay reveals high sensitivity of the nucleocapsid protein in acute-phase sera of severe acute respiratory syndrome patients. Clin Diagn Lab Immunol, 2005, 12(1): 135-40.
    30. Drosten C, Gunther S, Preiser W, van der Werf S, Brodt H-R, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RAM, Berger A, Burguiere A-M, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra J-C, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk H-D, Osterhaus ADME, Schmitz H, and Doerr HW, Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. N. Engl. J. Med., 2003, 348(20): 1967-1976.
    31. Eickmann M, Becket S, Klenk H-D, Doerr HW, Stadler K, Censini S, Guidotti S, Masignani V, Scarselli M, Mora M, Donati C, Han JH, Song HC, Abrignani S, Covacci A, and Rappuoli R, Phylogeny of the SARS Coronavirus. Science, 2003, 302(5650): 1504b-1505.
    32. Emini EA, Hughes JV, Perlow DS, and Boger J, Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol, 1955, 55(3): 836-9.
    33. Enserink M, Infectious diseases. One year after outbreak, SARS virus yields some secrets. Science, 2004a, 304(5674): 1097.
    34. Enserink M, SARS treatment. Interferon shows promise in monkeys. Science, 2004b, 303(5662): 1273-5.
    35. Fowler RA, Lapinsky SE, Hallett D, Detsky AS, Sibbald WJ, Slutsky AS, and Stewart TE, Critically ill patients with severe acute respiratory syndrome. Jama, 2003, 290(3): 367-73.
    36. Gallagher TM and Buchmeier MJ, Coronavirus spike proteins in viral entry and pathogenesis. Virology, 2001, 279(2): 371-4.
    37. Gao W, Tamin A, Soloff A, D'Aiuto L, Nwanegbo E, Robbins PD, Bellini WJ, Barratt-Boyes S, and Gambotto A, Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet, 2003, 362(9399): 1895-6.
    38. Greenough TC, Babcock GJ, Roberts A, Hernandez HJ, Thomas WD, Jr., Coccia JA, Graziano RF, Srinivasan M, Lowy I, Finberg RW, Subbarao K, Vogel L, Somasundaran M, Luzuriaga K, Sullivan JL, and Ambrosino DM, Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J Infect Dis, 2005, 191(4): 507-14.
    39. Guan M, Chan KH, Peiris JS, Kwan SW, Lam SY, Pang CM, Chu KW, Chart KM, Chen HY, Phuah EB, and Wong CJ, Evaluation and validation of an enzyme-linked immunosorbent assay and an immunochromatographic test for serological diagnosis of severe acute respiratory syndrome. Clin Diagn Lab Immunol, 2004a, 11(4): 699-703.
    40. Guan M, Chen HY, Foo SY, Tan YJ, Goh PY, and Wee SH, Recombinant protein-based enzyme-linked immunosorbent assay and immunochromatographic tests for detection of immunoglobulin G antibodies to severe acute respiratory syndrome (SARS) coronavirus in SARS patients. Clin Diagn Lab Immunol, 2004b, 11(2): 287-91.
    41. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JSM, and Poon LLM, Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern China. Science, 2003, 302(5643): 276-278.
    42. Gubbins MJ, Plummer FA, Yuan XY, Johnstone D, Drebot M, Andonova M, Andonov A, and Berry JD, Molecular characterization of a panel of murine monoclonal antibodies specific for the SARS-coronavirus. Mol Immunol, 2005, 42(1): 125-36.
    43. He ML, Zheng B, Peng Y, Peiris JS, Poon LL, Yuen KY, Lin MC, Kung HF, and Guan Y, Inhibition of SARS-associated coronavirus infection and replication by RNA interference. Jama, 2003, 290(20): 2665-6.
    44. He Q, Chong KH, Chng HH, Leung B, Ling AE, Wei T, Chan SW, Ooi EE, and Kwang J, Development of a Western blot assay for detection of antibodies against coronavirus causing severe acute respiratory syndrome. Clin Diagn Lab Immunol, 2004, 11(2): 417-22.
    45. He Q, Manopo I, Lu L, Leung BP, Chng HH, Ling AE, Chee LL, Chan SW, Ooi EE, Sin YL, Ang B, and Kwang J, Novel Immunofluorescence Assay Using Recombinant Nucleocapsid-Spike Fusion Protein as Antigen To Detect Antibodies against Severe Acute Respiratory Syndrome Coronavirus. Clin Diagn Lab Immunol, 2005, 12(2): 321-8.
    46. He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, and Jiang S, Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun, 2004a, 324(2): 773-81.
    47. He Y, Zhou Y, Wu H, Luo B, Chen J, Li W, and Jiang S, Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. J Immunol, 2004b, 173(6): 4050-7.
    48. He Y, Zhu Q, Liu S, Zhou Y, Yang B, Li J, and Jiang S, Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: importance for designing SARS vaccines. Virology, 2005, 334(1): 74-82.
    49. Hofmann H and Pohlmann S, Cellular entry of the SARS coronavirus. Trends Microbiol, 2004, 12(10): 466-72.
    50. Holmes KV, SARS-Associated Coronavirus. N. Engl. J. Med., 2003, 348(20): 1948-1951.
    51. Hou L, Du G, Tong Y, and Wang H, Identification of B cell epitopes of hepatitis C virus RNA dependent RNA polymerase. J Virol Methods, 2002, 104(1): 1-8.
    52. Hsu LY, Lee CC, Green JA, Ang B, Paton NI, Lee L, Villacian JS, Lim PL, Earnest A, and Leo YS, Severe acute respiratory syndrome (SARS) in Singapore: clinical features of index patient and initial contacts. Emerg Infect Dis, 2003, 9(6): 713-7.
    53. Hsueh PR, Hsiao CH, Yeh SH, Wang WK, Chen PJ, Wang JT, Chang SC, Kao CL, and Yang PC, Microbiologic characteristics, serologic responses, and clinical manifestations in severe acute respiratory syndrome, Taiwan. Emerg Infect Dis, 2003, 9(9): 1163-7.
    54. Hua R, Zhou Y, Wang Y, Hua Y, and Tong G, Identification of two antigenic epitopes on SARS-CoV spike protein. Biochem Biophys Res Commun, 2004, 319(3): 929-35.
    55. Huang LR, Chiu CM, Yeh SH, Huang WH, Hsueh PR, Yang WZ, Yang JY, Su IJ, Chang SC, and Chen PJ, Evaluation of antibody responses against SARS coronaviral nucleocapsid or spike proteins by immunoblotting or ELISA. J Med Virol, 2004, 73(3): 338-46.
    56. Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, and Ziebuhr J, Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol, 2004, 78(11): 5619-32.
    57. Jameson BA and Wolf H, The antigenic index: a novel algorithm for predicting antigenic determinants. Comput Appl Biosci, 1988, 4(1): 181-6.
    58. Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ, Thomas WD, Jr., Thackray LB, Young MD, Mason RJ, Ambrosino DM, Wentworth DE, Demartini JC, and Holmes KV, CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus, Proc Natl Acad Sci U S A, 2004, 101(44): 15748-53.
    59. Kim TW, Lee JH, Hung CF, Peng S, Roden R, Wang MC, Viscidi R, Tsai YC, He L, Chen PJ, Boyd DA, and Wu TC, Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol, 2004, 78(9): 4638-45.
    60. Koo M, Bendahmane M, Lettieri GA, Paoletti AD, Lane TE, Fitchen JH, Buchmeier MJ, and Beachy RN, Protective immunity against murine hepatitis virus (MHV) induced by intranasal or subcutaneous administration of hybrids of tobacco mosaic virus that carries an MHV epitope. Proc Natl Acad Sci U S A, 1999, 96(14): 7774-9.
    61. Koolen MJ, Borst MA, Horzinek MC, and Spaan WJ, Immunogenic peptide comprising a mouse hepatitis virus A59 B-cell epitope and an influenza virus T-cell epitope protects against lethal infection. J Virol, 1990, 64(12): 6270-3.
    62. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, and Anderson LJ, A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 2003, 348(20): 1953-66.
    63. Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel D, Laman JD, de Jong T, van Doornum G, Lim W, Ling AE, Chan PK, Tam JS, Zambon MC, Gopal R, Drosten C, van der Werf S, Escriou N, Manuguerra JC, Stohr K, Peiris JS, and Osterhaus AD, Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet, 2003, 362(9380): 263-70.
    64. Kyte J and Doolittle RF, A simple method for displaying the hydropathic character of a protein. J Mol Biol, 1982, 157(1): 105-32.
    65. Lau SK, Woo PC, Wong BH, Tsoi HW, Woo GK, Poon RW, Chan KH, Wei WI, Peiris JS, and Yuen KY, Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in sars patients by enzyme-linked immunosorbent assay. J Clin Microbiol, 2004, 42(7): 2884-9.
    66. Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, Ahuja A, Yung MY, Leung CB, To KF, Lui SF, Szeto CC, Chung S, and Sung JJ, A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med, 2003, 348(20): 1986-94.
    67. Leung DT, Tam FC, Ma CH, Chan PK, Cheung JL, Niu H, Tam JS, and Lim PL, Antibody response of patients with severe acute respiratory syndrome (SARS) targets the viral nucleocapsid. J Infect Dis, 2004, 190(2): 379-86.
    68. Lew TW, Kwek TK, Tai D, Earnest A, Loo S, Singh K, Kwan KM, Chan Y, Yim CF, Bek SL, Kor AC, Yap WS, Chelliah YR, Lai YC, and Gob SK, Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. Jama, 2003, 290(3): 374-80.
    69. Li G, Chen X, and Xu A, Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med, 2003, 349(5): 508-9.
    70. Li J, Luo C, Deng Y, Han Y, Tang L, Wang J, Ji J, Ye J, Jiang F, Xu Z, Tong W, Wei W, Zhang Q, Li S, Li W, Li H, Li Y, Dong W, Wang J, Bi S, and Yang H, The structural characterization and antigenicity of the S protein of SARS-CoV. Genomics Proteomics Bioinformatics, 2003, 1(2): 108-17.
    71. Li S, Lin L, Wang H, Yin J, Ren Y, Zhao Z, Wen J, Zhou C, Zhang X, Li X, Wang J, Zhou Z, Liu J, Shao J, Lei T, Fang J, Xu N, and Liu S, The epitope study on the SARS-CoV nucleocapsid protein. Genomics Proteomics Bioinformatics, 2003, 1(3): 198-206.
    72. Li W, Moore M J, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, and Farzan M, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965): 450-4.
    73. Lin Y, Shen X, Yang RF, Li YX, Ji YY, He YY, Mu DS, Lu W, Shi TL, Wang J, Wang HX, Jiang HL, Sheng JH, Xie YH, Wang Y, Pei G, Shen BF, Wu JR, Sun B, Identification of an epitope of SAR-coronavirus nucleocapsid protein. Cell Research, 2003,13(3): 141-145.
    74. Liu S, Xiao G, Chen Y, He Y, Niu J, Escalante CR, Xiong H, Farmar J, Debnath AK, Tien P, and Jiang S, Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet, 2004, 363(9413): 938-47.
    75. Liu X, Shi Y, Li P, Li L, Yi Y, Ma Q, and Cao C, Profile of antibodies to the nucleocapsid protein of the severe acute respiratory syndrome (SARS)-associated coronavirus in probable SARS patients. Clin Diagn Lab Immunol, 2004, 11(1): 227-8.
    76. Luytjes W, Geerts D, Posthumus W, Meloen R, and Spaan W, Amino acid sequence of a conserved neutralizing epitope of murine coronaviruses. J Virol, 1989, 63(3): 1408-12.
    77. Mahony J, Petrich A, Louie L, Comparison of the cost and performance of seven RT-PCR assays for detecting SARS coronavirus RNA [abstract V-796d]. In: Program and abstracts of the 43rd Meeting of the Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago). Washington, DC: American Society for Microbiology, 2003.
    78. Manopo I, Lu L, He Q, Chee LL, Chan SW, and Kwang J, Evaluation of a safe and sensitive Spike protein-based immunofluorescence assay for the detection of antibody responses to SARS-CoV. J Immunol Methods, 2005, 296(1-2): 37-44.
    79. Marra MA, Jones SJM, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YSN, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, and Roper RL, The Genome Sequence of the SARS-Associated Coronavirus. Science, 2003, 300(5624): 1399-1404.
    80. Marshall E and Enserink M, Medicine. Caution urged on SARS vaccines. Science, 2004, 303(5660): 944-6.
    81. Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, Van Amerongen G, Peiris JS, Lim W, and Osterhaus AD, Virology: SARS virus infection of cats and ferrets. Nature, 2003, 425(6961): 915.
    82. Mazzulli T, Farcas GA, Poutanen SM, Willey BM, Low DE, Butany J, Asa SL, and Kain KC, Severe acute respiratory syndrome-associated coronavirus in lung tissue. Emerg Infect Dis, 2004, 10(1): 20-4.
    83. Nie QH, Luo XD, and Hui WL, Advances in clinical diagnosis and treatment of severe acute respiratory syndrome. World J Gastroenterol, 2003, 9(6): 1139-43.
    84. Nie Y, Wang G, Shi X, Zhang H, Qiu Y, He Z, Wang W, Lian G, Yin X, Du L, Ren L, Wang J, He X, Li T, Deng H, and Ding M, Neutralizing antibodies in patients with severe acute respiratory syndrome-associated coronavirus infection. J Infect Dis, 2004, 190(6): 1119-26.
    85. Olsen CW, A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet Microbiol, 1993, 36(1-2): 1-37.
    86. Openshaw PJ, Immunopathological mechanisms in respiratory syncytial virus disease. Springer Semin Immunopathol, 1995, 17(2-3):187-201.
    87. Ostler T, Davidson W, and Ehl S, Virus clearance and immunopathology by CD8(+) T cells during infection with respiratory syncytial virus are mediated by IFN-gamma. Eur J Immunol, 2002, 32(8): 2117-23.
    88. Pang H, Liu Y, Han X, Xu Y, Jiang F, Wu D, Kong X, Bartlam M, and Rao Z, Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine. J. Gen. Virol., 2004, 85(10): 3109-3113.
    89. Parker MM and Masters PS, Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology, 1990, 179(1): 463-8.
    90. Parmley SF and Smith GP, Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene, 1988, 73(2): 305-18.
    91. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, and Yuen KY, Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003a, 361(9366): 1319-25.
    92. Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, Law KI, Tang BS, Hon TY, Chan CS, Chan KH, Ng JS, Zheng BJ, Ng WL, Lai RW, Guan Y, and Yuen KY, Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet, 2003b, 361 (9371): 1767-72.
    93. Peiris JS, Guan Y, and Yuen KY, Severe acute respiratory syndrome. Nat Med, 2004, 10(12 Suppl): S88-97.
    94. Poon LL, Chan KH, Wong OK, Yam WC, Yuen KY, Guan Y, Lo YM, and Peiris JS, Early diagnosis of SARS coronavirus infection by real time RT-PCR. J Clin Virol, 2003, 28(3): 233-8.
    95. Poutanen SM, Low DE, Henry B, Finkelstein S, Rose D, Green K, Tellier R, Draker R, Adachi D, Ayers M, Chan AK, Skowronski DM, Salit I, Simor AE, Slutsky AS, Doyle PW, Krajden M, Petric M, Brunham RC, and McGeer AJ, Identification of severe acute respiratory syndrome in Canada. N Engl J Med, 2003, 348(20): 1995-2005.
    96. Qin ED, Zhu QY, Yu M, Fan BC, Chang GH, Si BY, Yang BA, Peng WM, Jang T, Liu BH, Deng YQ, Liu H, Zhang Y, Wang CE, Li YQ, Gan Yh, Li XY, Lu FH, Tan G, Cao WC, Yang RF, Wang J, Li W, Wu QF, Li Y, Xu ZY, Lin W, Chen WJ, Chen HT, Cong LJ, Chen F, Deng YJ, Fang L, Huang YQ, Huang XG, Han YJ, Hu JF, Hu W, Ji J, Jiao YZ, Lei M, Li CF, Li GQ, Li ST, Li SL, Li HH, Li WJ, Li DW, Li CJ, Liu J, Liu Y, Lu H, Qi QH, Qin HO, Shi JP, Sun YQ, Tang L, Tong W, Tong ZZ, Tian XJ, Wang J, Wang ZQ, Wang JJ, Xi Y, Xu J, Yang LH, Ye C, Ye J, Zhang B, Zhao XQ, Zhang F, Zhang JG, Zhang ZJ, Zhang HQ, Zhang YL, Liu B, Zeng CQ, Li SG, Gane Ka-Shu W, Tan XH, Liu SQ, Dong W, Wang J, Yu J, Yang HM. A complete sequence and comparative analysis of a SARS-associated virus (Isolate BJ01 ). Chinese Science Bulletin, 2003,48(10): 941-948
    97. Qin L, Xiong B, Luo C, Guo ZM, Hao P, Su J, Nan P, Feng Y, Shi YX, Yu XJ, Luo XM, Chen KX, Shen X, Shen JH, Zou JP, Zhao GP, Shi TL, He WZ, Zhong Y, Jiang HL, and Li YX, Identification of probable genomic packaging signal sequence from SARS-CoV genome by bioinformatics analysis. Acta Pharmacol Sin, 2003, 24(6): 489-96.
    98. Ren Y, Zhou Z, Liu J, Lin L, Li S, Wang H, Xia J, Zhao Z, Wen J, Zhou C, Wang J, Yin J, Xu N, and Liu S, A strategy for searching antigenic regions in the SARS-CoV spike protein. Genomics Proteomics Bioinformatics, 2003, 1(3): 207-15.
    99. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chert M-h, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chert Q, Wang D, Erdman DD, Peter TCT, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus ADME, Drosten C, Pallansch MA, Anderson LJ, and Bellini WJ, Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. Science, 2003, 300(5624): 1394-1399.
    100. Ruan YJ, Wei CL, Ee AL, Vega VB, Thoreau H, Su ST, Chia JM, Ng P, Chiu KP, Lim L, Zhang T, Peng CK, Lin EO, Lee NM, Yee SL, Ng LF, Chee RE, Stanton LW, Long PM, and Liu ET, Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet, 2003, 361(9371): 1779-85.
    101. Sanbrook J, Fritsch E F, Manistis T, Molecular Cloning. Cold Spring Harbor Laboraory Press, third, New York, 1989.
    102. Shen X, Xue JH, Yu CY, Luo HB, Qin L, Yu XJ, Chen J, Chen LL, Xiong B, Yue LD, Cai JH, Shen JH, Luo XM, Chen KX, Shi TL, Li YX, Hu GX, and Jiang HL, Small envelope protein E of SARS: cloning, expression, purification, CD determination, and bioinformatics analysis. Acta Pharmacol Sin, 2003, 24(6): 505-11.
    103. Shi L, Rui W, Lee M. [Preliminary analysis of the structure and function of SARS putative nucleocapsid protein].http://cmbi.bjmu.edu.cn/cmbidata/sars/html/41.pdf (accessed June 2003).
    104. Shigeta S and Yamase T, Current status of anti-SARS agents. Antivir Chem Chemother, 2005, 16(1): 23-31.
    105. Smith GP, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228(4705): 1315-7.
    106. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, and Gorbalenya AE, Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol, 2003, 331(5): 991-1004.
    107. So LK, Lau AC, Yam LY, Cheung TM, Poon E, Yung RW, and Yuen KY, Development of a standard treatment protocol for severe acute respiratory syndrome. Lancet, 2003, 361(9369): 1615-7.
    108. Spiga O, Bernini A, Ciutti A, Chiellini S, Menciassi N, Finetti F, Causarono V, Anselmi F, Prischi F, and Niccolai N, Molecular modelling of S1 and S2 subunits of SARS coronavirus spike glycoprotein. Biochem Biophys Res Commun, 2003, 310(1): 78-83.
    109. Stoute JA, Ballou WR, Kolodny N, Deal CD, Wirtz RA, and Lindler LE, Induction of humoral immune response against Plasmodium falciparum sporozoites by immunization with a synthetic peptide mimotope whose sequence was derived from screening a filamentous phage epitope library. Infect Immun, 1995, 63(3): 934-9.
    110. Subbarao K, McAuliffe J, Vogel L, Fahle G, Fischer S, Tatti K, Packard M, Shieh W-J, Zaki S, and Murphy B, Prior Infection and Passive Transfer of Neutralizing Antibody Prevent Replication of Severe Acute Respiratory Syndrome Coronavirus in the Respiratory Tract of Mice. J. Virol., 2004, 78(7): 3572-3577.
    111. Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, Moore M J, Tallarico AS, Olurinde M, Choe H, Anderson LJ, Bellini WJ, Farzan M, and Marasco WA, Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A, 2004, 101(8): 2536-41.
    112. Taguchi F, The S2 subunit of the murine coronavirus spike protein is not involved in receptor binding. J Virol, 1995, 69(11): 7260-3.
    113. Takasuka N, Fujii H, Takahashi Y, Kasai M, Morikawa S, Itamura S, lshii K, Sakaguchi M, Ohnishi K, Ohshima M, Hashimoto S-i, Odagiri T, Tashiro M, Yoshikura H, Takemori T, and Tsunetsugu-Yokota Y, A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice. Int. Immunol., 2004, 16(10): 1423-1430.
    114. Talbot PJ and Buchmeier MJ, Antigenic variation among murine coronaviruses: evidence for polymorphism on the peplomer glycoprotein, E2. Virus Res, 1985, 2(4): 317-28.
    115. Talbot PJ, Salmi AA, Knobler RL, and Buchmeier MJ, Topographical mapping of epitopes on the glycoproteins of murine hepatitis virus-4 (strain JHM): correlation with biological activities. Virology, 1984, 132(2): 250-60.
    116. Tan EL, Ooi EE, Lin CY, Tan HC, Ling AE, Lim B, and Stanton LW, Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg Infect Dis, 2004, 10(4): 581-6.
    117. Tan YJ, Goh PY, Fielding BC, Shen S, Chou CF, Fu JL, Leong HN, Leo YS, Ooi EE, Ling AE, Lim SG, and Hong W, Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin Diagn Lab Immunol, 2004, 11(2): 362-71.
    118. Tang L, Zhu Q, Qin E, Yu M, Ding Z, Shi H, Cheng X, Wang C, Chang G, Zhu Q, Fang F, Chang H, Li S, Zhang X, Chen X, Yu J, Wang J, and Chen Z, Inactivated SARS-CoV vaccine prepared from whole virus induces a high level of neutralizing antibodies in BALB/c mice. DNA Cell Biol, 2004, 23(6): 391-4.
    119. ter Meulen J, Bakker AB, van den Brink EN, Weverling GJ, Martina BE, Haagmans BL, Kuiken T, de Kruif J, Preiser W, Spaan W, Gelderblom HR, Goudsmit J, and Osterhaus AD, Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet, 2004, 363(9427): 2139-41.
    120. Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Weissbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, and Ziebuhr J, Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol, 2003, 84(Pt 9): 2305-15.
    121. Traggiai E, Becket S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R, and Lanzavecchia A, An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med, 2004, 10(8): 871-5.
    122. Tripet B, Howard MW, Jobling M, Holmes RK, Holmes KV, and Hodges RS, Structural Characterization of the SARS-Coronavirus Spike S Fusion Protein Core. J. Biol. Chem., 2004, 279(20): 20836-20849.
    123. Tsang K and Zhong NS, SARS: pharmacotherapy. Respirology, 2003, 8 Suppl(S25-30.
    124. Tsang KW, Ho PL, Ooi GC, Yee WK, Wang T, Chan-Yeung M, Lam WK, Seto WH, Yam LY, Cheung TM, Wong PC, Lam B, Ip MS, Chan J, Yuen KY, and Lai KN, A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med, 2003, 348(20): 1977-85.
    125. van den Brink EN, Ter Meulen J, Cox F, Jongeneelen MA, Thijsse A, Throsby M, Marissen WE, Rood PM, Bakker AB, Gelderblom HR, Martina BE, Osterhaus AD, Preiser W, Doerr HW, de Kruif J, and Goudsmit J, Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J Virol, 2005, 79(3): 1635-44.
    126. Wang B, Chen H, Jiang X, Zhang M, Wan T, Li N, Zhou X, Wu Y, Yang F, Yu Y, Wang X, Yang R, and Cao X, Identification of an HLA-A~*0201-restricted CD8+ T-cell epitope SSp-1 of SARS-CoV spike protein. Blood, 2004, 104(1): 200-6.
    127. Wang J, Wen J, Li J, Yin J, Zhu Q, Wang H, Yang Y, Qin E, You B, Li W, Li X, Huang S, Yang R, Zhang X, Yang L, Zhang T, Yin Y, Cui X, Tang X, Wang L, He B, Ma L, Lei T, Zeng C, Fang J, Yu J, Wang J, Yang H, West MB, Bhatnagar A, Lu Y, Xu N, and Liu S, Assessment of immunoreactive synthetic peptides from the structural proteins of severe acute respiratory syndrome coronavirus. Clin Chem, 2003, 49(12): 1989-96.
    128. Wang P, Chen J, Zheng A, Nie Y, Shi X, Wang W, Wang G, Luo M, Liu H, Tan L, Song X, Wang Z, Yin X, Qu X, Wang X, Qing T, Ding M, and Deng H, Expression cloning of functional receptor used by SARS coronavirus. Biochem Biophys Res Commun, 2004, 315(2): 439-44.
    129. Wang YD, Li Y, Xu GB, Dong XY, Yang XA, Feng ZR, Tian C, and Chen WF, Detection of antibodies against SARS-CoV in serum from SARS-infected donors with ELISA and Western blot. Clin Immunol, 2004a, 113(2): 145-50.
    130. Wang YD, Sin WY, Xu GB, Yang HH, Wong TY, Pang XW, He XY, Zhang HG, Ng JN, Cheng CS, Yu J, Meng L, Yang RF, Lai ST, Guo ZH, Xie Y, and Chen WF, T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. J Virol, 2004b, 78(11): 5612-8.
    131. Wang Z, Ren L, Zhao X, Hung T, Meng A, Wang J, and Chen YG, Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J Virol, 2004, 78(14): 7523-7.
    132. Weingartl H, Czub M, Czub S, Neufeld J, Marszal P, Gren J, Smith G, Jones S, Proulx R, Deschambault Y, Grudeski E, Andonov A, He R, Li Y, Copps J, Grolla A, Dick D, Berry J, Ganske S, Manning L, and Cao J, Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol, 2004, 78(22): 12672-6.
    133. Wong SK, Li W, Moore MJ, Choe H, and Farzan M, A 193-Amino Acid Fragment of the SARS Coronavirus S Protein Efficiently Binds Angiotensin-converting Enzyme 2. J. Biol. Chem., 2004, 279(5): 3197-3201.
    134. Wong VW, Dai D, Wu AK, and Sung JJ, Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med J, 2003, 9(3): 199-201.
    135. Woo K, Joo M, Narayanan K, Kim KH, and Makino S, Murine coronavirus packaging signal confers packaging to nonvirai RNA. J Virol, 1997, 71 (1): 824-7.
    136. Woo PC, Lau SK, Wong BH, Chan KH, Chu CM, Tsoi HW, Huang Y, Peiris JS, and Yuen KY, Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clin Diagn Lab Immunol, 2004a, 11(4): 665-8.
    137. Woo PC, Lau SK, Wong BH, Chan KH, Hui WT, Kwan GS, Peiris JS, Couch RB, and Yuen KY, False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid enzyme-linked immunosorbent assay due to HCoV-OC43 and HCoV-229E rectified by Western blotting with recombinant SARS-CoV spike polypeptide. J Clin Microbiol, 2004b, 42(12): 5885-8.
    138. Wu CJ, Jan JT, Chen CM, Hsieh HP, Hwang DR, Liu HW, Liu CY, Huang HW, Chen SC, Hong CF, Lin RK, Chao YS, and Hsu JT, Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob Agents Chemother, 2004, 48(7): 2693-6.
    139. Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS, Hsu HH, Huang HC, Wu D, Brik A, Liang FS, Liu RS, Fang JM, Chen ST, Liang PH, and Wong CH, Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci U S A, 2004, 101 (27): 10012-7.
    140. Xiao X, Chakraborti S, Dimitrov AS, Gramatikoff K, and Dimitrov DS, The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun, 2003, 312(4): 1159-64.
    141. Xiong B, Gui CS, Xu XY, Luo C, Chen J, Luo HB, Chen LL, Li GW, Sun T, Yu CY, Yue LD, Duan WH, Shen JK, Qin L, Shi TL, Li YX, Chen KX, Luo XM, Shen X, Shen JH, and Jiang HL, A 3D model of SARS_CoV 3CL proteinase and its inhibitors design by virtual screening. Acta Pharmacol Sin, 2003, 24(6): 497-504.
    142. Xiong S, Wang YF, Zhang MY, Liu XJ, Zhang CH, Liu SS, Qian CW, Li JX, Lu JH, Wan ZY, Zheng HY, Yan XG, Meng MJ, and Fan JL, Immunogenicity of SARS inactivated vaccine in BALB/c mice. Immunol Lett, 2004, 95(2): 139-43.
    143. Yamamoto N, Yang R, Yoshinaka Y, Amari S, Nakano T, Cinatl J, Rabenau H, Doerr HW, Hunsmann G, Otaka A, Tamamura H, Fujii N, and Yamamoto N, HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem Biophys Res Commun, 2004, 318(3): 719-25.
    144. Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, and Nabel GJ, A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature, 2004, 428(6982): 561-4.
    145. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, Zhang H, Luo H, Zhu L, Jiang P, Chen L, Shen Y, Luo M, Zuo G, Hu J, Duan D, Nie Y, Shi X, Wang W, Han Y, Li T, Liu Y, Ding M, Deng H, and Xu X, Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol, 2004, 78(20): 11334-9.
    146. Yu MW, Scott JK, Fournier A, and Talbot PJ, Characterization of murine coronavirus neutralization epitopes with phage-displayed peptides. Virology, 2000, 271(1): 182-96.
    147. Yu XJ, Luo C, Lin JC, Hao P, He YY, Guo ZM, Qin L, Su J, Liu BS, Huang Y, Nan P, Li CS, Xiong B, Luo XM, Zhao GP, Pei G, Chen KX, Shen X, Shen JH, Zou JP, He WZ, Shi TL, Zhong Y, Jiang HL, and Li YX, Putative hAPN receptor binding sites in SARS_CoV spike protein. Acta Pharmacol Sin, 2003, 24(6): 481-8.
    148. Zeng F, Chow KY, Hon CC, Law KM, Yip CW, Chan KH, Peiris JS, and Leung FC, Characterization of humoral responses in mice immunized with plasmid DNAs encoding SARS-CoV spike gene fragments. Biochem Biophys Res Commun, 2004, 315(4): 1134-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700