用户名: 密码: 验证码:
TC/EA-MS在线分析矿物水含量和氢同位素技术及其在大别—苏鲁超高压变质岩的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大陆板块俯冲和折返过程中流体活动的研究已成为地球科学研究的前沿领域,而矿物中(尤其是名义上无水矿物中)水含量和氢同位素组成的研究能为大陆俯冲和折返过程不同阶段的流体演化提供新的视角。本文将热分解元素分析仪(TC/EA)与同位素气体质谱仪(MS)连接在一起,成功建立了TC/EA-MS在线连续流方法分析矿物水含量和氢同位素组成。应用这个新方法,对大别-苏鲁超高压变质带几个著名产地如碧溪岭、青龙山、桃行、仰口和荣成等五个地区的超高压变质岩进行了系统的矿物水含量和氢同位素分析。结合激光氟化法矿物氧同位素分析结果,为大陆板块俯冲和折返过程中的流体活动提供了新的化学地球动力学制约。
     应用TC/EA-MS联线的分析方法,不但可以分析含水矿物和名义上无水矿物中的水含量,同时也可以分析其氢同位素组成。我们的TC/EA-MS联线的方法分析样品中水含量和氢同位素组成的分析下限是样品中的水含量在0.01微升(μl)以上。对于已知氢含量为5.0 wt%的标准物质苯甲酸(C7H6O2),其水含量分析的误差在±0.05%以内。对于δD值为?65.7‰的标准物质黑云母NBS30,其氢同位素组成分析的全误差在±1.0‰以内。对于含水矿物,氢同位素组成和水含量的全分析误差分别为±0.5‰和±1%;而对于名义上无水矿物,由于其低的水含量,氢同位素组成和水含量的全分析误差分别高达±3‰和±5%。TC/EA-MS联线的分析方法的分析精度和准确性与传统分析方法具有可比性,因此这是用来测定名义上无水矿物中水含量和氢同位素组成的有效方法。
     直接应用TC/EA-MS方法分析得到的是矿物中全水的含量和氢同位素组成。为了能够区分名义上无水矿物中的结构OH和分子H2O,我们在进行TC/EA-MS联线分析之前,对样品进行了分步加热,在不同温度下,样品可以释放出不同形式的水。研究发现,超高压变质岩中粒径为50μm的石榴石单矿物颗粒,采用350°C加热4小时的预处理流程,分析得到的水含量和氢同位素组成分别为281±13 ppm (wt.)和?86±6‰。对同一个样品,利用FTIR分析的水含量结果为271±58 ppm (wt.),与TC/EA-MS分析的结果是一致的。因此,经过350°C,4小时加热预处理的石榴石样品中的分子H2O几乎完全除去,而结构OH几乎没有发生丢失,因此所测定的全水氢同位素组成代表了石榴石样品中结构OH的氢同位素组成。石榴石中分子水相对于结构羟基亏损D,并具有更大的活性。利用氢的扩散系数和扩散方程进行计算,可以排除在分步加热和TC/EA-MS分析中氢的扩散对分析结果的影响。
     应用分步加热和TC/EA-MS分析方法,本文研究了碧溪岭榴辉岩中名义上无水矿物中不同形式的水的含量和氢同位素组成。结果发现,这些名义上无水矿物中结构羟基含量明显大于分子水含量,而且分子水含量变化范围较小。分子水相比结构羟基显示出D的亏损,且具有较大的变化范围,指示了分子水来源的多样性。碧溪岭榴辉岩中石榴石和金红石结构羟基含量与薄片FTIR分析的水含量结果相似,绿辉石、蓝晶石和石英则显示出较高的水含量。碧溪岭榴辉岩中石榴石和绿辉石矿物对之间结构羟基氢同位素氢既呈现平衡分馏,也呈现不平衡分馏,指示在超高压岩片折返过程中,名义上无水矿物与具有内部缓冲性质的退变质流体之间发生了不同程度的氢同位素交换,与矿物氧同位素研究结果一致。碧溪岭榴辉岩中石榴石与绿辉石之间δD值差异与石榴石全水δD值呈正相关,而与绿辉石呈负相关。这种变化特征可能说明,石榴石与绿辉石之间全水氢同位素交换是在相对封闭的体系中进行的,也与矿物氧同位素结果一致。石榴石和绿辉石中结构羟基之间的氢同位素分馏表现出与全水相似的趋势,而分子水则不明显。这可能说明,石榴石与绿辉石之间的氢同位素分馏主要受结构羟基控制。对于超高压榴辉岩中的名义上无水矿物,其中分子水相对于结构羟基亏损D,指示名义上无水矿物在超高压岩石折返过程中,矿物降压脱水过程是首先结构羟基转化分子水,然后是亏损D的分子水优先释放。在深俯冲板片折返的降压过程中,由于结构羟基转化为分子水的过程中伴随着氢同位素动力学分馏,因此在超高压岩片折返过程中,名义上无水矿物中这种不同形式水之间的转化可能导致其氢同位素组成变化的原因之一。通过系统比较大别-苏鲁超高压变质带内碧溪岭、青龙山、桃行、仰口和荣成等五个地区超高压变质岩中单矿物的全水含量和氢同位素组成,结果发现:(1)大部分地区超高压榴辉岩样品中石榴石水含量与氢同位素组成之间表现出负相关性,由于氢同位素分馏的动力学效应,矿物在降压脱水过程中,一般是亏损D同位素的水优先释放,因此这种负相关性说明石榴石水含量的巨大变化主要是由于折返过程中的降压脱水造成的;(2)仰口榴辉岩中后成合晶具有比绿辉石明显较高的水含量和较低的δD值,说明退变质流体主要是亏损D的分子水;(3)在所有产地榴辉岩中,仰口榴辉岩具有相对较高的水含量和δD值,指示在超高压岩片折返过程中,仰口榴辉岩中矿物降压释放出的流体量最小,因此其中矿物的最高水含量可以作为峰期超高压(陆壳俯冲到最大深度)条件下矿物中水的最大溶解度。因此,仰口榴辉岩样品中的最高石榴石水含量近似于石榴石在峰期超高压条件下所能溶解的最大水含量,约为2500 ppm。类似地,与最高石榴石水含量达到平衡配分的绿辉石水含量可以作为绿辉石在峰期超高压条件下所能溶解水含量的最小估计,约为3500 ppm。
The study of fluid activity during continental deep-subduction and exhumation has been one of forefront subject in earth science, and the study of the water content and hydrogen isotope composition of water in nominally anhydrous minerals can provide a new insight into fluid regime during continental deep-subduction and exhumation. In this thesis, I have developed the TC/EA-MS online method for extraction of water from natural minerals for water content and isotope analyses on the basis of integrating the thermal conversion elemental analyzer (TC/EA) with continuous-flow mass spectrometry (MS). By using the TC/EA-MS online technique, I have made a systematic analysis of the hydrogen isotopes and water contents (structural hydroxyl content and total water content) in nominally anhydrous minerals (NAMs) from ultrahigh-pressure (UHP) metamorphic rocks in the Dabie-Sulu orogenic belt, China. In combination with the structural OH measurement by Fourier transform infrared spectroscopy (FTIR) and the oxygen isotope analysis by the laser fluorination (LF) technique, the results provide insights into fluid regime with reference to the chemical geodynamics of continental subduction-zone metamorphism.
     This on-line TC/EA/MS continuous flow method is not only capable of determining both total H2O concentration and H isotope composition of hydrous minerals, but also suitable for analyses of NAMs. Calibration curves for the H concentration analysis were obtained by variably weighing a standard material of benzoic acid (C7H6O2) that has an H concentration of 5.0 wt%, with analytical uncertainties better than±0.05% in our runs. Our protocols show that the routine analysis of sample sizes as small as 0.01μl H2O is suitable for both H isotope composition and H2O concentration in hydrous and nominally anhydrous minerals. AδD value for biotite NBS-30 is fixed at ?65.7‰for correction of instrumental fractionations during the routinely H isotopic analysis. The average reproducibility is better than±1.0‰when combining the bulk procedures of water extraction and mass spectrometry analysis. Bulk analytical errors appear to depend on mineral water contents, with absolute reproducibility of±0.5 to±2‰(1σ) forδD values and relative uncertainties of±1% to±3% (1σ) for H2O concentrations. In practice, the analytical errors for theδD value and the H2O content can respectively be as small as±0.5‰and±1% for hydrous minerals, but as large as±3‰and±5% for nominally anhydrous minerals of low water contents. Both precision and accuracy of the TC/EA-MS method are comparable to the conventional manometric methods. Therefore, the TC/EA-MS technique is a powerful tool to quantitatively determine both H2O concentration and H isotope composition of hydrous and nominally anhydrous minerals.
     Nominally anhydrous minerals contain small amounts of water in the forms of molecular H2O and structural OH. We have developed a stepwise-heating approach to extract the different forms of water for the TC/EA-MS analysis. Grained garnet which was preheated at 350°C for 4 hours also gave constantδD values of ?86±6‰and H2O contents of 281±13 ppm (wt.). The result for the H2O contents agrees with H2O contents of 271±58 ppm (wt.) measured by FTIR for quantitative analysis of structural hydroxyl in the same garnet. Stepwise-heating TC/EA-MS analyses for the garnet show that the molecular H2O are depleted in D relative to structural OH and has higher mobility than the structural OH. By using H diffusion coefficient and diffusion equation, the influence of H diffusion in the stepwise-heating approach and TC/EA-MS analyses was quantitatively evaluated. Therefore, the TC/EA-MS method can be used not only for quantitative determination of both H isotope composition and H2O concentration of hydrous and anhydrous minerals, but also for the concentration of structural hydroxyl in NAMs after stepwise-heating.
     Stepwise-heating TC/EA-MS analyses for NAMs from UHP eclogite at Bixiling in the Dabie orogen show that the molecular H2O is depleted in D relative to structural OH and has lower concentration than the structural OH. The results for the structural OH contents in garnet and rutile agree with those measured by FTIR. In contrast, the concentration of the structural OH in omphacite, kyanite and quartz is higher than those measured by FTIR. Both equilibrium and disequilibrium H isotope fractionations between garnet and omphacite occur in the eclogite at Bixiling. This indicates the contrasting fractionation behavior of H isotopes in the two series of minerals due to differential exchange of H isotopes with retrograde fluid during exhumation. This is concordant with the result from the mineral O isotope study of the eclogite. Garnet-omphacite H isotope fractionations are positively correlated with theδD values of total water in garnet, but negatively correlated with those in omphacite. This suggests that H isotope exchange between garnet and omphacite occurs in a relatively closed system, also concordant with the result from mineral O isotope study of the eclogite. For the structural OH and total water in garnet and omphacite, H isotope fractionations between garnet and omphacite show a similar tendency. This suggests that H isotope fractionations between garnet and omphacite are controlled by structural OH in NAMs, and hence structural OH is the dominant species in NAMs. Molecular H2O is preferentially liberated during the stepwise-heating analyses and depleted in D relative to structural OH in NAMs, indicating that the decompressional exsolution of molecular H2O proceeded prior to the exsolution of structural OH with decreasing pressure during exhumation. In this regard, structural OH may be released from NAMs by transforming into molecular H2O. H isotope kinetic fractionation may occur between structural OH and molecular H2O during the transformation of structural OH into molecular H2O, resulting in variations in the H isotope composition of NAMs.
     In view of the results for total water content and H isotopes in NAMs from UHP eclogites in the Dabie-Sulu orogenic belt, the following conclusions can be reached. (1) There is a negative correlation between the total water concentration andδD value of garnet, indicating that the decompressional exsolution of molecular water is a major cause for the large variation in the H isotope composition of NAMs. (2) Symplectites show higher concentration of water and lowerδD values than omphacites in eclogite samples from Yangkou, indicating that retrograde fluid is depleted in D relative to NAMs. (3) Among the all analyses eclogites, the Yangkou eclogite show both the highest water content andδD value of NAMs. This suggests that the Yangkou eclotite would experience least dehydration during exhumation. In this regard, the highest concentration of water in NAMs can be used to provide a proxy for the maximum solubility of water in NAMs at the peak UHP metamorphic conditions. As such, the measured maximum water contents of garnet and omphacite yield the the maximum water solubility of 2500 ppm and 3500 ppm, respectively.
引文
龚冰,郑永飞, 2003.硅酸盐矿物氧同位素组成的激光分析.地学前缘, 10, 286-295.
    叶凯,徐平,1992.山东荣成大瞳榴辉岩成因岩石学研究.岩石学报,8, 27-39.
    叶凯, 2001.大别山-苏鲁超高压变质带的矿物学和岩石学研究进展.矿物岩石地球化学通报,20(3), 141-148.
    赵中岩,方爱民,俞良军, 2002.柯石英榴辉岩相变质构造岩:超高压变质构造岩形迹.科学通报, 47(12), 946-950.
    庄育勋,高天山,汤加富,2000.安徽碧溪岭地区超高压变质地质演化-1:10000填图初步总结.安徽地质,10,166-172.
    Ague, J.J., 2003. Fluid flow in the deep crust. Treatise on Geochemistry 3, 195-228.
    Aines, R.D., Rossman, G.R., 1984. Water content in mantle garnets. Geology. 12, 720-723.
    Amthauer, G., Rossman, G.R., 1998. The hydrous component in andradite garnet. Am. Mineral. 83: 835-840.
    Ayers, J.C., Dunkle, S., Gao, S. and Miller, C.E., 2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chem. Geol., 186, 315-331.
    Baker, J., Matthews, A., Mattey, D., Rowley, D. and Xue, F., 1997. Fluid-rock interactions during ultra-high pressure metamorphism, Dabie Shan, China. Geochim. Cosmochim. Acta 61, 1685-1696.
    Banno, M., Enami, M., Hirajima, T., Ishiwatari, A., Wang, Q.C., 2000. Decompression P-T path of coesite eclogite to granulite from Weihai, eastern China. Lithos 52, 97-108.
    Bebout, G.E., 1996. Volatile transfer and recycling at convergent margins: mass-balance and insights from high-P/T metamorphic rocks. In: Subduction: Top to Bottom (eds. Bebout, G.E., Scholl, D.W., Kirby, S.H. and Platt, J.P.). Geophys. Monograph 96, 179-193.
    Bebout, G.E., 2007. Metamorphic chemical geodynamics of subduction zones. Earth Planet. Sci. Lett. 260, 373-393.
    Behrens, H., Zhang, Y., Leschik, M., Wiedenbeck, M., Heide, G., Frischat, G.H., 2007. Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts. Earth Planet Sci. Lett. 254, 69-76. Bell, D.R., Rossman, G.R., 1992a. Water in Earth’s mantle: the role of nominally anhydrous minerals. Science. 255, 1391-1397.
    Bell, D.R., Rossman, G.R., 1992b. The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa. Contrib. Mineral Petrol. 111, 161-178.
    Bell, D.R., Ihinger, P.D., Rossman, G.R., 1995. Quantitative analysis of OH in garnet and pyroxenes. Am. Mineral. 80, 465-474.
    Bell, D.R., Ihinger, P.D., 2000. The isotope composition of hydrogen in nominally anhydrous mantle minerals. Geochim. Cosmochim. Acta 64, 2109-2118.
    Bell, D.R., Rossman, G.R., Moore, R.O., 2004. Abundance and partitioning of OG in a high-pressure magmatic system: megacrysts from the Monastery kimberlite, South Africa. J. Petrol. 45, 1539-1564.
    Beran, A., Langer K., Andrut M., 1993. Single crystal infrared spectra in the range of OH fundamentals of paragenetic garnet, omphacite and kyanite in an eclogitic mantle xenoliths. Mineral Petrol. 48: 257-268.
    Beran, A., Rossman, G.R., 1989. The water content of nepheline. Mineral. Petrol. 40, 235-240. Bigeleisen, J., Perlman, M.L., Prosser, H.C., 1952. Conversion of hydrogenic materials to hydrogen for isotopic analysis. Anal. Chem. 24, 1356-1357.
    Bilke, S., Mosandl, A., 2002. Measurements by gas chromatography/pyrolysis/mass spectrometry:
    fundamental conditions in 2H/1H isotope ratio analysis. Rapid Commun. Mass Spectrom. 16, 468-472.
    Blanchard, M., Ingrin, J., 2004a. Kinetics of deuteration in pyrope. Eur. J. Mineral. 16, 567-576.
    Blanchard, M., Ingrin, J., 2004b. Hydrogen diffusion in Dora Maira pyrope. Phys. Chem. Minerals. 31, 593-605.
    Bromiley, G.D., Keppler, H., 2004. An experimental investigation of hydroxyl solubility in jadeite and Na-rich clinopyroxenes. Contrib. Mineral. Petrol. 147, 189-200.
    Bromiley, G.D., Keppler, H., McCammon, C., Bromiley, F.A., Jacobsen, S.D., 2004a. Hydrogen solubility and speciation in natural, gem-quality chromian diopside. Am. Mineral. 89, 941-949.
    Bromiley, G.D., Hilaret, N., McCammon, C., 2004b. Solubility of hydrogen and ferric iron in rutile and TiO2 (II): Implications for phase assemblages during ultrahigh-pressure metamorphism and for the stability of silica polymorphs in the lower mantle. Geophys. Res. Lett. 31, L04610.
    Bureau, H., Keppler, H., 1999. Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth Planet. Sci. Lett. 165, 187-196.
    Burgoyne, T.W., Hayes, J.M. 1998. Quantitative production of H2 by pyrolysis of gas chromatographic effluents. Anal. Chem. 70, 5136-5141.
    Carswell, D.A. and Compagnoni, R. (Eds.), 2003. Ultrahigh Pressure Metamorphism. European Mineralogical Union Notes in Mineralogy, 5, 508 pp.
    Chavagnac, V. and Jahn, B.-m., 1996. Coesite-bearing eclogites from the Bixiling complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chem. Geol. 133, 29-51.
    Chen, R.-X., Zheng, Y.-F., Gong, B., Zhao, Z.-F., Gao, T.-S., Chen, B., Wu, Y.-B., 2007a. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: constraints from mineral hydrogen isotope and water content changes in eclogite-gneiss transitions in the Sulu orogen. Geochim. Cosmochim. Acta 71, 2299-2325.
    Chen R.-X., Zheng Y.-F., Gong B., Zhao Z.-F., Gao T.-S., Chen B. and Wu Y.-B., 2007b. Oxygen isotope geochemistry of ultrahigh-pressure metamorphic rocks from 200-4000 m core samples of the Chinese Continental Scientific Drilling. Chemical Geology 242, 51-75.
    Chopin, C., 2003. Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth Planet. Sci. Lett. 212, 1-14.
    Clunie, J.S., Goodman, J.F., Ogden, C.P., 1966. Extinction coefficient of water at 2.93u and water content of black foam films. Nature. 209: 1192-1193.
    Coleman, M.L., Shepherd, T.J., Durham, J.J., Rouse, J.E., Moore, G.R., 1982. Reduction of water with zinc for hydrogen isotope analysis. Anal. Chem. 54, 993-995.
    Coleman, R.G., Wang, X.M., 1995. Ultrahigh Pressure Metamorphism. Cambridge: Cambridge University Press, 1-528.
    Cong B., 1996. Ultrahigh-pressure metamorphic Rocks in the Dabieshan-Sulu Rigion of China. Beijing: Science Pres, London: Kluwer Academic Publishers. 224
    Crank, J., 1975. The Mathematics of Diffusion. 2nd edition, Oxford University Press, Oxford.
    Dixon, E.J., Clague, D.A., Stolper, E.M., 1991. Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low pressure. Geochim. Cosmochim. Acta 53, 2723-2730.
    Doremus, R.H., 2004. Transport of oxygen in silicate glasses. J. Non-Crystal Solids. 349: 242-247.
    Eiler, J.M., Kitchen N., 2001. Hydrogen-isotope analysis of nanomole (picoliter) quantities of H2O. Geochim. Cosmochim. Acta 65, 4467-4479.
    Enami, M., Zang, Q., 1990. Quartz pseudomorphs after coesite in eclogites from Shangdong Province, east China. Amer. Mineral. 75, 381-386.
    Ernst, W.G., Liou, J.G., 1999. Overview of UHP metamorphism and tectonics in well-studied collisional orogens. Intern. Geol. Rev. 41, 477-493.
    Faure, K., 2003.δD values of fluid inclusion water in quartz and calcite ejecta from active geothermal systems: do values reflect those of original hydrothermal water? Econ. Geol. 98, 657-660.
    Faure M., Lin W., Sch?rer U., Shu L.S., Sun Y. and Arnaud N., 2003. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China). Lithos 70, 213-241.
    Ferrando, S., Frezzotti, M., Dallai, L., Compagnoni, R., 2005a. Fluid-Rock Interaction in UHP Phengite-Kyanite-Epidote Eclogite from the Sulu Orogen, Eastern China. Intern. Geol. Rev. 47, 750-774.
    Ferrando, S., Frezzotti, M.L., Dallai, L., Compagnoni, R., 2005b. Multiphase solid inclusions in UHP rocks (Su-Lu, China): Remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chem. Geol. 223, 68-81.
    Franz, L., Romer, R.L., Klemd, R., Schmid, R., Oberhansli, Wanger, T., Dong, S.W., 2001. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China):
    Pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contrib. Mineral. Petrol. 141, 322-346.
    Frezzotti, M.L., Ferrando, S., 2007. Multiphase solid inclusions in ultrahigh-pressure metamorphic rocks: a petrographic approach. Per. Mineral. 76, 113-125.
    Fu, B., Zheng, Y.-F., Wang, Z.-R., Xiao, Y.-L., Gong, B., Li, S.-G., 1999. Oxygen and hydrogen isotope geochemistry of gneisses associated with ultrahigh pressure eclogites at Shuanghe in the Dabie Mountains. Contrib. Mineral. Petrol. 134, 52-66.
    Fu, B., Touret, J.L.R., Zheng, Y.-F., 2001. Fluid inclusions in coesite-bearing eclogites and jadeite quartzites at Schuanghe, Dabie Shan, China. J. Metamorph. Geol. 19, 531-548.
    Fu, B., Zheng, Y.-F., Touret, J.L.R., 2002. Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China). Chem. Geol. 187, 107-128.
    Fu, B., Touret, J.L.R., Zheng, Y.-F., 2003a. Remants of premetamorphic fluid and oxygen isotopic signatures in eclogites and garnet clinopyroxenite from the Dabie-Sulu terranes, eastern China. J. Metamorph. Geol. 21, 561-578.
    Fu, B., Touret, J.L.R., Zheng, Y.-F., Jahn, B.-m., 2003b. Fluid inclusions in granulites, granulitized eclogites, and garnet clinopyroxenites from the Dabie-Sulu terranes, eastern China. Lithos 70, 293-319.
    Fukuda, J., Yokoyama, T., Kirino, Y., 2009. Characterization of the states and diffusicity of intergranular water in a chalcedonic quartz by high-temperature in situ infrared spectroscopy. Mineral. Mag. 73, 825-835.
    Gehre M, Strauch G. High-temperature elemental analysis and pyrolysis techniques for stable isotope analysis. Rapid Commun. Mass Spectrom. 2003; 17, 1497-1503.
    Gehre M, Geilmann H, Richter J, Werner RA, Brand WA. Continuous flow 2H/1H and 18O/16O analysis of water samples with dual inlet precision. Rapid Commun. Mass Spectrom. 2004; 18, 2650-2660.
    Godin, J.P., Richelle, M., Metairon, S., Fay, L.B., 2004. [2H/H] isotope ratio analyses of [2H5] cholesterol using high-temperature conversion elemental analyzer isotope-ratio mass spectrometer: determination of cholesterol absorption in normocholesterolemic volunteers. Rapid Commun. Mass Spectrom. 18, 325-330.
    Graham, C.M., Sheppard, S.M.F., Heaton, T.H.E., 1980. Experimental hydrogen isotope studies, I. Systematics of hydrogen isotope fractionation in the systems epidote-H2O, zoisite-H2O and AlO(OH)-H2O. Geochim. Cosmochim. Acta 44, 353-364.
    Grant, K., Gleeson, S.A., Roberts, S., 2003. The high-temperature behavior of defect hydrogen species in quartz: Implications for hydrogen isotope studies. Am. Mineral. 88, 262-270. Guiraud, M., Powell, R., Rebay, G., 2001. H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. J. Metamorph. Geol. 19, 445-454.
    Hacker, B.R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D. and Dong, S., 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China. Earth Planet. Sci. Lett. 161, 215-230.
    Hacker, B.R., Ratschbacher, L., Webb, L., McWilliams, M.O., Ireland, T., Calvert, A., Dong, S., Wenk, H.-R., Chateigner, D., 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic?Early Jurassic tectonic unroofing. J. Geophys. Res. B105, 13339-13364.
    Hacker, B., Wallis, S.R., Ratschbacher, L., Grove, M., Gehrels, G., 2006. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu orogen. Tectonics 25, TC5006, doi: 10.1029/ 2005TC001937.
    Halas, S., Jasinska, B., 1996. Platinized magnesium as reducing agent for hydrogen isotope analysis. Isotopes Environ. Health Studies 32, 105-109.
    Hamilton, D.L., Burncham, C.W., Osborn, E.F., 1964. The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J. Petrol. 5, 21-39.
    Hauri, E., Wang, J.H., Dixon, J.E., King, P.L., Mandeville, C., Newman, S., 2002. SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. Chem. Geol. 183, 99-114.
    Hauri, E.H., Gaetani, G.A., Green, T.H., 2006. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet. Sci. Lett. 248, 715-734.
    Hermann, J., Spandler, C., Hack, A., Korsakov, A.V., 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos 92, 399-417.
    Hilkert, A.W., Douthitt, C.B., Schluter, H.J., Brand, W.A., 1999. Isotope ratio monitoring gas chromatography/mass spectrometer of D/H by high temperature conversion isotope ratio mass spectrometer. Rapid Commun. Mass Spectrom. 13, 1226-1230.
    Hirajiama, T., Ishiwatari, A., Cong, B., Zhang, R.Y., Banno, S., Nozaka, T., 1990. Identification of Coesite in Memgzhong eclogite from Donghai County, northeastern Jiangsu Province, China. Mineral. Mag. 54, 579-584.
    Hiramatsu, N., Banno, S., Hirajiama, T., Cong, B.-L., 1995. Ultrahigh-pressure garnet Iherzolite from Chijiadian, Rongcheng Country, in the Su-Lu region of eastern China. The Island Arc., 4, 324-333.
    Hirth, G., Kohlstedt, D.L., 1996. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93-108.
    Hoefs, J., 1997. Stable Isotope Geochemistry: 4rd Edition, Springer-Verlag, Berlin, 201pp.
    Holdaway, M.J., Dutrow, B.L., Borthwick, J., Shore, P., Harmon, R.S., Hinton, R.W., 1986. H content of staurolite as determined by H extraction line and ion microprobe. Am. Mineral. 71, 1135-1141.
    Ingrin, J., Skogby, H., 2000. Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur. J. Mineral. 12, 543-570.
    Ingrin, J., Blanchrd, M., 2006. Diffusion of hydrogen in minerals. Rev. Mineral. Geochem. 62, 291-320. Inoue, T., Weidner, T.D., Northrup, P.A., Parise, J.B., 1998. Elastic properties of hydrous ringwoodite (γ-phase) in Mg2SiO4. Earth Planet. Sci. Lett. 160, 107-113.
    Jahn, B.-M., Cornicher, J., Cong, B.L., Yui, T.F., 1996. Ultrahigh-εNd eclogites from an ultrahigh-pressure metamorphic terrane of China. Chemical Geology 127, 61-79.
    Jahn, B.-m., 1998. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen: implications for continental subduction and collisional tectonics. In: B.R. Hacker and J.G. Liou (Editors), When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Kluwer Academic Publishers, Dordrecht pp. 203-239
    Jochum, K.P., Stoll, B., Herwig, K., Willbold, M., Hofmann, A.W., 2006. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochem. Geophys. Geosyst. Q02008, doi: 10.1029/2005GC001060.
    Johnson, E.A., Rossman, G.R., 2003. The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am. Mineral 88, 901-911.
    Johnson, E.A., Rossman, G.R., 2004. A survey of hydrous species and concentrations in igneous feldspars. Am. Mineral. 89: 586-600.
    Johnson, E.A., 2006. Water in nominally anhydrous crustal minerals: Speciation, concentration, and geologic significance. Rev. Mineral. Geochem. 62, 117-154.
    Kadik, A.A., Lukanin, O.A., Lebedev, Y.B., Korovushkina, E.Y., 1972. Solubility of H2O and CO2 in granite and basalt melts at high pressures. Translated from Geokhimiya, 12, 1549-1560.
    Kadik, A.A., Maximov, A.V., Ivanov, B.V., 1986. Physico-chemical conditions of crystallization and origin of andesitic magmas. Moscow: Nauka, p. 252.
    Karato, S., 1990. The role of hydrogen in the electrical conductivity of upper mantle. Nature 347, 272-273. Karato, S., Jung, H., 1998. Water, partial melting and the origin of seismic low velocity and high attenuation zone in the upper mantle. Earth Planet. Sci. Lett. 157, 193-207.
    Katayama, I., Nakashima, S., 2003. Hydroxyl in clinopyroxene from the deep subducted crust: evidence for H2O transport into the mantle. Am. Mineral. 88, 229-234.
    Katayama, I., Nakashima, S., Yurimoto, H., 2006. Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos 86, 245-259.
    Koch-Muller M., Dera P., Fei Y.W., Reno B., Sobolev N., Hauri E., Wysoczanski R., 2003. OH? in synthetic and natural coesite. Am. Mineral., 88, 1436-1445.
    Koga, K., Hauri, E., Hirschmann, M., Bell, D., 2003. Hydrogen concentration analyses using SIMS and FTIR: Comparison and calibration for nominally anhydrous minerals. Geochem. Geophys. Geosyst. 4(2), 1019, doi: 10.1029/2002GC000378.
    Kohlstedt, D.L., Keppler, H., Rubie, D.C., 1996. Solubility of water in the a, b, and c phases of (Mg, Fe)2SiO4. Contrib. Mineral. Petrol. 123, 345-357.
    Korsakov, A.V., Hermann, J., 2006. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet. Sci. Lett. 241, 104-118.
    Kurka, A., Blanchard, M., Ingrin, J., 2005. Kinetics of hydrogen extraction and deuteration in grossular. Mineral Mag. 69, 359-371.
    Kurosawa, M., Yurimoto, H., Matsumoto, K., Sueno, S., 1992. Hydrogen analysis of mantle olivine by secondary ios mass spectrometry. In: Syono, Y., Manghnani, M. H., (eds,), High-pressure reaserch: Application to earth and planetary sciences. p. 283-287, Terra Sci., Tokyo.
    Kurosawa, M., Yurimoto, H., Sueno, S., 1997. Patterns in the hydrogen and trace element compositions of mantle olivines. Phys. Chem. Minerals 24, 385-395.
    Langer. K., Robarick, E., Sobolev, NV., Shatsky, V.S., Wang, W., 1993. Single-crystal spectra of garnets from diamondiferous high-pressure metamorphic rocks from Kazakhstan: indications for OH-, H2O, and FeTi charge transfer. Eur. J. Mineral 5, 1091-1100.
    Li, S.G., Xiao, Y.L., Liu, D.L., Chen, Y.Z., Ge, N.J., Zhang, Z.Q., Sun, S.S., Cong, B.L., Zhang, R.Y., Hart, S.R., Wang, S.S., 1993. Collision of the North China and Yangtse Blocks and formation ofcoesite-bearing eclogites: Timing and processes. Chem. Geol. 109, 89-111.
    Li, S.G., Jagoutz, E., Lo, C.-H., Chen, Y.Z., Li, Q.L., Xiao, Y.L., 1999. Sm/Nd, Rb/Sr, and 40Ar/39Ar isotopic systematics of the ultrahigh-pressure metamorphic rocks in the Dabie-Sulu belt, Central China: A retrospective view. Intern. Geol. Rev. 41, 1114-1124.
    Li, S.G., Jagoutz, E., Chen, Y.Z., Li, Q.L., 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochim. Cosmochim. Acta 64, 1077-1093.
    Li, X.-P., Zheng, Y.-F., Wu, Y.-B., Chen, F.K., Gong, B., Li, Y.-L., 2004. Low-T eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contrib. Mineral. Petrol. 148, 443-470.
    Li, Y.-L., Zheng,Y.-F., Fu, B., Zhou, J.-B., Wei, C.-S., 2001. Oxygen isotope composition of quartz-vein in ultrahigh-pressure eclogite from Dabieshan and implications for transport of high-pressure fluid. Phys. Chem. Earth (A) 26, 695-704.
    Libowitzky, E., Rossman, G.R., 1996. Principles of quantitative absorbance measurement in anisotropic crystals. Phys. Chem. Mineral. 23, 319-327.
    Libowitzky, Z., Rossman, G.R., 1997. An IR absorption calibration for water in minerals. Am. Mineral. 82, 1111-1115.
    Liou, J.G., Zhang, R.Y., Ernst, W.G., 1995. Occurrences of hydrous and carbonate phases in ultrahigh-pressure rocks from east-central China: Implications for the role of volatiles deep in cold subduction zone. Island Arc 4, 362-375.
    Liou, J.G., Zhang, R.Y., Eide, E.A., Wang, X.M., Ernst, W.G., Maruyama, S., 1996. Metamorphism and tectonics of high-pressure and ultra-high-belts in the Dabie-Sulu region, China. In The Tectonics of Asia (eds. M. T. Harrison and A. Yin), p. 300-344. Cambridge University Press.
    Liou, J.G., Zhang, R.Y., Jahn, B.-m., 2000. Petrological and geochemical characteristics of ultrahigh-pressure metamorphic rocks from the Dabie-Sulu terrane, east-central China. Intern. Geol. Rev. 42, 328-352.
    Liou, J.G., Tsujimori, T., Zhang, R.Y., Katayama, I., Maruyama, S., 2004. Global UHP metamorphism and continent subduction/collision: the Himalayan model. Intern. Geol. Rev. 46, 1-27.
    Liou, J.G., Zhang, R.Y., Ernst, W.G., 2007. Very high-pressure orogenic garnet peridotites. Proc. Nat. Acad. Sci. USA 104, 9116-9121.
    Liu, F.L., Xu, Z.Q., Katayama, I., Yang, J.S., Maruyama, S., Liou, J.G., 2001a. Mineral inclusions in zircons of para- and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos 59, 199-215.
    Liu, J.B., Ye, K., Maruyama, S., Cong, B.L., Fan, H.R., 2001b. Mineral Inclusions in Zircon from Gneisses in the Ultrahigh-Pressure Zone of the Dabie Mountains, China. J. Geol. 109, 523-535.
    Liu, F.L., Xu, Z.Q., Liou, J.G., Katayama, I., Masago, H., Maruyama, S., Yang, J.S., 2002. Ultrahigh-pressure mineral inclusions in zircons of gneissic core samples of the Chinese Continental Scientific Drilling Site in eastern China. European Journal of Mineralogy 14, 499-512.
    Liu, F.L., Xu, Z.Q., 2004. Fluid inclusions hidden in coesite-bearing zircons in ultrahigh-pressure metamorphic rocks from southwestern Sulu terrane in eastern China. Chin. Sci. Bull. 49, 396-404.
    Liu, F.L., Xu, Z.Q., Xue, H.M., 2004a. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China): SHRIMP U-Pb dating of mineral inclusion-bearing zircons. Lithos 78, 411-429.
    Liu, F.L., Xu, Z.Q., Liou, J.G., Song, B., 2004b. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. J. Metamor. Geol. 22, 315-326.
    Liu, F.L., Liou, J.G., Xu, Z.Q., 2005a. U-Pb SHRIMP ages recorded in the coesite-bearing zircon domains of paragneisses in the southwestern Sulu terrane, eastern China: New interpretation. Am. Mineral. 90, 790-800.
    Liu, F.L., Yang, J.S., Xu, Z.Q., 2005b. Mineral inclusions in zircon domains and geological significance of SHRIMP U-Pb dating for coesite-bearing zircons of paragneiss in Sulu terrane, eastern China. Science in China (D) 48, 175-184.
    Liu, D.Y., Jian, P., Kr?ner, A., Xu, S.T. 2006a. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie–Sulu UHP complex, China. Earth Planet. Sci. Lett. 250, 650-666.
    Liu, F.L., Gerdes, A., Liou, J.G., Xue, H.M., Liang, F.H., 2006b. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. J. Metamorph. Geol. 24, 569-589.
    Liu, F.L., Xu, Z.Q., Xue, H.M., Zhou, K.F., 2006c. Ultrahigh-pressure and retrograde metamorphic ages for Paleozoic protolith of paragneiss in the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD-MH), SW Sulu UHP Terrane. Acta Geol. Sin. 80, 336-348.
    Liu, F.L., Gerdes, A., Zeng, L.S., Xue, H.M., 2008. SHRIMP U-Pb dating, trace element and Lu-Hf isotope system of coesite-bearing zircon from amphibolite in SW Sulu UHP terrane, eastern China. Geochim. Cosmochim. Acta 72, 2973-3000.
    Liu, Y.C., Li, S.G., Xu, S.T., 2007. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China: Implications for decoupling within subducted continental crust. Lithos 96, 170-185.
    Lu, R., Keppler, H., 1997. Water solubility in pyrope to 100 kbar. Contrib. Mineral. Petrol. 113, 236-248. Maldener, J., Rauch, F. & Beran, A. 2001. OH absorption coefficients of rutile and cassiterite deduced from nuclear reaction analysis and FTIR spectroscopy. Mineral. Petrol. 71, 21-29.
    Manning, C.E., 2004. The chemistry of subduction fluids. Earth Planet. Sci. Lett. 223, 1-16. Matsyuk, S.S., Langer, K., Hosch, A., 1998. Hydroxyl defects in garnets from mantle xenoliths in kimberlites of the Siberian platform. Contrib. Mineral. Petrol. 132, 163-179.
    Meng, D.W., Wu, X.L., Fan, X.Y., Meng, X.,, Zheng, J.P., Mason, R., 2009. Submicron-sized fluid inclusions and distribution of hydrous components in jadeite, quartz and symplectite-forming minerals from UHP jadeite–quartzite in the Dabie Mountains, China: TEM and FTIR investigation. Applied Geochem. 24, 517–526.
    Mierdel, K., Keppler, H., 2004. The temperature dependence of water solubility in enstatite. Contrib. Mineral. Petrol. 148, 305-311.
    Miller, J.A., Buick, I.S., Cartwright, I., Barnicoat, A., 2002. Fluid processes during the exhumation of high-P metamorphic belts. Mineral. Mag. 66, 93-119.
    Mosenfelder, J.L., 2000. Pressure dependence of hydroxyl solubility on coesite. Phys. Chem. Minerals 27, 610-617.
    Mysen, B.O., Fogel, M.L., 2010. Nitrogen and hydrogen isotope compositions and solubility in silicate melts in equilibrium with reduced (N+H)-bearing fluids at high pressure and temperature: Effects of melt structure. Am. Mineral. 95, 987-999.
    Nakashima, S., Matayoshi, H., Yuko, T., Michibayashi, K., Masuda, T., Kuroki, N., Yamagishi, H., Ito, Y., Nakamora, A., 1995. Infrared microspectroscopy analysis of water distribution in deformed and metamorphosed rocks. Tectonophys. 245, 263-276.
    Nakamura, D., Hirajima, T., 2000. Granulite-facies overprinting of ultrahigh-pressure metamorphic rocks, northeastern Su-Lu region, eastern China. J. Petrol. 41, 563-582.
    Ni, H., Liu, Y., Wang, L., Zhang, Y., 2009. Water speciation and diffusion in haploandesitic melts at 743-873 K and 100 MPa. Geochim. Cosmochim. Acta 73, 3630-3641.
    Okumura, S., Nakashima, S., 2006. Water diffusion in basaltic to dacitic glasses. Chem. Geol. 227, 70-82. Okay, A. I., Xu, S. T., Sengor, A. M. C., 1989. Coesite from the Dabieshan eclogites, Central China. Eur. J. Mineral 1: 595-598.
    Okay, A.I., 1993. Petrology of a diamond and coesite-bearing metamorphic terrane: Dabie Shan, China. Eur. J. Mineral. 5, 659-673.
    Paterson, M.S., 1982. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull. Min. ral. 105, 20-29.
    Peacock, S.M., 1993. The importance of blueschist-ecologite dehydration reactions in subducting oceanic crust. Geological Society of Ameraican Bulletin 105, 684-694.
    Pineau, F., Shilobreeva, S., Kadik, A., Javoy M., 1998. Water solubility and D/H fractionation in the system basaltic andesite ? H2O at 1250°C and between 0.5 and 3 kbars. Chem. Geol. 147, 173-184.
    Rauch, M., Keppler, H., 2002. Water solubility in orthopyroxene. Contrib. Mineral. Petrol. 143, 525-536.
    Richet, P., Bottinga, Y., Javoy, M., 1977. A review of hydrogen, carbon, nitrogen, oxygen, sulfur, and chloride stable isotope fractionation among gaseous molecules. Ann. Rev. Earth Planet. Sci. 5, 65-110.
    Rossman, G.R., 1988. Vibrational spectroscopy of hydrous components. In: Hawthorne, F.C., (eds.), Spectroscopic methods in mineralogy and geology. Rev. Mineral 18, Washington (D.C.): Mineral Soc., 193-206.
    Rossman, G.R., Beran, A., Langer, K., 1989. The hydrous component of pyrope from the Dora Maira Massif, Western Alps. Eur. J. Mineral 1, 151-154.
    Rossman, G.R., Aines, R.D., 1991. The hydrous components in garnets: grossular–hydrogrossular. Am. Mineral. 76, 1153-1164.
    Rossman, G.R., 1996. Studies of OH in nominally anhydrous minerals. Phys. Chem. Minerals 23, 299–304.
    Rumble, D., 1998. Stable isotope geochemistry of ultrahigh-pressure rocks. In: When Continent Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks (eds. Hacker, B.R. and Liou, J.G.). Kluwer Academic Publishers, Amsterdam, p.241-259.
    Rumble, D., Yui, T.-F., 1998. The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu province, China. Geochimica et Cosmochimica Acta 62, 3307-3321.
    Rumble, D., Giorgis, D., Oreland, T., Zhang, Z.M., Xu, H.F., Yui, T.F., Yang, J.S., Xu, Z.Q., Liou, J.G., 2002. Lowδ18O zircons, U-Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu province, China. Geochim. Cosmochim. Acta 66, 2299-2306.
    Rumble, D., Liou, J.G., Jahn, B.-m., 2003. Continental crust subduction and ultrahigh pressure metamorphism. Treatise on Geochemistry, 3, 293-319.
    Scambelluri, M., Philippot, P., 2001. Deep fluids in subduction zones. Lithos 55, 213-227.
    Schertl, H.P., Okay, A.I., 1994. Coesite inclusion in dolomite of Dabieshan, China: Petrological and rheological significance. Eur. J. Mineral. 6, 995-1000.
    Schmidt, M.W., Poli, S., 2003. Generation of mobile components during subduction of oceanic crust. Treatise on Geochemistry 3, 567-591.
    Sharp,Z.D., O’Neil,J.R., Essene, E.J., 1988. Oxygen isotope variations in granulite-grade iron formation: Constraints on oxygen diffusion and retrograde isotopic exchange. Contrib. Mineral. Petrol. 98, 490-501. Sharp, Z.D., 1990. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 54, 1353-1357.
    Sharp, Z.D., Atudorei, V., Durakiewicz, T., 2001. A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem. Geol. 178, 197-210.
    Sheng, Y.-M., Xia, Q.-K., Yang, X.-Z., Hao, Y.-T., 2007. H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China. Geochim. Cosmochim. Acta 71, 2079-2103.
    Simon, K., 2001. Does ? D from fluid inclusions in quartz reflect the origin hydrothermal fluid? Chem. Geol. 177, 483-495.
    Smyth, J.R., Bell, D.R., Rossman, G.R., 1991. Hydroxyl in upper mantle clinopyroxenes. Nature 35, 732-735.
    Snyder, G.A., Taylor, L.A., Clayton, R.N., Mayeda, P., Deines, P., Rossman, G.R., Sobolev, N.V., 1995. Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia: evidence from stable isotopes and hydroxyl in garnet. Am. Mineral. 80, 799-809.
    Spandler, C., Hermann, J., 2006. High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones. Lithos 89, 135-153.
    Spry, P.G., Marshall, B., Vokes, F.M., 2000. Metamorphosed and Metamorphogenic Ore Deposits. Rev. Econ. Geol. 11, 1-310.
    Stalder, R., Skogby, H., 2003. Hydrogen diffusion in natural and synthetic orthopyroxene. Phys. Chem. Miner. 30, 12-19.
    Su, W., You, Z.-D., Cong, B.-L., Ye, K., Zhong, Z.Q., 2002. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology 30, 611-614.
    Su, W., Ji, Z.-P., You, Z.-D., Liu, J.-B., Yu, J., Cong, B.-L., 2004. Distribution of hydrous components in jadeite of the Dabie Mountains. Earth Planet. Sci. Lett. 222, 85-100.
    Su, W., Zhang, M., Redfern, S.A.T., Bromiley, G.D., 2008. Dehydroxylation of omphacite of eclogite from the Dabie-Sulu. Lithos 105, 181-190.
    Sun, X.M., Tang, Q., Sun, W.D., Xu, L., Zhai, W., Liang, J.L., Liang, Y.H., Shen, K., Zhang, Z.M., Zhou,
    B., Wang, F.Y., 2007. Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications. Geochim. Cosmochim. Acta 71, 2896-2905.
    Suzuoki, T., Epstein, S., 1976. Hydrogen isotope fractionation between OH-bearing minerals and water, Geochim. Cosmochim. Acta 40, 1229-1240.
    Tabata, H., Yamauchi, K., Maruyama, S., Liou, J.G., 1998. Tracing the extent of a UHP metamorphic terrane: mineral-inclusion study of zircons in gneisses from the Dabieshan. In: Hacker, B., Liou, J.G. (Eds.), When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Kluwer Academic Publishers, Dordrecht, pp. 261-273.
    Tang, J., Zheng, Y.-F., Gong, B., Wu, Y.-B., Gao, T.-S., Yuan, H.L., Wu, F.-Y., 2008a. Extreme oxygen isotope signature of meteoric water in magmatic zircon from metagranite in the Sulu orogen, China: implications for Neoproterozoic rift magmatism. Geochim. Cosmochim. Acta, 72, 3139-3169.
    Tang, J., Zheng, Y.-F., Wu, Y.-B., Gong, B., Zha, X.P., Liu, X.-M., 2008b. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambr. Res., 161, 389-418.
    Tanweer, A., Han, L.F., 1996. Reduction of microliter amounts of water with manganese for D/H isotope ratio measurement by mass spectrometer. Isotopes Envrion. Health Studies 32, 97-103.
    Tatsumi, Y., Eggins, S., 1995. Subduction Zone Magmatism. Blackwell Science, Oxford, 211 pp. Touret J.L.R., 2001. Fluids in metamorphic rocks. Lithos 55, 1-25. Tsai, C.H., Liou, J.G., 2000. Eclogite-facies relics and inferred ultrahigh-pressure metamorphism in the North Dabie Complex, central-eastern China. Am. Mineral. 85, 1-8.
    Valley, J.W., Kitchen, N., Kohn, M.J., Niendorf, C.R., Spicuzza, M.J., 1995. UWG-2, a garnet standard for oxygen isotope ratio: strategies for high precision and accuracy with laser heating. Geochim. Cosmochim. Acta 59, 5223-5231.
    Valley, J.W., Graham, C.M, Harte, B., Kinny, P., Eiler J.M., 1997. Ion microprobe analysis oxygen, carbon and hydrogen isotope ratios. Rev. Econ. Geol. 7, 73-98.
    Valley, J. W., Kinny, P. D., Schulze, D. J., Spicuzza, M. J., 1998, Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts: Contributions to Mineralogy and Petrology, v. 133, p. 1-11.
    Vennemann, T.W., O’Neil, J.R., 1993. A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent. Chem. Geol. 103, 227-234.
    Wallis, S.R., Ishiwatari, A., Hirajima. T., 1997. Occurence and field relationships of ultrahigh-pressure metagranitoid and coesite eclogite in Su-Lu terrane, eastern China. Jour. of the Geol. Soc. London, 154, 45-54.
    Wan, Y.S., Li, R.W., Wilde, S.A., Liu, D.Y., Chen, Z.Y., Yan, L.L., Song, T.R., Yin, X.Y., 2005. UHP metamorphism and exhumation of the Dabie Orogen, China: Evidence from SHRIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin. Geochim. Cosmochim. Acta 69, 4333-4348.
    Wang, L.P., Zhang, Y.X., Essene, E.J., 1996. Diffusion of the hydrous in pyrope. Am. Mineral. 81, 706-718.
    Wang, Q.C., Ishiwatari, A., Zhao, Z., Hirajima, T., Enami, M., Zhai, M., Li, J., Cong, B.L., 1993. Coesite-bearing granulite retrograded from eclogite in Weihai, eastern China. Eur. J. Mineral. 5, 141-152. Wang, X., Liou, J.G., Mao, H.K., 1989. Coesite-bearing eclogite from Dabie Mountains in Central China. Geology 17, 1085-1088.
    Wang, X.M., Liou, J.G., 1991. Regional ultra-pressure coesite-bearing eclogite terrane in central China: Evidence from country rocks, gneiss, marble, and metapelite. Geology 19, 933-936. Wang, X., Liou, J.G., Maruyama, S., 1992. Coesite-bearing eclogites from the Dabie Mountains, Central China: Petrology and P-T path. J. Geol. 100, 231-250.
    Werner RA, Bruch BA, Brand WA. 1999. ConFlo III - an interface for high precisionδ13C andδ15N analysis with an extended dynamic range. Rapid Commun. Mass Spectrom. 13, 1237-1241. Withers, A.C., Wood, B.J., Carroll, M.R., 1998. The OH content of pyrope at high pressure. Chem. Geol. 147, 161-171.
    Wu, Y.-B., Zheng, Y.-F., Zhao, Z.-F., Gong, B., Liu, X.-M., Wu, F.-Y., 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochim. Cosmochim. Acta 70, 3743-3761.
    Xia, Q.-K., Sheng, Y.-M., Yang, X.-Z., Yu, H.-M., 2005. Heterogeneity of water in garnets from UHP eclogites, eastern Dabieshan, China. Chem. Geol. 224, 237-246.
    Xia, Q.-K., Yang, X.-Z., Deloule, E., Sheng, Y.-M., Hao, Y.-T., 2006. Water in the lower crustal granulite xenoliths from Nushan, SE China. J. Geophys. Res. 111, B11202, doi:10.1029/2006JB 004296.
    Xia, Q.-X., Zheng, Y.-F., Zhou, L.G., 2008. Dehydration and melting during continental collision: constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chemical Geology 247, 36-65.
    Xia, Q.-X., Zheng, Y.-F., Hu, Z.C., 2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen: implications for action of supercritical fluid during continental subduction-zone metamorphism. Lithos 114, 385-412.
    Xiao, Y.-L., Hoefs, J., van den Kerkhof, A.M., Fiebig, J., Zheng, Y.-F., 2000. Fluid history of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contrib. Mineral. Petrol. 139, 1-16.
    Xiao, Y.-L., Hoefs, J., van den Kerkhof, A.M., Li, S., 2001. Geochemical constraints of the eclogite andgranulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, China. J. Metamorph. Geol. 19, 3-19.
    Xiao, Y.-L., Hoefs, J., van den Kerkhof, A.M., Simon, K., Fiebig, J., Zheng, Y.-F., 2002. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: Constraints from mineral chemistry, fluid inclusions and stable isotopes. J. Petrol. 43, 1505-1527.
    Xu, J. W., Zhu, G., Tong, W., Cui, K., Liu, Q., 1987. Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the morthwest of Pacific ocean. Tectonophysics 134, 273-310.
    Xu, S., Okay, A.I., Ji, S.,1992. Diamands from Dabie Shan metamorphic rocks and its implication for tectonic setting. Science 256, 80-82.
    Xu, S.-T., Liu, Y.-C., Su, W., Wang, R., Jiang, L., Wu, W., 2000. Discovery of the eclogite and iys petrography in the Northern Dabie Mountain. Chi. Sci. Bull. 45, 273-278.
    Xu, Z.-Q., Zeng, L.-S., Liu, F.-L., Yang, J.-S., Zhang, Z.-M., McWilliams, M., Liou, J.G., 2006. Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure metamorphic terrane. In: Hacker, B.R., McClelland, W.C., Liou, J.G., (eds.), Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Geol. Soc. Am. Spec. Paper 403, 93-113.
    Yang, J.S., Wooden, J.L., Wu, C.L., Liu, F.L., Xu, Z.Q., Shi, R.D., Katayama, I., Liou, J.G., Maruyama, S., 2003. SHRIMP U-Pb dating of coesite-bearing zircon from the ultrahigh-pressure metamorphic rocks, Sulu terrane, east China. J. Metamor. Geol. 21, 551-560.
    Yao, Y.-P., Ye, K., Liu, J.-B., Cong, B.-L. and Wang, Q.-C., 2000. A transitional eclogite- to high pressure granulite-facies overprint on coesite-eclogite at Taohang in the Sulu ultrahigh-pressure terrane, Eastern China. Lithos 52, 109-120.
    Yardley, B., Gleeson, S., Bruce, S., Banks, D., 2000. Origin of retrograde fluids in metamorphic rocks. J. Geochem. Explor. 69-70, 281-285.
    Ye, K., Yao, Y.-P., Katayama, I., Cong, B.-L., Wang, Q.-C., Maruyama, S., 2000b. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of east China: new implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos 52, 157-164.
    Yui, T.F., Rumble, D., Lo, C.H., 1995. Unusually lowδ18O ultra-high-pressure metamorphic rocks from the Sulu Terrane, eastern China. Geochim. Cosmochim. Acta 59, 2859-2864.
    Yui, T.F., Rumble, D., Chen, C.H., Lo, C.H., 1997. Stable isotope characteristics of eclogites from the ultra-high-pressure metamorphic terrain, east-central China. Chem. Geol. 137, 135-147.
    Zhang, J.-F., Jin, Z.-M., Green, H.-W., Jin, S.-Y., 2001. Hydroxyl in continental deep subduction zone: Evidence from UHP eclogites of the Dabie Mountains. Chinese Sci. Bull. 46, 592-595.
    Zhang, J.-F., Green, H.W., Bozhilov, K., Jin, Z.-M., 2004. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature 428, 633-636.
    Zhang, R.Y., Liou, J.G., Cong, B.L., 1994. Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su-lu ultrahigh-pressure metamorphic terrane, China. J. Metamorph. Geol. 12, 169-186.
    Zhang, R.Y., Liou, J. G., Cong, B.- L., 1995. Talc–magnesite and Ti–clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountain, China. J. Petrol. 36, 1011-1037.
    Zhang, R.Y., Hirajima, T., Banno, S., Cong, B.L., Liou, J.G., 1995a. Petrology of ultrahigh-pressure rocks from the southern Su–Lu region, eastern China. J. Metamorph. Geol. 13, 659-675.
    Zhang, R.Y., Liou, J.G., 1996. Coesite inclusions in dolomite from eclogite in the southern Dabie Mountains, China: The significance of carbonate minerals in UHPM rocks. Am. Mineral. 81, 181-186.
    Zhang, R.Y., Liou, J.G., 1997, Partial transformation of gabbro to coesite-bearing eclogite from Yangkou, the Sulu terrane, eastern China. J. Metamorphic Geol. 15, 183-202.
    Zhang, Y.-X., Stolper, E.M., Wasserburg, G.J., 1991. Diffusion of a multi-species component and its role in oxygen and water transport in silicates. Earth Planet Sci. Lett. 103, 228-240.
    Zhang, Y.-X., Belcher, R., Ihinger, L., Wang, L., Xu, Z., Newman, S., 1997. New calibration of infrared measurement of water in rhyolitic glasses. Geochim. Cosmochim. Acta 61, 3089-3100.
    Zhang, Y.-X., 1999. H2O in rhyolitic glasses and melts: measurement, speciation, solubility, and diffusion. Rev. Geophy. 4, 493-516.
    Zhang, Y.-X., Behrens, H., 2000. Water diffusion in basaltic melts. Nature 351, 306-309. Zhang, Z.-M., Xu, Z.-Q., Xu, H.-F., 2000a. Petrology of ultrahigh-pressure eclogites from the ZK703 drillhole in the Donghai, eastern China. Lithos 52, 35-50.
    Zhang, R.Y., Liou, J.G., Yang, J.S., Yui, T.F., 2000b. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. J.Metamorph.Geol. 18, 149-166.
    Zhang, Z.M., Xiao, Y.-L., Liu, F.-L., Liou, J.G., Hoefs, J., 2005. Petrogenesis of UHP metamorphic rocks from Qinglongshan, southern Sulu, east-central China. Lithos 81, 189-207.
    Zhang, Z.M., Shen, K., Xiao, Y.L., Van den Kerkhof A.M., Hoefs, J., 2005a. Fluid composition and evolution attending UHP metamorphism: study of fluid inclusions from drill cores, southern Sulu belt, eastern China. Intern. Geol. Rev. 47, 297-309.
    Zhang, Z.M., Shen, K., Xiao, Y.L., Hoefs, J., Liou, J.G., 2006. Mineral and fluid inclusions in zircon of UHP metamorphic rocks from the CCSD-main drill hole: A record of metamorphism and fluid activity. Lithos 92, 378-398.
    Zhang, Z.M., Shen, K., Liou, J.G., Zhao, X.D., 2007. Fluid inclusions associated with exsolved quartz needles in omphacite of UHP eclogites, Chinese Continental Scientific Drilling main drill hole. Intern. Geol. Rev. 49, 479-486.
    Zhang, Z.-M., Shen, K., Sun, W.D., Liu, Y.S., Liou, J.G., Shi, C., Wang, J.L., 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim. Cosmochim. Acta 72, 3200-3228.
    Zhao, R.X., Liou, J.G., Zhang, R.Y., 2005. SHRIMP U-Pb dating of zircon from the Xugou UHP eclogite, Sulu terrane, eastern China. Intern. Geol. Rev. 47, 805-814.
    Zhao, R.X., Liou, J.G., Zhang, R.Y., Li, T.F., 2006a. SHRIMP U-Pb zircon dating of the Rongcheng eclogite and associated peridotite: new constraints for ultrahigh-pressure metamorphism ofmantle-derived mafic-ultramafic bodies from the Sulu terrane. In: Hacker, B.R., McClelland, W.C., Liou, J.G., (eds.), Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Geol. Soc. Am. Spec. Paper 403, 115-125.
    Zhao, Z.-F., Zheng, Y.-F., Gao, T.-S., Wu, Y.-B., Chen, B., Chen, F.K., Wu, F.-Y., 2006b. Isotopic constraints on age and duration of fluid-assisted high-pressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen. J. Metamorph. Geol. 24, 687-702.
    Zhao Z-F, Gao T-S. 2007. Comment on“Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: New insights from 40Ar/39Ar dating by stepwise crushing”by Qiu and Wijbrans (2006). Geochim Cosmochim Acta 71, 6046-6050.
    Zhao, Z.-F., Zheng, Y.-F., 2007. Diffusion compensation for argon, hydrogen, lead and strontium in minerals: empirical relationship to crystal chemistry. Am. Mineral. 92, 289-308.
    Zhao, Z.-F., Chen, B., Zheng. Y.-F., Chen, R.-X., Wu, Y.-B., 2007a. Mineral oxygen isotope and hydroxyl content changes in ultrahigh-pressure eclogite-gneiss transition from the Chinese Continental Scientific Drilling core samples. J. Metamorph. Geol. 25, 165-186.
    Zhao, R.X., Zhang, R.Y., Liou, J.G., Booth, A.L., Pope, E.C., Chamberlain, C.P., 2007b. Petrochemistry, oxygen isotopes and U-Pb SHRIMP geochronology of mafic-ultramafic bodies from the Sulu UHP terrane, China. J. Metamor. Geol. 25, 207-224.
    Zheng, Y.-F., 1991. Calculation of oxygen isotope fractionation in metal oxides. Geochimica et Cosmochimica Acta 55, 2299-2307.
    Zheng, Y.-F., 1992. Discussion on the use of diagram in interpreting stable isotope data. Eur. J. Mineral. 4, 635-643.
    Zheng, Y.-F., 1993a. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 57, 1079?1091.
    Zheng, Y.-F., 1993b. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet. Sci. Lett. 120, 247-263.
    Zheng, Y.-F., Fu, B., Gong, B., Li, S., 1996. Extreme 18O depletion in eclogite from the Su-Lu terrane in East China. Eur. J. Mineral. 8, 317-323.
    Zheng, Y.-F., Fu, B., Li, Y.-L., Xiao, Y.-L., Li, S.-G., 1998. Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and Sulu terrane. Earth Planet. Sci. Lett. 155, 113-129.
    Zheng, Y.-F., Fu, B., Xiao, Y.-L., Li, Y.-L., Gong, B., 1999. Hydrogen and oxygen isotope evidence for fluidr?ock interactions in the stages of pre- and post-UHP metamorphism in the Dabie Mountains. Lithos 46, 677-693.
    Zheng, Y.-F., Wang, Z.-R., Li, S.-G., Zhao, Z.-F., 2002. Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm-Nd chronometer. Geochim. Cosmochim. Acta 66, 625-634.
    Zheng, Y.-F., Fu, B., Gong, B., Li, L., 2003a. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth Sci. Rev. 62, 105-161.
    Zheng, Y.-F., Yang, J.-J., Gong, B., Jahn, B.-m., 2003b. Partial equilibrium of radiogenic and stable isotope systems in garnet peridotite during UHP metamorphism. Am. Mineral., 88, 1633-1643.
    Zheng, Y.-F., Wu, Y.-B., Chen, F.-K., Gong, B., Li, L., Zhao, Z.-F., 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochem. Cosmochim. Acta 68, 4145-4165.
    Zheng, Y.-F., Zhou, J.-B., Wu, Y.-B., Xie, Z., 2005. Low-grade metamorphic rocks in the Dabie-Sulu Orogenic Belt; a passive-margin accretionary wedge deformed during continent subduction. Intern. Geol. Rev. 47, 851-871.
    Zheng, Y.-F., Gao, T.-S., Wu, Y.-B., Gong, B., 2007a. Fluid flow during exhumation of deeply subducted continental crust: Zircon U-Pb age and O isotope studies of quartz vein in eclogite. J. Metamorph. Geol. 25, 267-283.
    Zheng, Y.-F., Wu, Y.-B., Gong, B., Chen, R.-X, Tang, J., Zhao, Z.-F., 2007b. Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen isotope signature of meteoric water in granite. Earth Planet. Sci. Lett. 256, 196-210.
    Zheng, Y.-F., 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chinese Sci. Bull. 53, 3081-3104.
    Zheng, Y.-F., Gong, B., Zhao, Z.-F., Wu, Y.-B., Chen, F.K., 2008. Zircon U-Pb age and O isotope evidence for Neoproterozoic low-18O magmatism during supercontinental rifting in South China: implications for the snowball earth event. Am. J. Sci. 308, 484-516.
    Zheng, Y.-F., 2009. Fluid regime in continental subduction zones: petrological insights from ultrahigh-pressure metamorphic rocks. J. Geol. Soc. 166, 763-782.
    Zheng, Y.-F., Chen, R.-X., Zhao, Z.-F., 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics 475, 327-358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700