用户名: 密码: 验证码:
InP基HBT的理论研究以及光接收机前端单片集成器件的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的工作是围绕任晓敏教授承担的教育部高等学校博士学科点专项科研基金“基于RCE光探测器和HBT的单片集成(OEIC)高速光接收模块”(项目编号:20020013010)、任晓敏教授为首席科学家的国家重点基础研究发展计划(973计划)项目“新一代通信光电子集成器件及光纤的重要结构工艺创新与基础研究”(项目编号:2003CB314900)等项目展开的。
     InP基异质结双极晶体管(HBT)在光纤通信等领域具有极其广阔的应用前景,并且可以与光电探测器等光器件单片集成,因而深入系统地研究InP基HBT器件具有极其重要的意义。
     本论文的工作主要是围绕着InP基HBT器件的理论研究、实验制备及其与PIN光电探测器的单片集成而展开的。现将本论文所包含的研究成果总结如下:
     (1)系统地研究并总结了HBT理论模型中常见物理量的计算,并结合已有文献资料总结出了InP与In_(0.53)Ga(0.47)As材料的迁移率公式,这对InP基HBT的各种理论仿真计算有着重要的作用;
     (2)研究了在大电流密度下发生Kirk效应时对InP基HBT直流特性和高频特性的影响,得出Kirk效应的发生会导致InP基HBT的直流增益和高频特性均变差。与此同时,研究了在发生Kirk效应后,在BC结B区侧产生的零电场区域厚度X_S对τ_b、f_T与f_(max)的影响,并得出X_S相对于X_B来说是不可忽略的,这对于基区厚度很薄而C区又很厚的情况时,在τ_b的计算中,X_S所占的权重将会变得更加重要;
     (3)研究了InP基HBT的基区在非均匀掺杂情况下对其各性能参数的影响。首先研究了非均匀掺杂时在基区的内建场分布情况,并得出,在对基区进行非均匀掺杂时所产生的加速电场与减速电场当中,减速电场的场强大小相对加速电场来说是不可以忽略的。其次,研究了基区不同的掺杂曲线对τ_b、f_T、f_(max)的影响,并得出,非均匀掺杂对InP/In_(0.53)Ga_(0.47)As HBT的性能参数f_T的改善不是特别大。最后研究了由于掺杂工艺误差对τ_b、f_T、f_(max)的影响,并得出在V_(BE)=0.64V、α=2.78、λ=0.38时,5%的掺杂工艺偏差给f_T带来的波动仅为1%左右;
     (4)参与了InP基HBT、PIN—PD、光接收机前端单片OEIC三种器件的制备。经过测试得出:对于2μm尺寸型号的InP基HBT器件,其电流增益截止频率f_T为28GHz;对于入光面为22×22μm~2尺寸型号的PIN—PD器件,其高频响应带宽为16GHz;对于由以上两者组成的光接收机前端单片OEIC器件,其高频响应带宽为3GHz。
The research works described in this paper were supported by the grants from many research projects, including Doctoral Subjects Research Grants of Ministry of Education, PRC, "Monolithic OEIC photoreceiver modules based on RCE photodetectors and HBT" (20020013010) and National Basic Research Program of China, "Basic Research on Integrated Optoelectronic Devices and Microstructure Optical Fibers with Structure and Technology Innovations for Future Advanced Optical Communications" (2003CB314900).
     InP-based HBT have many attractions in the field of Fiber-Optic communication, and they can integrate with photodetectors with shared epitaxial layers on a single substrate, which have the advantages of one-step epitaxy, simplicity of fabrication, and possibly higher reliability. As one kind of promising devices for high-speed application, the research on InP-based HBT has bright future and so attracts much attention in the world.
     This paper studied the theory and experimental fabrication of InP-based HBT, and its monolithic integration with PIN-photodetector. In this paper, the author has obtained the results as the following:
     (1) Systematically studied and summarized the physical parameters usually used in the theoretical model of HBT. Obtained the formulas of mobilities of InP and In_(0.53)Ga_(0.47)As semiconduct materials based on the released references, which takes an important role in the theoretical simulations of InP-based HBT;
     (2) Studied the influences of InP-based HBT's direct-current and high-frequency characteristics after Kirk Effect emerges under large current density, and obtained the result that the characteristics of both InP-based HBT's Direct Current and High Frequency will deteriorate after Kirk Effect happened. At the same time, this paper also studied the influences ofτ_b, f_(?) and f_(max) with X_s which is the distance of zero-electric field in the depletion layer of base-collector junction, and obtained the conclusion that the distance of X_s is unignorable compared with X_B especially in the case of Base thickness is very thin and Collector is very thick;
     (3) Studied the influences of InP-based HBT's characteristic parameters with the case that the Base is ununiformly doped. At first, the author studied the mechanism and composition of inner build-in electric field in the Base, and got the conclusion that the decelerating electric field of p-Ino.53Gao.47As semiconduct material resulted in Band Gap Narrowing Effect which led by graded base doping is unignorable compared with the accelerating electric field. Secondly, studied the influences ofτ_b, f_(?) and f_(max) with different doping curves of the Base, and got the conclusion that it has not very distinct improvement to the parameter of f_(?) of InP/In_(0.53)Ga_(0.47)As HBT. Thirdly, studied the influences ofτ_b, f_(?) and f_(max) with doping deviation to the assumed doping curve, and obtained the result that the influence of doping deviation to the deviation of f_(?) is very small. For instance, under the conditions of V_(BE)=0.64,α=2.78 andλ=0.38, 5% of doping deviation leads only 1 % of deviation to f_(?);
     (4) The author participated in the fabrications of InP-based HBT, PIN-PD and the monolithic OEIC photoreceiver. The testing results of these devices described as the following: as to the 2μm size style of InP-based HBT, the parameter of f_(?) was 28GHz; as to the PIN-PD of 22×22μm~2 incidence area, the responding band of high frequency was 16GHz; as to the monolithic OEIC photoreceiver based on the above styles of PIN-PD and InP-based HBT, the responding band of high frequency was 3 GHz.
引文
[1] W. Shockley, US Patent No. 2569347, Filed 26 June 1948, expired 24 September 1968.
    [2] H Kroemer, "Theory of a wide-gap emitter for transistors", Proceedings of the IRE, Vol. 45, 1957, pp. 1535-1537.
    [3] The Royal Academy of Sciences Press Release on the Nobel Prize in Physics 2000, October 10, 2000.
    [4] W P Dumke, J M Woodull and V L Rideoout, Solid State Electronics, Vol 15, 1972, pp. 1339-1343.
    [5] 崇英哲,“单片集成及新型光接收器件的研究”,[博士论文],北京邮电大学,2004.
    [6] Kazuhiro Mochizuki, Kiyoshi Ouchi, et al., "Heavily Carbon-Doped InGaP/GaAs HBT's with Buried Polycrystalline GaAs Under the Base Electrode", IEEE Tran. Electron devices, Vol. 45, No. 11, 1998, pp. 2268-2274.
    [7] M. W. Dvorak, et al., "300 GHz InP/GaAsSb/InP Double HBTs with High Current Capability and BV_(CEO)≥6V", IEEE Electron Device Lett., Vol. 22, No. 8, 2001, pp. 361-363.
    [8] S M Sze, "VLSI Technology", McGraw-Hill, New York, 1983.
    [9] H F Chan and Y C Ikac, "High f_T InAlAs/InGaAs heterojunction bipolar transistors", IEEE IEDM Tech. Dig. 1993, pp. 783-786.
    [10] J J Chen, G B Gao, J I Chiu etc., "Breakdown behavior of GaAs/AlGaAs HBT's", IEEE Trans. Electron Dev. V. Ed-36, 1989, pp. 2165-2172.
    [11] H Kromer, "Heterostructure bipolar transistor and integrated circuits", Proc. IEEE, Vol. 70, 1982, pp. 13-25.
    [12] R N Nottenburg, Y K Chen, M B Panish etc., "High current gain submicrometer InGaAs/InP heterostructure bipolar transistors", IEEE Trans. EIectr. Dev. Lett., Vol. 9, 1988, pp. 524-526.
    [13] K. G. Gunther, Z. Naturforsch, Teil A 13; 1081, 1958.
    [14] J. E. Davey, T. Pankey, J. Appl. Phys. 39, 1941, 1968.
    [15] J. R. Arthru, J. Appl. Phys. 39, 4032, 1968.
    [16] A. Y. Cho and F. K. Reinhart, J. Appl. Phys, voL19, p335, 1972.
    [17] 石瑞英,“新结构HBT器件研究及在驱动电路中的应用”,[博士论文],中国科学院微电子中心,2003.
    [18] 袁泽亮,侯晓远,王讯,物理,27卷,6期,1998.
    [19] William Liu, Timothy Henderson, Shou-Kong Fan, IEEE Electron Device Lett., vol. 14, No. 6, 1993.
    [20] C. J. Sandroffet al., Appl. Phys., Lett., 51, p. 33, 1987.
    [21] W. Liu, "Fundamentals of Ⅲ-V Devices: HBTs, MESFETs, and HFETs/HEMTs", New York, Wiley, 1999.
    [22] Delong Cui, "InP-based materials and heterostructure devices, and their applications in monolithic integrated NPN and PNP HBT circuits", Dissertation of the University of Michigan, 2001.
    [23] M. B. Das, "High-Frequency Performance Limitations of Millimeter-Wave Heterojunction Bipolar Transistors", IEEE Trans. Electron Dev., vol. 35, pp. 604-614, 1988.
    [24] E. John and M. B. Das, "Speed and sensitivity limitations of optoelectronic receivers based on MSM photodiode and millimeter-wave HBT's on InP substrate", IEEE Photon. Techno. Lett., vol. 4, pp. 1145-1 148, 1992.
    [25] S Tiwari, M Fischetti and S Laux, "Overshoot in transient and steady-state in GaAs, InP, GaInAs, and InAs bipolar transistors", Technical Digest of the International Electron Devices Meeting, IEEE, Piscataway, pp. 435-438, 1990.
    [26] M Lundstrom, "Fundamentals of carrier transport", 2nd, ed., Cambridge Univ. Press, 1990.
    [27] 谢孟贤,刘诺,“化合物半导体材料与器件”,电子科技大学出版社,2000.
    [28] T OKA, K Hirata, K Ouchi, etc., "Advanced performance of small-scaled InGaP/GaAs HBT's with fT over 150 GHz and fmax over 250 Ghz", IEDM, pp. 653-656, 1998.
    [29] S E Laux and W Lee, "Collector signal delay in the presence of velocity overshoot", IEEE Electron Device Lett., EDL-4, 174 (1990).
    [30] 石瑞英,刘训春,石华芬等,“GaAs HBT中BC结耗尽层区电子渡越时间的修正”,固体电子学研究与进展,Vol.23,pp.30-33,2003.
    [31] J J Liou and H Shakouri, "Collector signal delay time and collector transit time of HBT's including velocity overshoot", Solid-State Electronics, Vol. 35, pp. 15-19, 1992.
    [32] 周守利,“异质结双极晶体管器件物理和制备及其与光电探测器的单片集成”,[博士论文],北京邮电大学,2006.
    [33] S. C. M. Ho and D. L. Pulfrey, IEEE Trans. Electron Devices, vol. 36, p. 2173, 1989.
    
    [34] S.N.Mohammand, J.Chen, J.I.Chyi, Appl.Phys.Lett., vol.56, p.937, 1990.
    [35] Dwight C. Streit, Majid E. Hafizi, Donald K. Umemoto, et al, "Effect of Exponentially Graded Base Doping on the Performance of GaAs/AlGaAs Heterojunction Bipolar Transistors", IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 5, MAY 1991.
    [36] K. Suzuki, "Optimum Base Doping Profile for Minimum Base Transit Time", IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 38, NO. 9. SEPTEMBER 1991.
    [37] K. Suzuki and N. Nakayama, "Base transit time of shallow-base bipolar transistors considering velocity saturation at base-collector junction", IEEE Trans. Electron Devices, vol. ED-39, pp. 623-628, 1992.
    [38] J.M.Lopez-Gonzalez, P.Garcias-Salva and L.Prat. "Analytical model for abrupt HBTs with application to InP/InGaAs type", Solid-State Electronics, Vol.41, pp.1277-1283, 1997.
    [39] J. J. H. van den Biesen, "A simple regional analysis of transit times in bipolar transistors", Solid-Stare Electron., vol. 29, pp. 529-534, 1986.
    [40] S. Joshi, S. Boyd, and R. W. Dutton, "Optimal Doping Profiles via Geometric Programming", IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 12, DECEMBER 2005.
    [41] M. Yung, J. Jensen et al, "Highly Integrated InP HBT Optical Receivers", IEEE J. Solid-State Circuits, Vol. 34, No. 2, 1999, pp. 219-227.
    [42] P. Pay, et al, "The key to communicating at light speed high-speed optoelectronic receivers for fiber-optic communications", IEEE Circuits & Devices, Vol. 14, No. 5, 1998, pp. 16-25.
    [43] S. Chandrasekhar, B. C. Johnson, et al., "A monolithic long wave length photoreceiver using heterojunction bipolar transistors", IEEE J. Quantum Electron., Vol. 27, No. 3, 1991, pp. 773-777.
    [44] J. Spicher, B. U. H. Klepser, M. Beck, et al., "A 20-Gbit/s monolithic photoreceiver using InAlAs/InGaAs HMET's and regrown p-i-n photodiode", Proc. Int. Conf. InP and Rel. Mat., 8th, pp. 439-442, 1996.
    [45] D. Huber, R. Bauknecht, C. Bergamaschi et al., "InP-InGaAs Single HBT Technology for Photoreceiver OEIC's at 40 Gb/s and Beyond", IEEE J. Lightwave Technol., Vol. 18, pp. 992-1000, July 2000.
    [46] R H Walden, "A Review of Recent Progress in InP-Based Optoelectronic Integrated Circuit Receiver Front-Ends", International Journal of High Speed Electronics and System, July 1998.
    [47] 余金中,王杏华,“半导体异质结光电探测器”,物理,2002,Vol.31,No.8,pp.527-533.
    [48] 史常圻,“金属—半导体—金属光电探测器”,上海交通大学出版社,2000.
    [49] D Huber, R Bauknecht, C Bergamaschi etc., "InP-InGaAs Single HBT Technology for Photoreceiver OEIC's at 40Gb/s and Beyond", Journal of Lightwave Technology, Vol. 18, No, 7, July 2000.
    [50] 任晓敏,“新型光探测器与WDM集成解复用接收器件”,北京邮电大学学术演进与创新综述文集,北京邮电大学出版社,2005.
    [51] Cui Hailin, Zhou Shouli, Huang Hui etc., "A novel method to increase quantum efficiency of the monolithically integrated PIN/HBT-Receiver", APOC, 2005, Shang Hai, China.
    [52] 黄辉,王琦,雷蕾,黄永清,任晓敏, “长波长、高灵敏度的InP/InGaAs谐振腔光电探测器”,光电子·激光,2002,Vol.13,No.3,PP.221~224.
    [53] 黄辉,“WDM光接收机核心器件前沿技术研究”,[博士论文],北京邮电大学,2001.
    [54] Eiichi Sano, Mikio Yoneyama, H. Nakajima, et al, "A monolithically integrated photoreceiver compatible with InP/InGaAs HBT fabrication process", J. Lightwave Technol., 1994, vol. 12, pp. 638.
    [55] Aland D. Huelsman, Clifton G. Fonstad, "Fabrication and Characterization of Nonalloyed Cr/Au Ohmic Contacts to n-and p-Type In_(0.53)Ga_(0.47)As", IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-33, NO. 2, FEBRUARY 1986.
    [56] T. Y. Chang, Y. He, N. J. Sauer, et al, "Shallow p-Type Ohmic Contact to Ga_(0.47)In_(0.53)As Using Au/Ti/Mn/W", ELECTRONICS LETTERS 10th June 1993 Vol. 29 No. 12.
    [57] 李献杰,曾庆明,徐晓春等,“InP/InGaAs HBT湿法化学选择腐蚀技术”,功能材料与器件学报,Vol.6,No.3,Sept.2000.
    [58] Goldberg Yu. A. and N. M. Schmidt, "Handbook Series on Semiconductor Parameters", Vol. 2, World Scientific, London, 1999.
    [59] J. Bohrer, M. Grundmann, U. lienert, et al., "Determination of band discontinuity of MOCVD grown In_(1-x)Ga_x As/In_(1-y)Al_yAs heterostructures with optical and structural methods", J. Cryst. Growth, Vol. 107, pp. 555-560, 1991.
    [60] 顾畹仪,李国瑞,“光纤通信系统”,北京邮电大学出版社,1999,PP.144.
    [61] 石瑞英,刘训春,“HBT结构的新进展”,半导体技术,2002,Vol.27,No.6,pp.69-76.
    [62] Huber, D., Bitter, M., Dulk, M., et al., "A 53GHz monolithically integrated InP/InGaAs PIN/HBT receiver OEIC with an electrical Bandwidth of 63GHz", IEEE, Conference, Indium Phosphide and Related Materials, 2000, pp. 325-328.
    [63] Yongjoo S., Kyounghoon Y., "Reduction of extrinsic base-collector capacitance in InP/InGaAs SHBTs using a new base pad design", Indium Phosphide and Related Materials Conference, May, 2002, pp. 165-168.
    [64] Too, P., Ahmed, S., Jakiela, R., et al., "Implant isolation of both n-type InP and InGaAs by iron irradiation: effect of post-implant annealing temperature", IEE, Electron Devices for Microwave and Optoelectronic Applications, 2003, pp. 18-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700