用户名: 密码: 验证码:
晶体硅太阳电池表面陷光结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为太阳能利用的重要组成部分,光伏发电是一种清洁的、用之不竭的可再生绿色新能源,受到越来越多的关注。近年来全球光伏产业发展速度迅猛,而我国光伏产业规模已经稳居全球第一。但是,国内相关的科学研究还很缺乏,技术积累薄弱,阻碍了光伏产业的进一步发展。因此,开展此方面的基础研究具有重要的科学意义和应用价值。
     目前,晶体硅(包括单晶硅、多晶硅和带硅等)太阳电池占光伏产业市场份额的90%以上,在2020年之前,晶体硅太阳电池的统治地位难以撼动。由于硅材料成本居高不下,减薄硅片厚度成为降低电池生产成本最有效的手段。在硅片变薄的同时,对光吸收效率和表面钝化的要求也增加了。增强光吸收对保持薄片晶体硅太阳电池的性能稳定和进一步提升转换效率十分重要。围绕晶体硅太阳电池的光吸收问题,本文进行了一系列研究,包括表面损伤对单晶硅制绒的影响,多孔硅的生成以及形貌调控,新型的多孔-金字塔结构的设计与优化。得出了如下结论:
     1.硅片表面损伤较严重时,在制绒的过程中硅片表面金字塔结构的长大很不规则;硅片表面损伤较轻时,金字塔结构的长大相对规则。在80℃下20wt%KOH的溶液中处理40s后,进行60min的制绒处理能得到较好的反射性能,同时可将硅片表面损伤完全去除,这样能减少腐蚀过程对硅片的总消耗量。
     2.在50℃下5M HF+0.14M Fe(NO_3)_3溶液中反应,硅片表面容易得到杂乱的多孔结构。增加HF和Fe(NO_3)_3的浓度,能够得到腐蚀凹坑内密布多孔结构的表面形貌。在50℃下10M HF的溶液中,将Fe(NO_3)_3的浓度从0.2M增加到0.4M时,腐蚀凹坑内的多孔结构转变为微小的突起,导致表面反射率值急剧增大。
     3.在HF/Fe(NO_3)_3溶液中加入AgNO_3可以在硅片表面沉积银颗粒,进而增强Fe~(3+)得到电子的能力,并加速还原反应的进行,极大的增加单晶硅片表面多孔结构的覆盖率和均匀性。当沉积的银颗粒较多且连接在一起时可以腐蚀得到纳米硅丝,银颗粒分散则可腐蚀得到深孔结构。
     4.在多晶硅表面制作多孔硅结构以及沉积氮化硅薄膜均能够得到非常好的减反射效果,在多晶硅表面生成的多孔硅在大范围内比较均匀,而在晶界等表面缺陷处生成排列整齐的孔状结构。在没有金属颗粒辅助的情况下,抛光的硅片表面难以生成均匀的多孔结构。
     5.在多孔-金字塔结构制作中,二次腐蚀时间为30min时,金字塔基本保留,硅片表面反射性能达到最好。随着在HF/Fe(NO_3)_3溶液中反应时间的增加,硅片的少子寿命降低。综合考虑反射性能和少子寿命,经过60min金字塔织构化后,在50℃下10 M HF+0.2 M Fe(NO_3)_3溶液中二次腐蚀30min的效果最佳。
     6.二次腐蚀采用HF/Fe(NO_3)_3/AgNO_3的腐蚀液能增加金字塔结构的多孔化反应速度,减少与溶液中Fe离子的接触从而减少沾污。硅片表面生成的多孔硅均匀性很好,且反射性能优异。
As a clean and inexhaustible reproducible green energy, photovoltaics (PV) is an important part of the utilization of solar energy and has drawn extensive attention. PV market and corelative application increased drastically. In China, a world-shaking growth of PV industry has been witnessed. The output had been the first in the world since 2007. However, domestic studies on relative science are still short and technology accumulations are relatively devoid. The lack of technology hinders the further development of PV industry. Therefore, basic studies on PV have imperative scientific significance and application value.
     Presently, crystalline silicon solar cells which accounts for more than 90% of all kinds of solar cells are the dominator of PV market. According to a matter of speculation, crystalline silicon solar cells will still be the dominator of PV market before 2020. Because of the high cost of silicon materials, silicon wafers are getting thinner and thinner for effective cost reduction. Utilization of thin wafer increases the request for light absorption and surface passivation. Light absorption is imperative to keep the property of silicon solar cells stable and to improve conversion efficiency. We have studied influence of subsurface damage on texturing of monocrystalline silicon wafers for solar cells; fabrication of PS layer and control the morphology of PS layer; designation and optimization of porous-pyramid structure. The conclusions are the following:
     1. "Pyramid" grew irregularly during the texturing process when the subsurface damage is serious. Otherwise, "Pyramid" grew regularly when the subsurface damage is light. Silicon wafer can show fine reflected property when it was textured 60 min in 3wt% KOH and 8vol% IPA alkali solution after reacted at 80℃for 40s in 20wt% KOH solution. The subsurface damage can be removed completely. Reduction of dissipating silicon can be carried out in the chemical etch process.
     2. Disordered porous silicon layer was obtained on silicon wafer by stain etch in 5 M (M = mol L-1) HF and 0.14 M Fe (NO_3)_3 solutions at 50℃±1℃. Corrosion pits which filled with porous silicon was gained by increasing the etchant to 10M HF and 0.2M Fe (NO_3)_3. Porous silicon changes to pillar-like structures which will increase reflectivity of silicon wafer when oxidant increases from 0.2M to 0.4M.
     3. Addition of AgNO_3 to HF / Fe(NO3)_3 solution can remarkably improve the uniformity and covering scale of PS layer on silicon wafer because of the deposition of silver particles on silicon surface can attract electrons and accelerate the cathode reaction. Silver particles link with each other will results in formation of silicon nanowires. PS layers were obtained when silver particles are dispersed.
     4. Both PS layer and SiN_x film can work as anti-reflection coating and reduce surface reflectivity of polycrystalline silicon. PS layers were uniform at wide range of polycrystalline silicon surface. While orderly deep porous texture was formed at the neighborhood of grain boundaries. It's difficult to form uniform PS layers on polished silicon surface without metal catalyst.
     5. Pyramids were reserved and reflectance property was fantastical when second etching time is 30min during the fabrication process of porous-pyramid texture. Effective lifetime of silicon wafers reduces gradually as etching time increases. After textured for 60 min in KOH/IPA solution, the optimal etching time for silicon wafer is 30 min in 10M HF/0.2M Fe (NO_3)_3 solutions when both reflectance and effective lifetime are considered.
     6. Pyramid textured silicon wafer etched in HF/Fe (NO_3)_3/AgNO_3 solutions can accelerate the etching reaction and improve the uniformity of PS layers. The reflectivity of porous-pyramid textured silicon is small. The reduction of reaction time can effectively reduce iron contamination.
引文
[1]中华人民共和国国家发展计划委员会基础产业司,中国新能源和可再生能源1999年白皮书,中国计划出版社,(2000).
    [2] Markvart T. Solar Electricity. New York: John Wiley & Sons Publication, 1995
    [3]杨德仁,太阳电池材料,化学工业出版社,(2006)
    [4] MA Green, SR Wenham, J Zhao, J zolper, A.W Blakers. Recent Improvements in Silicon Cell and module Efficiency, 21st IEEE PVSEC conference, May 21-25, 1990. Orlando, USA, P207-210.
    [5] D.M. Chapin, C.S. Fuller. G. L. Pearson. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J.Appl.Phys., (1954), 25(5): 676-677.
    [6] D. C. Reynolds, G. Leies, L. L. Antes, and R. E. Marburger, Photovoltaic Effect in Cadmium Sulfide, Phys Rev, 1954, 96: 533
    [7] Dean L. Travers, Daniel S. Shugar. Value of grid-support photovoltaics to electric distribution lines, Progress in Photovoltaics: Research and Applications, (1994), 2(4): 293-306.
    [8]董玉峰,王万录,韩大星.美国光伏发电和百万屋顶计划.太阳能,(1999),(1):29.
    [9]李仲明.国际光伏报道.太阳能,(1999),(2):29.
    [10]陈君,杨德仁.财政鼓励下的光伏市场.太阳能,(2003),(1):41-42.
    [11]国际半导体设备材料产业协会(SEMI)中国光伏顾问委员会,《中国光伏发展路线图》,2009
    [12] Solar Generation V 2008, EPIA and Greenpeace , Solar Plaza ( 2008data)
    [13] Yoshihiro Hamakawa. Solar PV energy conversion and the 21st century's civilization, Solar Energy Materials & Solar Cells. (2002), 74(1-4): 13-23.
    [14] Richard M. Swanson.A Vision for Crystalline Silicon Photovoltaics.Prog, Photovolt: Res. Appl. (2006), 14:443-453; T.M. Bruton. Genera] trends about photovoltaics based on crystalline silicon. Solar Energy Materials & Solar Cells, (2002), 72: 3-10.
    [15] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, Solar cell efficiency tables (version 33), Prog. Photovolt: Res. Appl. (2009), 17: 85-94.
    [16] Cotal H. L., Lillington D. R., Ermer J.H, King R.R, Karam N.H. Highly Efficient 32.3% Monolithic GalnP/GaAs/Ge Triple Junction Concentrator Solar Cells. Program and Proceedings: NCPV Program Review Meeting 2000, 16-19 April 2000, Denver Colorado.Golden. National Renewable Energy Laboratory, (2000).P111-112.
    [17] Bertness K.A., Friedman D.J., Kurtz S.R., Kibbler A.E., Kramer C., Olson J., M.Nat. High-efficiency GaInP/GaAs tandem solar cells., IEEE Aerospace and Electronic Systems Magazine, (1994), 9(12): 12-17.
    [18] Jianhua Zhao, Aihua Wang, Martin A. Green. 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency silicon PERL cells on FZ substrates. Prog. Photovolt: Res. Appl. (1999), 7:471-474.
    [19] J. Zhao, A. Wang, P. Altermatt, Martin A. Green. Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss. Appl. Phys. Lett., (1995), 66(26): 3636-3638.
    [20] Adolf Goetzberger, Christopher Hebling, Hans-Werner Schock. Photovoltaic materials, history, status and outlook, Materials Science and Engineering R,(2003),40: 1-46
    [21] Narayanan S., Zolper J., Yun F., Wenham S.R., Sproul A.B, Chong C.M., Green M.A., 18% efficient polycrystalline silicon solar cells., 21st IEEE PVSEC, May 21-25 1990, Kissimmee, FL, USA. (1990), 1, 678-680.
    [22] Einhaus R., Vazsonyi E., Szlufcik J., Nijs R. Isotropic texturing of multicrystalline silicon wafers with acidic texturing solutions. 26th IEEE PVSEC, Sep.29-Oct.3 1997, Anaheim, CA,USA, (1997), P167-170.
    [23] P. Campbell, M.A. Green. Light trapping properties of pyramidally textured surfaces, J. Appl. Phys. (1987), 62(1): 243-249.
    [24] M.J. Stocks, A.J. Carr, A.W. Blakers. Texturing of polycrystalline silicon, Solar Energy Materials and Solar Cells, (1996), 40, 33-42.
    [25] U. Gangopadhyay, S.K. Dhungel, P.K. Basu, S.K.Dutta, H. Saha, J. Yi. Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication, Solar Energy Materials & Solar Cells, (2007), 91, 285-289.
    [26] Jinsu Yoo, Gwonjong Yu, Junsin Yi, Black surface structures for crystalline silicon solar cells, Materials Science and Engineering B 159-160 (2009) 333-337
    [27] R. Hezel, K. Jaeger. Low-Temperature Surface Passivation of Silicon for Solar Cells, J. Electrochem. Soc, (1989), 136(2): 518-523.
    [28] H. E. Elgamel, A. M. Barnett. Efficient combination of surface and bulk passivation schemes of high-efficiency multicrystalline silicon solar cells. J. Appl. Phys., (1995), 78 (5):3457-3461.
    [29] C. Leguijt, P. Lolgen, J. A. Eikelboom. Low temperature surface passivation for silicon solar cells, Solar Energy Materials and Solar Cells, (1996), 40(4), 297-345.
    [30] 赵荒,丝网印刷技术在硅太阳电池制造中的应用,广东印刷,(1995),(2):28.
    [31] B. Vallejo, M.A. Caballero, On the texturization of monocrystalline silicon with sodium carbonate solutions, Solar Energy 81 (2007) 565-569
    [32] Y. Nishimoto, K. Namba, Investigation of texturization for crystalline silicon solar cells with sodium carbonate solutions, Solar Energy Materials and Solar Cells, 61 (2000) 393-402.
    [33] Zhenqiang Xi, Deren Yang, Duanlin Que, Texturization of monocrystalline silicon with tribasic sodium phosphate, Solar Energy Materials & Solar Cells, 77 (2003) 255-263
    [34] D. Iencinella, E. Centurioni, R. Rizzoli. F. Zignani,An optimized texturing process for silicon solar cell substrates using TMAH, Solar Energy Materials & Solar Cells, 87 (2005) 725-732
    [35] P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem,J.-F. Lelievre, A. Chaumartin, A. Fave, M. Lemiti, Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching ,Solar Energy Materials & Solar Cells 90 (2006) 2319-2328
    [36] U. Gangopadhyay, K. Kim, S.K. Dhungel , P.K. Basu , J.Yi, Low-cost texturization of large-area crystalline silicon solar cells using hydrazine mono-hydrate for industrial use, Renewable Energy 31(2006)1906-1915
    [37] U.Gangopadhyay, Kyunghae Kim Ajoy Kandol, Junsin Yi, H. Saha, Role of hydrazine monohydrate during texturization of large-area crystalline silicon solar cell fabrication , Solar Energy Materials & Solar Cells 90 (2006) 3094-3101
    [38] Sparber, W., Schultz, O., Biro, D., Emanuel, G., Preu, R., Poddey, A., Borchert, D., Comparison of texturing methods for crystalline silicon solar cells using KOH and Na2CO3. 3rd World Conference on Photovoltaic Energy Conversion, Osaka, 2003, 1372-1375.
    [39]席珍强,杨德仁,吴丹等,单晶硅太阳电池的表面织构化,太阳能学报,2002,23(3):285-289
    [40]王涓,孙岳明,黄庆安,周再发,单晶硅各向异性湿法腐蚀机理的研究进展,化工时刊,2004.Vol.18,No.6,1-4
    [41] H. Seidel, L. Csepregi, A. Heuberger, H.Baumgartel, Anisotropic etching of crystalline silicon in alkaline solutions, J. Electrochem. Soc., 137,11,612-3626(1990)
    [42] E. D. Palik, V. M. Bermudez, and O. J. Glembocki , Ellipsometric Study of Orientation-Dependent Etching of Silicon in Aqueous KOH, J.Electrochem.Soc. 132(4), 871-884(1985)
    [43] Petersen, K.E. , Dynamic micromechanics on silicon: Techniques and devices, IEEE Transactions on Electron Devices, 25 (10) 1978, 1241- 1250.
    [44] M. Spiegel, C. Gerhards, F. Huster, W. Jooss, P. Fath, E. Bucher, Industrially attractive front contact formation methods for mechanically V-textured multicrystalline silicon solar cells, Solar Energy Materials & Solar Cells, 74 (2002) 175-182
    [45] L.A. Dobrzanski, A. Drygalaa, K. Golombeka, P. Panekb, E. Bielanskab, P.Zieba, Laser surface treatment of multicrystalline silicon for enhancing optical properties, Journal of materials processing technology ,201 (2008) 291-296
    [46] D.S. Ruby, S.H. Zaidi, S. Narayananc, B.M. Damiani, A. Rohatgi, Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells, Solar Energy Materials and Solar Cells,46 (1997)239-248
    [47] Shuich Fujii, Yuko Fukawa, Hiroaki Takahashi, Yosuke Inomata, Kenichi Okada, Kenji Fukui,Katsuhiko Shirasawa, Production technology of large-area multicrystalline silicon solar cells, Solar Energy Materials & Solar Cells ,65 (2001) 269-275
    [48] D.S.Ruby, S.H.Zaidi, S. Narayanan, B. M. Damiani, A. Rohatgi, Rie-texturing of multicrystalline silicon solar cells, Solar Energy Materials & Solar Cells, 74 (2002) 133-137
    [49] Wenke Weinreich, Jorg Acker and Iris Graber, The effect of H_2SiF_6 on the surface morphology of textured multi-crystalline silicon, Semiconductor and Science Technology, 21 (2006) 1278-1286
    [50] D.H. Macdonald , A. Cuevas, M.J. Kerr, C. Samundsett, D. Ruby,S. Winderbaum, A. Leo, Texturing industrial multicrystalline silicon solar cells, Solar Energy 76 (2004) 277-283
     [51] Park S W, Kim J, Application of acid texturing to multicrystalline silicon wafers [J], Journal of the Korean Physical Society, 2003,43(33),423-426
     [52] Kyunghae Kim, S.K. Dhungel, Sungwook Jung, D. Mangalaraj, J.Yi, Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication, Solar Energy Materials & Solar Cells 92 (2008) 960- 968
    [53] Shinji Yae, Tsutomu Kobayashi, Tatsunori Kawagishi, Naoki Fukumuro, Hitoshi Matsuda, Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching, Solar Energy 80 (2006) 701-706
    [54] K. Tsujino, M. Matsumura, Formation of a low reflective surface on crystalline silicon solar cells by chemical treatment using Ag electrodes as the catalyst, Solar Energy Materials & Solar Cells 90 (2006) 1527-1532
    [55] Kuiqing Peng, Jing Zhu, Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution, Electrochimica Acta 49 (2004) 2563-2568;
    [56] T. Hadjersi, N. Gabouze , E.S. Kooij, A. Zinine , A. Ababou , W. Chergui , H. Cheraga ,S. Belhousse , A.Djeghria, Metal-assisted chemical etching in HF-Na_2S_2O_8 OR HF-KMnO_4 produces porous silicon, Thin Solid Films 459 (2004) 271-275;
    [57] N. Megouda, T. Hadjersi, O Elkechai, R Douani, L. Guerbous, Bi-assisted chemical etching of silicon in HF-Co(NO_3)_2 solution, Journal of Luminescence 129 (2009) 221-225;
    [58] C. Chartier, S. Bastide, C Levy-Clement , Metal-assisted chemical etching of silicon in HF-H_2O_2, Electrochimica Acta 53 (2008) 5509-5516;
    [59] Tou?k Hadjersi, Oxidizing agent concentration effect on metal-assisted electroless etching mechanism in HF-oxidizing agent-H_2O solutions, Applied Surface Science 253 (2007) 4156-4160;
    
    [60] Y.M. Yang , Paul K. Chu, Z.W. Wu , S.H. Pu, T.F. Hung,K.F. Huo, G.X. Qian, W.J. Zhang , X.L. Wu, Catalysis of dispersed silver particles on directional etching of silicon, Applied Surface Science 254 (2008) 3061-3066;
    [61] Resin Kayahan, Nazan Ceylan , K Esmer. Ag-metallization effects on optical and electrical properties of porous silicon, Applied Surface Science 255 (2008) 2808-2812
    [62] Kazuya Tsujino, Michio Matsumura, Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H_2O_2 at different concentrations using silver nanoparticles as catalysts, Electrochimica Acta 53 (2007) 28-34,
    [63] Kensuke Nishioka, Susumu Horita, Keisuke Ohdaira , Hideki Matsumura, Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle, Solar Energy Materials & Solar Cells 92 (2008) 919- 922
    [64] MJ Huang, CR Yang, YC Chiou, RT Lee, Fabrication of nanoporous antireflection surfaces on silicon, Solar Energy Materials & Solar Cells 92 (2008) 1352- 1357
    [65] R. Douani, T. Hadjersi,, R. Boukherroub , L. Adour, A. Manseri, Formation of aligned silicon-nanowire on silicon in aqueous HF-(AgNO_3 + Na_2S_2O_8) solution, Applied Surface Science 254(2008)7219-7222
    [66] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, O.Elkechai, Au-assisted electroless etching of silicon in aqueous HF/H_2O_2 solution, Applied Surface Science, 255 (2008) 6210-6216
    [67] P. Vitanov, E. Goranova, V. Stavrov, P.Ivanov, P.K.Singh, Fabrication of buried contact silicon solar cells using porous silicon, Solar Energy Materials & Solar Cells 93 (2009) 297-300
    [68] N. Megouda, R. Douani, T. Hadjersi, R. Boukherroub, Formation of aligned silicon nanowire on silicon by electroless etching in HF solution, Journal of Luminescence, 129 (2009) 1750-1753
    
    [69] N. Marrero, R. Guerrero-Lemus, B. Gonzalez-Diaz, D. Borchert, Effect of porous silicon stain etched on large area alkaline textured crystalline silicon solar cells, Thin Solid Films 517 (2009) 2648-2650
    [70] Andrzej Korcala, Waclaw Bala, Artur Bratkowski, Piotr Borowski, Zbigniew Lukasiak, Electrical properties study of porous silicon layer prepared by electrochemical etching, Optical Materials 28 (2006) 143-146
    [71] D. A. Kim, J. H. Shim, N. H. Cho, PL and EL features of p-type porous silicon prepared by electrochemical anodic etching, Applied Surface Science 234 (2004) 256-261
    [72] Kui-Qing Peng, Yun-jie Yan, Shang-Peng Gao, Jing Zhu, Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry, Advanced Material 14(2002) 1164-1167
    [73] A. Müller, M. Ghosh, R. Sonnenschein. Silicon for photovoltaic applications. Materials Science and Engineering B. (2006) 134, 257-262.
    [74] http://www.opticsjournal.net/News.htm?id=PT081110000004pVrY, http://info.ec.hc360.com/2009/10/121024139762.shtml, http://solar.ofweek.com/2009-04/ART-260005-8110-28413120.html
    [75] G.P. Willeke. Thin crystalline silicon solar cells. Solar Energy Materials & Solar Cells, (2002), 72: 191-200.
    [76] C. J. J. Tool , A. R. Burgers, P. Manshanden, A. W. Weeber, B. H. M. van Straaten, Influence of wafer thickness on the performance of multicrystalline Si solar cells: an experimental study, Prog. Photovolt: Res. Appl. (2002), 10: 279-291.
    [77] F. Llopis, I.Tobias, The role of rear surface in thin silicon solar cells, Solar Energy Materials & Solar Cells 87 (2005) 481-492
    [78] Pierre Verlinden, Olivier Evrard, Emmanuel Mazy, The surface texturization of solar cells: Anew method using V-grooves with controllable side-wall angles, Solar Energy Materials and Solar Cells,1992,26: 71-78
    [79] WG America, R Srinivasan, SV Babu, The Influence of pH and Temperature on Polish Rates and Selectivity of Silicon Dioxide and Nitride Films, Materials Research Society, 1999, 566
    [80]廖乃镘,李伟,蒋亚东,吴志明,匡跃军,祁康成,李世彬,氢化非晶硅薄膜喇曼及椭偏表征,2008年,第38卷,第11期,1886-1890
    [81]樊瑞新,卢焕明,切割单晶硅表面损伤的研究,材料科学与工程,1999,17(2),55-57A.
    [82] Zhang JM, Pei ZJ, Measurement of subsurface damage in silicon wafers. 6th International Conference on Progress of Machining Technology, Xi'an ,China ,2002
    [83]孟剑锋,葛培琪,李剑锋,刘家富,硅晶体线锯切片损伤层厚度的有限元分析,中国机械工程,18(2007)10,1189-1192
    [84] Haapalinna, Saulius Nevas, Dietmar Pahler, Rotational grinding of silicon wafers-sub-surface damage inspection, Materials Science and Engineering B107 (2004) 321-331
    [85] S.R. Best, D.P. Hess, A.Belyaev, S. Ostapenko, J.P. Kalejs, Audible vibration diagnostics of thermo-elastic residual stress in multi-crystalline silicon wafers, Applied Acoustics, 67 (2006) 541-549
    [86] Huo Fengwei, Kang Renke, Guo Dongming, Zhao Fuling, and Jin Zhuji, An Improved Angle Polishing Method for Measuring Subsurface Damage in Silicon Wafers, Chinese Journal of Semiconductors, 27(2006), 3, 506-510
    [87] SEMI MF950202, Standard test method for measuring the depth of crystal damage of a mechanically worked silicon slice surface by angle polishing and defect etching, 2002
    [88]彭晶,包生祥,马丽丽,单晶硅表面加工损伤的评价方法,材料导报,20(2006),9,101-104
    [89] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik and J. Nijs,Improved anisotropic etching process for industrial texturing of silicon solar cells, Sol. Energy Mater. Sol. Cells, 57 (1999), 179-188
    [90] Xin Zhu, Lei Wang, Deren Yang, Investigation of random pyramid texture on the surface of singlecrystalline silicon for solar cells, Proceedings of ISES Solar World Congress 2007[C],1126-1130
    [91] Kuiqing Peng, Juejun Hu, Yunjie Yan, Yin Wu, Hui Fang, Ying Xu, ShuitTong Lee, and Jing Zhu, Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles, Adv. Funct. Mater., 2006, 16, 387-394
    [92] N. Megouda, T. Hadjersi, O. Elkechai, R. Douani, L. Guerbous, Bi-assisted chemical etching of silicon in HF-Co(NO3)2 solution, Journal of Luminescence 129 (2009) 221-225
    [93] Kuiqing Peng, Yin Wu, , Hui Fang, Xiaoyan Zhong, Ying Xu, Jing Zhu, Uniform,Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays, Angewandte. Chem. Int. Ed. 2005, 44, 2737 -2742
    [94] E.A. Dalchiele, F. Martin, D. Leinen, R.E. Marotti, J.R. Ramos-Barrado, Synthesis, structure and photoelectrochemical properties of single crystalline silicon nanowire arrays,Thin Solid Films,Available online 19 September 2009, In Press
    [95] Teerlinck, P. W. Mertens, F. Schmidt, M. Meuris, M.Heyns, Impact of the Electrochemical Properties of Silicon Wafer Surfaces on Copper Outplating from HF Solutions , J. Electrochem. Soc., 1996, 143, 3323-2238
    [96] P. Gorostiza, J. Servat, J. R. Morante, F. Sanz , First stages of platinum electroless deposition on silicon (100) from hydrogen fluoride solutions studied by AFM, Thin Solid Films,275,1996, 12-17
    [97] P. Gorostiza, R. Diaz, J. Servat, F. Sanz, J. R. Morante, Atomic Force Microscopy Study of the Silicon Doping Influence on the First Stages of Platinum Electroless Deposition, J.Electrochem. Soc., 1997, 144,909-1001
    [98] M. E. Rodriguez, A. Mandelis, G. Pan, and J. A. Garcia, V. Gorodokin and Y. Raskin,Minority carrier lifetime and iron concentration measurements on p-Si wafers by infrared photothermal radiometry and microwave photoconductance decay, J. Appl. Phys.,2000,87(l 1),8113-8121
    [99]陈金学,席珍强,吴冬冬,杨德仁,变温磷吸杂对多晶硅性能的影响,太阳能学报,2007,28(2),160-164
    [100] A J Tavendale and S J Pearton, Deep level, quenched-in defects in silicon doped with gold, silver, iron, copper or nickel, Journal of Physics C: Solid State Physics, 16(1983)1665-1673

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700