用户名: 密码: 验证码:
飞行器迎风前缘逆喷与发汗防热机理及复杂流动算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆喷发汗迎风前缘结构为高超声速远程飞行器提供了一种结构简单、可靠性高、成本低而效率高的主动热防护方法。这种前缘结构由层板组合成型,融发汗冷却功能和空气针减阻降热功能为一体。在正常飞行时应用层板冷却结构周向发汗满足高超声速远程飞行器的热防护要求;同时在顶部由层板结构形成的微型空气针产生逆向喷流,实现在高马赫数飞行时获得减少阻力降低热流强度的效果。该热防护方法的应用能够实现高超声速飞行器头锥长时间工作和可重复使用的目的。
     本文围绕逆喷发汗前缘的热防护机理,主要针对两大防热功能展开研究,即逆向喷流热防护功能与层板发汗热防护功能,内容涉及外部流场与固壁热参数分布的研究与分析,并对现有计算方法进行改进与优化。
     逆向喷流热防护功能方面,为了更详尽细致地了解逆向喷流热防护方法的工作机理,本文进行了数值方法研究,采用有限体积法,结合AUSMPW格式、MUSCL方法和LU-SGS方法编制了计算程序,通过与实验及文献算例对比验证了程序可靠性。应用模拟程序,数值模拟了超声速逆向喷流复杂流场,缜密对比分析了数值模拟结果。将总压比率和流量相结合,提出了新的参数表征逆向喷流的强度,探讨分析了新参数对流场特征,阻力系数及相对总传热量的影响效果,给出了该参数与流场特征,阻力系数及相对总传热量等参数的定性函数关系。准确获得再入飞行器绕流流场特性及物面传热量是获得逆喷发汗前缘热环境特性的重要基础,为分析、研究其整体结构热特性提供有效的数据支持。
     在带逆向喷流的复杂超声速流场中,同时存在着高速流动区与低速流动区。由于低速流动区域存在低速效应,导致数值模拟计算收敛速度变慢,数值误差变大。引入预处理方法,可实现加速收敛与正确求解的目的。数值求解时,根据通量分裂格式与系统特征值的关系推导出应用预处理方法的系统下对应的通量分裂格式。为了将通量矢量分裂格式应用于预处理方法中,本文基于Roe格式提出了一种新的通量矢量分裂格式,并成功应用于预处理方法中。通过具体算例成功实现了低马赫数条件下数值计算的收敛加速与正确求解,验证了预处理方法的有效性与正确性。
     层板发汗热防护功能方面,构建了层板发汗鼻锥前缘的物理外形;再针对外部热源的计算,本文采用了外部流场对壁面气动加热的工程计算方法及CFD方法,针对内部冷却机制建立了发汗鼻锥冷却槽道内冷却液分布模型,获得了槽道内冷却液的流动换热参数;在此基础上应用有限体积法计算鼻锥整体的热状态,获得了鼻锥壁面的温度分布以及各槽道冷却液温度分布。为分析鼻锥整体结构参数与冷却效果提供了分析途径与计算方法。
     利用温度场计算方法计算鼻锥整体的热状态,获得了鼻锥壁面的温度分布,分析研究了层板发汗冷却对鼻锥的冷却效果,成功将最高壁面温度控制在材料的耐热温度以内,确保鼻锥在严重的气动加热环境下仍能保持在允许的温度范围内持续工作。并在此基础上讨论了层板冷却通道结构参数对冷却效果的影响,并分析了其影响效果的发生机理。最后将层板发汗与逆向喷流的热防护效果相结合,综合分析了整体热防护效果,验证了逆喷发汗前缘结构的有效性。
     最后对逆喷发汗前缘结构的外流场进行了实验研究。首先对超声速静风洞实验系统的各个组成部分进行了介绍,然后由所研究的问题提出实验模型,并根据逆向喷流鼻锥绕流的流动特性设计了实验方案,最后将实验结果与数值计算进行了对比分析。通过高分辨率NPLS流场观测技术,能够清晰地观察到逆向喷流流场的复杂结构,包括钝体前端的弓形激波以及在喷流层的回流再附点附近形成再压缩激波。将实验结果与数值计算进行了对比分析,结果显示两者相当吻合,再次验证了数值计算的正确性和可靠性。
The opposing-jet and inspiration leading edge offers long-range hypersonic vehiclean active thermal protection method with simple structure, high reliability, low cost andhigh efficiency. The leading edge is built with plantlets, and has both transpirationcooling and opposing jet for thermal protection. When it works, the transpirationcooling structure will cool down the long-range hypersonic vehicle, and the opposing jetwill also reduce the drag while reducing the heat flux. At the same time, it can make thehypersonic vehicle work for a long time and reusable.
     The work in this thesis is about the thermal protection mechanism of theopposing-jet and inspiration leading edge for hypersonic vehicle, which includes twoparts: one is opposing jet thermal protection function and another is transpirationcooling thermal protection function. The complex hypersonic flowfield and walltemperature are simulated and analyzed. And the simulation method is improved withpreconditioning method.
     The opposing jet thermal protection function is one of the important sides. In orderto know how it works, numerical simulation of hypersonic flow field with opposing jetis performed. The3D computational code to solve Navier-Stoke function has beenestablished by using AUSMPW scheme, MUSCL method, LU-SGS method and finitevolume method. The computational results are consistent with those of the referencesand the code has been validated using experimental data. By the use of the code, thecomplex hypersonic flow field with opposing jet is obtained and analyzed. To study theeffect of the intensity of opposing jet more reasonably, a new parameter has beendefined by combining the flux and the total pressure ratio. The study shows that thesame shock wave position, drag coefficient and total heat load can be obtained with thesame new parameter with different fluxes and the total pressures, and the new parameterhas qualitative relationship with the flowfield coefficients. As a base to calculate thewall temperature of the opposing-jet and inspiration leading edge, the flowfieldcharacteristic and heat load should be obtained correctly, which will support the wholethermal analysis.
     In the hypersonic flow field with opposing jet, there are both high speed area andlow speed area. In the low speed area, there is low speed effect, which results inconvergence deterioration and incorrect solution. However, we can introducepreconditioning method in order to accelerate the convergence of the steady solutionand obtain the numerical solution correctly. When the low speed problem is solvednumerically, the flux splitting schemes with preconditioning is deduced based on therelationship between the flux splitting schemes and system eigenvalues. In order to useflux vector splitting scheme in the preconditioning method, a new scheme is proposed based on the Roe scheme and can be used in the preconditioning method. The numericaltests of a low speed cases succeed with convergence acceleration and correct solution,which validates the preconditioning method.
     The plantlet transpiration cooling thermal protection function is another importantside. The physical shape of the plantlet transpiration cooling nose is built. In order toanalysis the thermal characteristic of the whole nose, both heating and cooling wayshould be considered. The methods of calculating the aerodynamic heating, such asengineering method and CFD method, are introduced. For cooling way, a distributionmodel of coolant is proposed for the later temperature calculation. With the heating andcooling data, the whole nose thermal state can be obtained with wall temperaturedistribution and coolant temperature distribution in the grooves by use of Finite VolumeElement.
     With the method of obtaining the thermal state of the whole nose, the transpirationcooling effect is studied. It is showed that the transpiration cooling can keep the highestwall temperature of the nose within the working temperature range of the material,which makes sure the nose keep working within the allowed temperature with seriousaerodynamic heating. The cooling effect with the plantlet cooling groove structure isdiscussed and the physical mechanism is analyzed. Combined with opposing jet thermalprotection method, the plantlet nose will work better. The synthetical thermal analysisof the opposing jet thermal protection function and the transpiration cooling thermalprotection function testifies the validity of the opposing-jet and inspiration leading edge.
     The experiment on flowfield around the opposing-jet and inspiration leading edgehas been conducted in the supersonic wind tunnel. The high-definitionNanoparticle-based Planar Laser Scattering (NPLS) is used to observe the flowfield.The experiment is designed based on the characteristic of the supersonic flow withopposing jet. By NPLS, the complex structure of the flowfield with opposing jet can beobserved in detail, including the bowl shock wave in front of the nose and therecompression shock wave near the reattachment of the jet layer. It is showed that theexperiment results are consistent with the calculation results, which validates thecalculation method again.
引文
[1] Anderson J D. Hypersonic and High Temperature Gas Dynamics[M]. New York:McGraw-Hill,1989.
    [2] Bertin J J, Cummings R M. Fifty years of hypersonics: where we’ve been andwhere we’re going[J]. Progress in Aerospace Sciences,2003,39:511-536.
    [3] Walker W, Rodgers F. Falcon hypersonic technology overview[A],13thInternational Space Planes and Hypersonic Systems and TechnologiesConference[C].2005. AIAA Paper2005-3253.
    [4] Hempsell M, Longstaff R. Skylon User Manual[M]. Reaction Engines Limited,2009.
    [5] Steelant J. LAPCAT: high-speed propulsion technology[R]. ESA-ESTEC,Division of Propulsion and Aerothermodynamics: Noordwijk, Netherlands,2008.
    [6] Maita M. Japan national report[A],16th AIAA/DLR/DGLR International SpacePlanes and Hypersonic Systems and Technologies Conference[C]. Bremen,Germany,2009.
    [7] Bertin J J. Hypersonic Aerothermodynamics[M]. Washington D. C.: AIAA press1994.
    [8] Glass D E. Ceramic matrix composite (CMC) thermal protection systems (TPS)and hot structures for hypersonic vehicles[A].15th AIAA Space Planes andHypersonic Systems and Technologies Conference[C].2008. AIAA-2008-2682.
    [9] Dotts R L, Maraia J, Smith J A, Strouhal G. Thermal insulation protectionmeans[P]. US Patent No.:4151800,1979.
    [10]马忠辉,孙秦,王小军,杨勇.热防护方法多层隔热结构传热分析及性能研究[J].宇航学报,2003,5:543-546.
    [11]闫长海,孟松鹤,陈贵清,杜善义.金属热防护方法隔热材料的发展与现状[J].导弹与航天运载技术,2006,4:48-52.
    [12]吴宗汉,许人伍.航天飞机机身上的隔热系统与材料[J].物理通报,2007,11:3-6.
    [13]戴赫,汪礼敏,张佳萍,王璐,杨中元,张景怀,林锋.新型高温隔热可磨耗封严涂层研究及展望[J].材料导报,2008,7:18-21.
    [14] Morita W H, Graves S R. Graphite/polyimide technology overview and spaceshuttle orbiter applications[J]. MATER.&PROCESS ADVANCES,1982,14:387-401.
    [15] Donald M C. Space shuttle orbiter thermal protection system design and flightexperience[A].1st ESA/ESTEC Workshop on Thermal Protection Systems[C].Noordwijk, Netherlands,1993.
    [16] Hudrisier S, Ory D, Salmon T, Baiocco P. PRE-X in-flight experimentation andmeasurement plan on TPS[A].5th European Workshop on Thermal ProtectionSystems and Hot Structures[C]. Noordwijk, Netherlands,2006.
    [17] Olsen M A. Thermal protection systems for hypersonic vehicles[J]. Journal ofUNSW@ADFA Undergraduate Hypersonics,2007,1(1).
    [18]黄伟,罗世彬,王振国.临近空间高超声速飞行器关键技术及展望[J].宇航学报,2010,31(5):1259-1265.
    [19] Fields R A, Vano A. Evaluation of an infrared heating simulation of a Mach4.63flight on an X-15horizontal stabilizer[R]. NASA TN D-5403,1969.
    [20] Amundsen R M, Leonard C P, Bruce W E III. Hyper-X hot structures comparisonof thermal analysis and flight data[A].15th Annual Thermal and Fluids AnalysisWorkshop[C]. Pasadena, California, US.2004.
    [21]徐向华,任建勋,梁新刚.近地倾斜轨道航天器在轨热辐射分析[J].太阳能学报,2004,5:717-721.
    [22]任德鹏,贾阳,刘强.肋片参数对辐射器散热性能的影响研究[J].中国空间科学技术,2007,27(04):21-27.
    [23] Trabandt U, Schmid T, Werth E. CMC and metallic hot structure hybridcomponents for RLV[A].54th International Astronautical Congress[C]. Breman,Germany,2003.
    [24] Rivers H K, Glass D E. Advances in hot structures development[A].5thEuropean Workshop on Thermal Protection Systems and Hot Structures[C].Noordwijk, Netherlands,2006.
    [25] Chi S W. Heat Pipe Theory and Practice[M] Washington, D.C., HemispherePublishing Corp.; New York, McGraw-Hill Book Co.,1976.
    [26] Kim S J, Seo J K, Do K H. Analytical and experimental investigation on theoperational characteristics and the thermal optimization of a miniature heat pipewith a grooved wick structure[J] International Journal of Heat and Mass Transfer,200346(11):2051-2063.
    [27] Riehla R R, Dutrab T. Development of an experimental loop heat pipe forapplication in future space missions[J] Applied Thermal Engineering,200525(1):101-112.
    [28] Silverstein C C. A feasibility study of heat-pipe-cooled leading edges forhypersonic cruise aircraft[R]. NASA CR1857,1971.
    [29] Anon. Design, fabrication, testing, and delivery of shuttle heat pipe leading edgetest modules[R]. NASA CR-124425,1973.
    [30] Camarda C J. Analysis and radiant heating tests of a heat-pipe-cooled leadingedge[R]. NASA TN D-8468,1977.
    [31] Camarda C J. Aerothermal tests of a heat-pipe-cooled leading edge at Mach7[R].NASA TP-1320,1978.
    [32] Camarda C J, Masek R V. Design, analysis and tests of a shuttle-typeheat-pipe-cooled leading edge[J]. Journal of Spacecraft and Rockets,198118(1):71-78.
    [33] Peeples M E, Reeder J C, Sontag K E. Thermostructural applications of heatpipes[R]. NASA CR-159096,1979.
    [34] Boman B L, Citrin E C, Garner E C, Stone J E. Heat pipes for wing leading edgesof hypersonic vehicles[R]. NASA CR-181922,1990.
    [35] Boman B, Elias T. Tests on a Sodium/Hastelloy X wing leading edge heat pipefor hypersonic vehicles[A]. The AIAA/ASME5th Joint Thermophysics and HeatTransfer Conference[C]. Seattle, WA, US,1990. AIAA Paper90-1759.
    [36] Glass D E, Camarda C J. Preliminary thermal/structural analysis of acarbon/carbon refractory-metal heat-pipe-cooled wing leading edge[A]. ThermalStructures and Materials for High-Speed Flight[C], edited by E. A. Thornton, Vol.140, Progress in Astronautics and Aeronautics, AIAA, New York,1992:301-322.
    [37] Glass D E, Merrigan M A, Sena J T. Fabrication and testing of Mo-Re heat pipesembedded in Carbon/Carbon[R]. NASA CR-1998-207642,1998.
    [38] Glass D E, Merrigan M A, Sena J T, Reid R S. Fabrication and testing of aleading-edge-shaped heat pipe[R]. NASA CR-1998-208720,1998.
    [39] Norwood L B. Low-cost fabrication and installation of ablative heat shields forthe space shuttle orbiter[A].18th National Symposium and Exhibition[C]. LosAngeles, Calif, US,1973.
    [40] Strauss E L. Ablative thermal protection for space tug multipass, aerobrakingentry[J]. Journal of Spacecraft and Rockets,1974,12:346.
    [41] Ruperti N, Cotta R, Falkenber C, Su J. Engineering analysis of ablative thermalprotection for atmospheric reentry: improved lumped formulations and symbolic–numerical computation[J]. Heat Transfer Engineering,2004,25(6):101-111.
    [42] Dec J A, Braun R D. An approximate ablative thermal protection system sizingtool for entry system design[A]. AIAA Aerospace Sciences Conference[C]. Reno,NV, US,2006. AIAA-2006-0780.
    [43] Laub B, White S. Arcjet screening of candidate ablative thermal protectionmaterials for Mars Science Laboratory[J]. Journal of Spacecraft and Rockets2006,43(2):367-373.
    [44] Bouilly J M, Bonnefond F, Dariol L, Jullien P, Leleu F. Ablative thermalprotection systems for entry in Mars atmosphere. A presentation of materialssolutions and testing capabilities[A].4th International Planetary ProbeWorkshop[C]. Pasadena, California, US,2006.
    [45] Mazzaracchio A, Marchetti M. A probabilistic sizing tool and Monte Carloanalysis for entry vehicle ablative thermal protection systems[J] ActaAstronautica,2009,66(5-6):821-835.
    [46] Cozmuta I, Wright M J, Laub B, Willcockson W H. Defining ablative thermalprotection system margins for planetary entry vehicles[J] Earth, June2011:1-27.
    [47] Bartlett E P, Anderson L W, Curry D M. An evaluation of ablation mechanismsfor the Apollo heat shield material[J]. Journal of Spacecraft and Rockets,1971,8(5):463-469.
    [48] Kanda T, Masuya G, Wakamatsu Y. Propellant feed system of a regenerativelycooled scramjet[J]. Journal of Propulsion and Power,1991,7:299-301.
    [49] Yamada T, Shimizu Y, Toki K, Kuriki K. Thrust performance of a regenerativelycooled low-power arcjet thruster[J]. Journal of Propulsion and Power,1992,8(3):650-654.
    [50] Naraghi M H, Dunn S, Coats D. A model for design and analysis ofregeneratively cooled rocket engines[A]. Joint Propulsion Conference[C]. FortLauderdale, Florida, US,2004. AIAA-2004-3852.
    [51] Locke J M, Landrum D B. Study of heat transfer correlations for supercriticalhydrogen in regenerative cooling channels[J]. Journal of Propulsion and Power,2008,24(1):94-103.
    [52]吴峰,王秋旺,罗来勤.液体推进剂火箭发动机推力室再生冷却通道三维流动与传热数值计算[J].航空动力学报,2005,(04).
    [53]吴峰,王秋旺,罗来勤.液体火箭发动机推力室冷却通道流动与传热数值研究[J].推进技术,2005,26(05).
    [54]吴峰,王秋旺,罗来勤,曾敏,孙纪国.液体火箭发动机推力室冷却通道传热优化计算[J].推进技术,2006,27(3).
    [55]汪小卫,金平,孙冰.全流量补燃循环发动机推力室再生冷却技术研究[J].航空动力学报,2008,23(5):909-915.
    [56] Goldstein R J. Film cooling[J]. Advances in Heat Transfer,1971,7:321-379.
    [57] Ito S, Goldstein R J, Eckert E R G. Film cooling of a gas turbine blade[A]. TokyoJoint Gas Turbine Congress[C]. Tokyo, Japan,1977.
    [58] Sinha A K, Bogard D G, Crawford M. E. Film-cooling effectiveness downstreamof a single row of holes with variable density ratio[J]. Journal of Turbomachinery,1991,113(3):442-449.
    [59] Sen B, Schmidt D L, Bogard D G. Film cooling with compound angle holes: heattransfer[J]. Journal of Turbomachinery,1996,118(4):800-806.
    [60] Schmidt D L, Sen B, Bogard D G. Film cooling with compound angle holes:adiabatic effectiveness[J]. Journal of Turbomachinery,1996,118(4):807-813.
    [61] Greuel D, Herbertz A, Haidn O, Ortelt M, Hald H. Transpiration cooling appliedto C/C liners of cryogenic liquid rocket engines[A].40thAIAA/ASME/SAE/ASEE/JPC Conference and Exhibition, Fort Lauderdale,Florida, USA,2004.
    [62] Luikov A V. Heat and mass transfer with transpiration cooling[J]. InternationalJournal of Heat and Mass Transfer,1963,6(7):559-570.
    [63] Keener D, Lenertz J, Bowersox R, Bowman J. Transpiration cooling effects onnozzle heat transfer and performance[J]. Journal of Spacecraft and Rockets,1995,32(6):981-985.
    [64] Beckwith I E. Similar solutions for the compressible boundary layer on a yawedcylinder with transpiration cooling[R]. NASA No.19980231019,1998.
    [65] Andoh Y H, Lips B. Prediction of porous walls thermal protection by effusion ortranspiration cooling. An analytical approach[J], Applied Thermal Engineering,2003,23(15):1947-1958.
    [66] Von Wolfersdorf J. Effect of coolant side heat transfer on transpiration cooling[J].Heat And Mass Transfer,2005,41(4):327-337.
    [67] Laptoff M. Wingflow study of pressure drag reduction at transonic speed byprojecting a jet of air from the nose of a prolate spheroid of fineness ratio6[R].NACA RM L5109,1951.
    [68] Warren C H E. An experimental investigation of the effect of ejecting a coolantgas at the nose of a bluff body[J], Journal of Fluid Mechanics,1960,8:400-417.
    [69] Finley P J. The flow of a jet from a body opposing a supersonic free stream[J].Journal of Fluid Mechanics,1966,26(2):337-368.
    [70] Fujita M. Axisymmetric oscillations of an opposing jet from a hemisphericalnose[A].32nd Aerospace Sciences Meeting and Exhibit[C]. Reno, NV, US.January,1994. AIAA94-0659.
    [71] Aso S, Kurotaki T. Experimental and computational study on reduction ofaerodynamic heating load by film cooling in hypersonic flows[A].35th AIAAAerospace Sciences Meeting and Exhibit[C]. Reno, NV,1997. AIAA97-0770.
    [72] Meyer B, Nelson H F, Riggins D.Hypersonic drag and heat-transfer reductionusing a forward-facing jet[J].Journal of Aircraft,2001,38(4):680-686.
    [73] Aso S, Hayashi K, Mizoguchi M. A study on aerodynamic heating reduction dueto opposing jet in hypersonic flow[A].40th AIAA Aerospace Sciences Meetingand Exhibit[C]. Reno, NV,2002. AIAA2002-0646.
    [74] Takagi R. Numerical simulation of heating rate reduction by directed energy airspike[J]. Journal of the Japan Society for Aeronautical and Space Sciences,2002,50:109-117.
    [75] Hayashi K, Aso S. Effect of pressure ratio on aerodynamic heating reduction dueto opposing jet[A].33rd AIAA Fluid Dynamics Conference and Exhibit[C].Orlando, FL, US,2003. AIAA2003-4041.
    [76] Kitamura T, Ohnishi N, Sawada K. Computational analysis of opposing jet fromvertical-lander space vehicle[A].42nd AIAA Aerospace Sciences Meeting andExhibit[C]. Reno, NV,2004. AIAA2004-0871
    [77] Hayashi K, Aso S, Tani Y. Numerical study of thermal protection system byopposing jet[A].43rd AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno,NV,2005. AIAA2005-188.
    [78] Hayashi K, Aso S, Tani Y. Experimental study on thermal protection system byopposing jet in supersonic flow[J]. Journal of Spacecraft and Rockets,2006,43(1):233-235.
    [79] Suzuki T, Nonaka S, Inatani Y. Computations of opposing jet from verticallanding rocket vehicle[A].24th AIAA Applied Aerodynamics Conference[C].San Francisco, CA, US,2006. AIAA2006-3329
    [80]陈延辉,关于超声速气流中喷嘴逆向喷射降低气动热问题的研究[J].飞航导弹,2004(12):47-52.
    [81]李海燕,额日其太.反向喷流减小了气动加热技术[J].飞航导弹,2006(1):28-30.
    [82]李海燕,额日其太.反向喷流降低钝体头部气动加热的数值模拟研究[A].第三届工程计算流体力学会议[C].2006:287-293.
    [83]耿湘人,桂业伟,王安龄,贺立新.利用二维平面和轴对称逆向喷流减阻和降低热流的计算研究[J].空气动力学学报,2006,24(1):85-89.
    [84]何琨,陈坚强,董维中.逆向喷流流场模态分析及减阻特性研究[J].力学学报,2006,38(4):438-445.
    [85]田婷,阎超.超声速场中的反向喷流数值模拟[J].北京航空航天大学学报,2008,34(1):9-12.
    [86]陆海波,刘伟强.迎风凹腔与逆向喷流组合热防护系统冷却效果研究[J].物理学报,2012,61(6):064703.
    [87] Chorin A J. A numerical method for solving incompressible viscous flowproblem[J]. Journal of Computational Physics,1967,2:12-26.
    [88] Turkel E. Acceleration to a steady state for the Euler equations[R]. ICASE Report84-32,1984.
    [89] Turkel E. Preconditioned methods for solving the incompressible and low speedcompressible equations[R]. ICASE Report86-14,1986.
    [90] Turkel E. Preconditioned methods for solving the incompressible and low speedcompressible equations[J]. Journal of Computational Physics,1987,72:277-298.
    [91] Turkel E. Review of preconditioning methods for fluid dynamics[J]. AppliedNumerical Mathematics,1993,12:257-284.
    [92] Turkel E, Fiterman A, Van Leer B. Preconditioning and the limit to theincompressible flow equations[R]. ICASE Report93-42,1993.
    [93] Turkel E, Vatsa V N, Radespiel R. Preconditioning methods for low-speedflows[J]. AIAA Paper96-2460-CP,1996.
    [94] Turkel E, Radespiel R, Kroll N. Assessment of preconditioning methods formultidimensional aerodynamics[J]. Computers and Fluids,1996,27:533-557.
    [95] Turkel E. Preconditioning-squared methods for multidimensionalaerodynamics[J]. AIAA Paper97-2025.
    [96] Turkel E, Vatsa V N. Local preconditioners for steady state and dualtime-stepping[J]. Mathematical Modeling and Numerical Analysis ESAIM:M2AN,2005,39(3):515-536.
    [97] Merkle C L, Choi Y H. Computation of low-speed compressible flows withtime-marching precedures[J]. International Journal for Numerical Methods inEngineering,1988,25:293-311.
    [98] Merkle C L, Choi Y H. The application of preconditioning in viscous flows[J].Journal of Computational Physics,1993,105:207-223.
    [99] Viviand H. Pseudo-unsteady systems for steady inviscid flow calculations[A].Numerical Methods for the Euler Equations of Fluid Dynamics[C]. Society forIndustrial and Applied Mathematics,1985,334-368.
    [100] Van Leer B, Lee W T, Roe P L. Characteristic time-stepping or localpreconditioning of the Euler equations[A]. AIAA10th Computational FluidDynamics Conference[C]. Honolulu, HI, June1991.
    [101] Lee W T. Local preconditioning of the Euler equations[D]:[PhD. Dissertation],University of Michigan,1991.
    [102] Tai C H. Acceleration techniques for explicit Euler codes[D]:[PhD. Dissertation],University of Michigan,1990.
    [103] Lynn J F. Multigrid solution of the Euler equations with local preconditioning [D]:
    [PhD. Dissertation], University of Michigan,1995.
    [104] Lynn J F, Van Leer B. Multi-stage schemes for the Euler and Navier-Stokesequations with optimal smoothing[J]. AIAA Paper93-3355-CP,1993.
    [105] Lynn J F, Van Leer B. Multistage Euler solutions with semi-coarsening and localpreconditioning[A]. Proceedings of the14th International Conference onNumerical Fluid Dynamics[C]. Springer,1995.
    [106] Lynn J F, Van Leer B. A semi-coarsened multigrid solver for the Euler andNavier-Stokes equations with local preconditioning[J]. AIAA Paper95-1667-CP,1995.
    [107] Lynn J F, Van Leer B, Lee D. Multigrid solutions of the Euler equations withlocal preconditioning[A].15th International Conference on Numerical Methodsin Fluid Mechanics[C]. Springer,1996.
    [108] Mesaros L M. Multi-dimensional fluctuation splitting schemes for the Eulerequations on unstructured grids[D]:[PhD. Dissertation], University of Michigan,1995.
    [109] Mesaros L M, Roe P L. Multidimensional fluctuation-splitting schemes based ondecomposition methods[J]. AIAA Paper95-1699,1995.
    [110] Muller J D. On triangles and Flow[D]:[PhD. Dissertation], University ofMichigan,1995.
    [111] Paillere H, Deconinck H, Struijs R, Roe P L, Mesaros L M, Muller J D.Computations of inviscid compressible flows using fluctuation-splitting ontriangular meshes[J]. AIAA Paper96-0889,1996.
    [112] Deconinck H, Degrez G. Monotone shock-capturing cell vertex schemes for theEuler and Navier-Stokes equations on unstructured grids [A].15th InternationalConference on Numerical Methods in Fluid Mechanics[C]. Springer,1996.
    [113] Deconinck H, Hirsch C, Peuteman J. Characteristic decomposition methods forthe Multidimensional Euler equations[J]. Lecture Notes in Physics,1986,264:216-221.
    [114] Spekreijse S P. Multigrid solution of the steady Euler equations[D]:[PhD.Dissertation], Technische University Delft,1995.
    [115] Godfrey A G, Walters R W, Van Leer B. Preconditioning for the Navier-Stocksequations with finite-rate chemistry[J]. AIAA Paper93-0535,1993.
    [116] Godfrey A G. Steps towards a robust preconditioning[J]AIAA Paper94-0520,1994.
    [117] Godfrey A G. Topics on spatially accurate methods and preconditioning for theNavier-Stock equations with finite-rate chemistry[D]:[PhD. Dissertation],Virginia Polytechnic Institute and State University,1995.
    [118] Allmaras S R. Analysis of semi-implicit preconditioners for multigrid solution ofthe2-d compressible Navier-Stocks equations[J]. AIAA Paper95-1651-CP,1995.
    [119] Pierce N A, Giles M B. Preconditioning compressible flow calculations onstretched meshes[J]. AIAA Paper96-0889,1996.
    [120] Venkateswaran S, Merkle C L. Analysis of time-derivative preconditioning forthe Navier-Stokes equations[A].6th International Symposium on ComputationalFluid Dynamics[C].1995.
    [121] Buelow P, Venkateswaran S, Merkle C L. The effect of grid aspect ratio onconvergence[A]. AIAA12th Computational Fluid Dynamics Conference[C].1995.
    [122] Hosangadi A, Merkle C L, Turns S R. Analysis of forced combusting jets[J].AIAA Journal,1990,28(8):1473–1480.
    [123] Venkateswaran S, Merkle C L. Dual time stepping and preconditioning forunsteady computations[A].33rd Aerospace Sciences Meeting and Exhibit[C].Reno, NV1995. AIAA1995-0078.
    [124] Venkateswaran S, Merkle C L. Analysis of preconditioning methods for the Eulerand Navier-Stokes equations[A]. VKI Lecture Series Monographs onComputational Fluid Dynamics[C]. VKI LS1999-03, von Karman Institute,Rhode-St-Genese, Belgium, March,1999.
    [125] Venkateswaran S, Merkle C L. Efficiency and accuracy issues in Navier-Stokescomputations[A]. Fluids2000Conference[C]. Denver, CO, June2000. AIAA2000-2251.
    [126] Sankaran V, Merkle C L. Artificial dissipation control for unsteadycomputations[A].16th AIAA Computational Fluid Dynamics Conference[C].Orlando, FL, US, June2003. AIAA2003-3695.
    [127] Jameson A. Time dependent calculations using multigrid, with applications tounsteady flows past airfoils and wings[A].10th Computational Fluid DynamicsConference[C]. Honolulu, HI, June1991. AIAA91-1596.
    [128] Wesseling P. An introduction to multigrid methods[M]. Pure and AppliedMathematics. John Wiley&Sons, New York,1991.
    [129] Shuen J S, Chen K H, Choi Y H. A coupled implicit method for chemicalnon-equilibrium flows at all speeds. Journal of Computational Physics,106:306–318,1993.
    [130] De Rango S, Zingg D W. Improvements to a dual time stepping method forcomputing unsteady flows. AIAA Journal,35(9):1548–1550,1996.
    [131] Dailey L D, Pletcher R H. Evaluation of multigrid acceleration for preconditionedtime-accurate Navier-Stokes algorithms[J]. Computer&Fluids,1996,25(8):791–811.
    [132] Liu C, Zheng X, Sung C H. Preconditioned multigrid methods for unsteadyincompressible flows[J]. Journal of Computational Physics,1998,139(1):35–57.
    [133] Battaglia F, Kulkarni A K, Feng J, Merkle C L. Simulations of planar flappingjets in confined channels[J]. AIAA Journal,1998,36(8):1425–1431.
    [134] Shieh C M, Morris P J. High-order accurate dual time-stepping algorithm forviscous aeroacoustic simulations[A].19th AIAA Aeroacoustics Conference[C].Toulouse, France, June1998:912–922. AIAA98-2361.
    [135] Vigneron D, Deliege G, Essers J A. Low Mach number local preconditioning forunsteady viscous finite volumes simulations on3D unstructured grids[A].European Conference on Computational Fluid Dynamics[C]. Delft, Netherlands,2006.
    [136] Potsdam M A, Venkateswaran S, Pandya S A. Unsteady low Machpreconditioning with application to rotorcraft flows[A].18th AIAAComputational Fluid Dynamics Conference[C]. Miami, FL, June2007. AIAA2007-4473
    [137] Alves L S B. Review of numerical methods for the compressible flow equationsat low mach numbers[A]. XII Encontro de Modelagem Computacional[C]. Rio deJaneiro, RJ, Brazil, Dec.2009.
    [138] Alves L S B. Dual Time stepping with multi-stage schemes in physical time forunsteady low Mach number compressible flows[A]. VII Escola de Primavera deTransi o e Turbulência[C]. Ilha Solteira, SP, Brasil, Sept.2010
    [139] Weiss J M, Smith W A. Preconditioning applied to variable and constant densityflows[J]. AIAA Journal,1995,33(11):2050-2057.
    [140] Gleize V. Low Mach number preconditioning for3D turbulent complex flowsimulations[A].37th AIAA Aerospace Meeting and Exhibit[C]. Reno, NV,1999.
    [141] Gleize V, Costes M. Low Mach number preconditioning applied to turbulenthelicopter fuselage flowfield computation[J]. AIAA Journal,2003,41:653-662.
    [142] Gleize V, Le Pape A. Low Mach number preconditioning for unsteady flow ingeneral “ALE” formulation[A].44th AIAA Aerospace Sciences Meeting andExhibit[C]. Reno, NV,2006. AIAA2006-0687.
    [143] Smith B R. A near wall model for the k–l two-equation turbulence model[A].25th Fluid Dynamics Conference[C]. Colorado Springs, CO, June1994. AIAAPaper94-2386.
    [144] Suh J, Frankel S H, Mongeau L, Plesniak M W. Compressible large eddysimulations of wall-bounded turbulent flows using a semi-implicit numericalscheme for low Mach number aeroacoustics[J]. Journal of Computational Physics,2006,215(2):526–551.
    [145] Mueggenburg H H, Obrien C J. Pioneering high pressure rocketry-a shortbiography of rudi beichel[R]. AIAA Paper93-1941.
    [146] Kuntz R J, Blubaugh A L. Transpiration-cooled devices[P]. U.S. Patent3,585,800.
    [147] Robbers B A, Anderson B J, Hayes W A, et al. Platelet devices-limited only byone’s imagination[R]. AIAA Paper2006-4542.
    [148]张峰.层板发汗冷却理论分析及应用研究[D].国防科技大学博士学位论文,2008.
    [149] Morford S A. Durability flame stabilizing fuel injector with impingement andtranspiration cooled tip[P]. USA Patent:6,178,752, January30,2001.
    [150] Chevalier, Alain, Bouchez, et al. Fuel-injecting apparatus for ramjet enginecooled by transpiration[P]. USA Patent:6,164,061, Dec.2000.
    [151] Sieger S A, Rob D H. Platelet-cooled plasma torch electrode. AIAA-1995-1987.
    [152] Hewitt R A. Rocket engine chamber with layered internal wall channels[P]. U.S.Patent7,343,732.2008.
    [153] Beebe, Kenneth W. Transpiration cooled throat section for low nox combustorand related process[P]. USA Patent:5,127,221, July7,1992.
    [154]刘伟强,张峰,张擘毅等.流体混合器[P].中国专利:申请号200410046605.0.
    [155]刘伟强,张峰,张擘毅等.高速船推进器[P].中国专利:申请号200610031747.9.
    [156] Nearly D A, Reider S B. Evaluation of laminated porous wall materials forcombustion liner cooling[J]. Transactions of the ASME, Journal of Engineeringfor Power,102:268-276.
    [157] Wassel A B, Bhangu J K. The development and application of improvedcombustor wall cooling techniques[C]. ASME-80GT-66,1980.
    [158] Blubaugh A L, Zisk E J. Demonstration of an advanced transpiration cooledthrust chamber[R]. AD385085.
    [159] LaBotz R J. Transpiration cooling washer assembly[P]. U.S. Patent3,925,983.
    [160] Froning H D. Rudi Beichel's unique dual fuel/dual expander reusable rocketengine[R]. AIAA Paper96-3178.
    [161] Johnston L M, Perkins L A, Deniston C L, et al. Advanced main combustionchamber structural jacket strength analysis[R]. AIAA Paper93-1395.
    [162] Lepsch R A, Stanley D O. Application of dual-fuel propulsion to a single stagevehicle[R]. AIAA Paper93-2275.
    [163] Lepsch R A. Dual-fuel propulsion in single-stage advanced manned launchsystem vehicle[J]. Journal of Spacecraft and Rockets,1995,32(3):417-425.
    [164] May L R, Burkhardt W M. Transpiration cooled throat for hydrocarbonpropellant rocket engine[R]. NASA technical report. Dec.,1991.
    [165]张峰,刘伟强.层板发汗冷却在液体火箭发动机中的应用与发展综述[J].火箭推进,2007(6):43-48.
    [166] Liu W Q, Chen X H, Ma D Y, et al. Liu W Q. Thermal analysis of multipurposerocket propulsion system[R]. AIAA Paper96-3215.
    [167] Liu W Q, Chen Q Z. Recession analysis for carbon-carbon composite nozzle ofliquid propellant rocket engine[R]. AIAA Paper96-3214.
    [168] Liu W Q, Chen Q Z. The effect of transpiration cooling with liquid oxygen on theflow field[R]. AIAA Paper98-3515.
    [169] Liu W Q, Chen Q Z. Transpiration cooling of rocket thrust chamber with liquidoxygen[R]. AIAA Paper98-0890.
    [170]刘伟强,陈启智,吴宝元.典型结构的层板发汗冷却推力室传热特性的推算方法[J].推进技术,1998,19(6):15-19.
    [171] Liu W Q,Gao C Q,Zhang F, et al. Numerical study of heat transfer andthermo-soakback in orbit control rocket engine[A]. International Symposium onSpace Propulsion[C]. Shanghai, Aug.2004.
    [172] Rong Y S, Liu W Q. Research on Cooling Effect with Coolant Groove StructureParameters in Platelet Transpiration Cooled Nosetip[J]. Journal of ThermalScience,2010,19(5):438-444.
    [173]石少平,陆政林,庄逢辰.层板式喷往器在空间飞行器发动机中的应用综述[J].中国空间科学技术,1994,(1):33-37.
    [174]赵玲,吕国志,任克亮,李元林.再入飞行器多层隔热结构优化分析[J].航空学报,2007,28(6):1345-1350.
    [175]解维华,张博明,杜善义.重复使用飞行器金属热防护方法的有限元分析与设计[J].航空学报,2006,27(4):650-656.
    [176]解维华,张博明,杜善义.金属热防护方法设计的有限元分析[J].航空学报,2006,27(5):897-902.
    [177]解维华,孟松鹤,杜善义,韩杰才,张博明.金属热防护方法边缘热短路研究[J].航空学报,2010,31(5):1080-1085.
    [178] Warren C H E. An experimental investigation of the effect of ejecting a coolantgas at the nose of a bluff body[J]. Journal of Fluid Mechanism,1960,8:400-417.
    [179] Yoon S, Jameson A. An LU-SSOR Scheme for the Euler and Navier-StokesEquations[R].1986, NASA CR-179556.
    [180] Peery K M, Imlay S T. Blunt-body flow simulations[R]. AIAA Paper88-2904,1988.
    [181] Chauvat Y, Moschetta J M, Gressier J. Shock wave numerical structure and thecarbuncle phenomenon[J]. International Journal of Numerical Methods in Fluids,2004,00:1-6.
    [182] Ramalho M V C, Azevedo J H A, Azevedo J L F. Further investigation into theorigin of the carbuncle phenomenon in aerodynamic simulations[A].48th AIAAAerospace Sciences Meeting Including the New Horizons Forum and AerospaceExposition[C]. Orlando, FL, US,2011. AIAA2011-1184.
    [183] Kim S S, Kim C G, Rho O H, Hong S K. Cures for the shock instability:Development of a shock-stable Roe scheme[J] Journal of Computational Physics,2003,185:342-374.
    [184] Ismail F, Roe P L, Nishikawa H. A proposed cure to the carbunclephenomenon[A].4th International Conference on Computational FluidDynamics[C]. Ghent, Belgium,2006.
    [185] Kitamura, Roe P L, Ismail F. An evaluation of Euler fluxes for hypersonic flowcomputations[A].18th AIAA Computational Fluid Dynamics Conference[C].Miami, Florida, June25-28,2007. AIAA-2007-4465.
    [186]周禹,阎超. Roe格式中不同类型熵修正性能分析[J].北京航空航天大学学报,2009,35(3):356-360.
    [187] M. S. Liou J, Steffen C J. A new flux splitting scheme[J]. Journal ofComputational Physics,1993,107:23-39.
    [188] Kim K H, Rho O H. An improvement of AUSM schemes by introducing thepressure-based weight functions[A]. The fifth Annual Conference of theComputational Fluid Dynamics Society of Canada (CFD97)[C]. Canada,1997:(14-33)-(14-38).
    [189] Kim K H, Lee J H, Rho O H. An improvement of AUSM schemes by introducingthe pressure-based weight functions[J]. Computers&Fluids,1998,27(3):311-346.
    [190] Roe P L. Characteristic-based schemes for the Euler equations[J]. Annual Reviewof Fluid Mechanics,1986,18:337-365.
    [191] Steger J L, Warming R F. Flux vector splitting of the inviscid gasdynamicequations with application to finite-difference methods[J]. Journal ofcomputational physics,1981,40:263-293.
    [192] Roe P L. Approximate Riemann solvers, parameter vectors, and differencescheme[J]. Journal of Computational Physics,1981,43:357-372.
    [193] Van Leer B. Flux-vector splitting for the Euler equations[A]. Lecture Notes inPhysics[M]. Berlin: Springer,1982, pp:507-512.
    [194] Puoti V. Preconditioning method for low speed flows[J]. AIAA Journal,2003,41(5):817-830.
    [195] Li X S, Gu C W, Xu J Z. Development of Roe-type scheme for all-speed flowsbased on preconditioning method[J], Computers and Fluids,2009,38:810-817.
    [196] Boschitsch A H, Usab W J Jr., Epstein R J. Fast lefting panel method[J], AIAAPaper,1999. AIAA-99-3376.
    [197] Valler H W. Performance of a transpiration-regenerative cooled rocket thrustchamber[R]. NASA CR159742, N80-14189.
    [198] John E T, et al. Transpiration and film cooling of liquid rocket nozzles[R]. AD486409.
    [199] Kyo D S, Sang H C, Stephen J S. Transpiration cooling experiment for scramjetengine combustion chamber by high heat fluxes[J]. Journal of Propulsion andPower,2006,22(1):96-102.
    [200] Patil S, Ng T, Patel M. Trajectory control of a small caliber projectile using activetranspiration[A].25th AIAA Applied Aerodynamics Conference[C]. Miami, FL,US,2007. AIAA-2007-3811.
    [201] Foreest A V, Gülhan A, Esser B, Sippel M, Ambrosius B, Sudmeijer K.Transpiration cooling using liquid water[A].39th AIAA ThermophysicsConference[C]. Miami, FL, US, June2007. AIAA-2007-4034.
    [202] Thompson E, Kolonay R, Eastep F. Investigating control surface reversal usingvelocity transpiration enabled Euler flow solver[A].49thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference[C]. Schaumburg, Israel,2008. AIAA-2008-2007.
    [203] S zen M, Davis P A. Transpiration cooling of a liquid rocket thrust chamberwall[A].44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit[C]. Hartford, CT, US, July2008. AIAA2008-4559.
    [204]杨学实等.带烧蚀发汗冷却控制研究的特点[J].系统工程与电子技术,1997,(2).
    [205]杨学实编著.变域传热发汗控制理论[M].北京:北京大学出版社,2002.
    [206] Kacynski K J, et al. The prediction of performance and heat transfer in hydrogen/oxygen rocket engines with transpiration cooling, film cooling, and high arearatios[A].32nd AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno, NV,1994. AIAA Paper94-2757.
    [207] Rubesin M W. An analytical estimation of the effect of transpiration cooling onthe heat transfer and skin friction characteristics of a compressible, turbulentboundary layer[R]. NACA TN-3341.
    [208] Valler H W. Performance of a transpiration-regenerative cooled rocket thrustchamber[R]. NASA CR159742,N80-14189.
    [209] Landis J A, et al. Numerical study of a transpiration cooled rocket nozzle[A].32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit[C].Lake Buena Vista, FL, US, July1996. AIAA Paper96-2580.
    [210]瞿章华等.高超声速空气动力学[M].长沙:国防科技大学出版社,2001.
    [211] Fay J A, Riddell F R. Theory of stagnation point heat transfer in dissociated air[J].Journal of Aerospace Science,1958,25(2):73-85.
    [212] Eckert E R G. Engineering relations for heat transfer and friction in high velocitylaminar and turbulent boundary layer flow over surfaces with constant pressureand temperature[J]. ASME paper55-A-31,1955.
    [213]张学军,姜贵庆.体-翼干扰区热环境特性分析及预测[A].全国第十三届高超声速气动力(热)学术交流会议论文集[C].2005:329-332
    [214]聂涛.地面模拟试验燃烧室复杂槽道式水冷壁面耦合传热分析[D].国防科技大学硕士学位论文,2009.
    [215]王博.基于微型涡流发生器的激波/边界层干扰控制研究[D].国防科技大学研究生院.2010
    [216]赵玉新.超声速混合层时空结构的实验研究[D].国防科技大学研究生院.2008
    [217] Gonzalez R C, Woods R E. Digital Image Processing Second Edition[M]. UpperSaddle River, New Jersey: Prentice-Hall,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700