用户名: 密码: 验证码:
晶体硅材料的机械性能及相关太阳电池工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光伏发电技术是解决能源危机的有效途径之一,而用于光伏发电的太阳电池目前大多数是由晶体硅材料制备的。在硅太阳电池的成本中,硅材料占据很大的比例。由于降低成本的要求,晶硅太阳电池正朝着薄片化趋势发展。但是,随着硅片厚度的减薄,机械性能弱化,破碎率提高,电池片弯曲严重,这将严重影响太阳电池的成品率。因此,研究晶体硅材料的机械性能并采取合适的工艺来减小硅片机械强度的降低是目前国际光伏界关注的热点之一。
     本论文立足于晶体硅材料的机械性能,主要研究内容如下:
     (1)研究锗掺杂对铸造多晶硅材料的室温断裂强度的影响,并分析了其机理。结果表明锗杂质能够显著提高铸造多晶硅的机械性能,在损伤层完全去除的情况下,掺锗多晶硅的断裂强度比普通多晶硅提高16-21%;在磷扩散后掺锗硅片的断裂强度仍高于普通样品。因此,高强度的掺锗多晶硅在将来薄片太阳电池上具有很好的应用前景。
     (2)研究了高温下多晶硅中位错滑移与晶界的相互作用关系,初步探讨了晶界对机械性能的影响行为。结果表明晶界具有阻止位错滑移的作用,位错滑移到晶界时很难穿越晶界壁垒。而晶界本身对材料的杨氏模量和硬度等机械性能参数具有负面影响,晶界处的杨氏模量与硬度均小于晶粒内。
     (3)研究了太阳电池工艺中硅材料机械性能的演变,以及采用合理的太阳电池背电极花样来提高其机械性能。结果表明,在太阳电池的制备工艺中,损伤层的去除、绒面制备以及氮化硅减反射层的生长都有利于提高前段工序后的断裂强度,而磷扩散和前后电极与铝背场的印刷与烧结则会对机械性能产生不利影响。背电极花样对太阳电池的断裂强度有明显的影响,通过改进背电极花样能够有效地提高太阳电池的机械性能,降低其破碎率。
     总的来说,以上这些研究结果对于新型高强度的掺锗太阳电池的实际应用提供了一定的科学依据,同时进一步加深了我们对于多晶硅中位错与晶界相互作用机制的理解,而且对电池工艺过程中控制电池机械性能提供了必要的技术支持。
Photovoltaic (PV) industry is globally booming due to the energy resource crisis, and the silicon solar cells used for optical-to-electrical conversion are the main products on the PV market. However, the bottle-neck restricting the wide application of silicon solar cell is still its high cost, among which the silicon material is a main cost item. Therefore, the silicon solar cell tends to become thinner and thinner in order to save the consumable material. But, thinning the wafer will cause the degradation of mechanical strength and the increase of breakage and warpage. These are very detrimental for the performance and yield of silicon solar cell. Thus, it is significantly necessary to investigate the mechanical properties of thin wafer and find an optimum way to reduce the mechanical strength degradation of thin wafer.
     This dissertation is focused on the mechanical properties of crystalline silicon solar cell, including the following aspects,
     (1) The effect of germanium doping on the mechanical properties of cast multicrystalline silicon has been investigated. It is found that the germanium can significantly enhance the mechanical strength of silicon material by 16-21%, compared to the conventional ones. This enhance effect can also be found after the phosphorus diffusion technology. It implies that germanium-doped silicon with strong mechanical strength is a promising substrate for thin solar cell.
     (2) The dislocation slip near grain boundary (GB) and the effect of GBs on the mechanical property of silicon have been investigated. It is found that the GB can cause a barrier for the slipping of dislocation, and therefore the dislocation cannot slip through the GB. Meanwhile, the GB can reduce on the characteristic parameters of silicon mechanical properties to some extent, such as young's modulus and hardness. The young's modulus and hardness at the GBs are averagely smaller than those in the grains.
     (3) The evolution of mechanical property during cell fabrication is studied. It is found that the texturing and Si_3N_4 film deposition can improve the wafer fracture strength, while the phosphorus diffusion, screen printing and metal contacts firing will decrease the fracture strength. The mechanical strength of solar cell can be effectively improved by modifying the busbar pattern on the rear.
     In summary, the achievements in this dissertation have supplies the necessary science understanding and technology support for the practical application of germanium-doped silicon solar cell on the mechanical properties, the interaction of dislocations with the GBs and the evolution of mechanical strength in the process of cell fabrication.
引文
[1]H.M.Hubbard.Photovoltaics today and tomorrow.Science.1989,244(4902),297-304.
    [2]M.A.Green,S.R.Wenham,J.Zhao,J.Zolper and A.W.Blakers.Recent improvements in silicon solar cells and module efficiency.21st IEEE Photovoltaic Specialists Conference.1990,207-210.
    [3]D.M.Chapin,C.S.Fuller and G.L.Pearson.A new silicon p-n junction photocell for converting solar radiation into electrical power.Journal of Applied Physics.1954,25(5),676-677.
    [4]J.G.Haynos.Violet solar cell flight experiments.10th IEEE Photovoltaic Specialists Conference.1974,163-165.
    [5]http://image.baidu.com/.
    [6]A.Feltrin and A.Freundlich.Material considerations for terawatt level deployment of photovoltaics.Renewable Energy.2008,33(2),180-185.
    [7]H.J.Moller,C.Funke,M.Rinio and S.Scholz.Multicrystalline silicon for solar cells.Thin Solid Films.2005,487(1-2),179-187.
    [8]R.M.Swanson.A vision for crystalline silicon photovoltaics.Progress in Photovoltaics.2006,14(5),443-453.
    [9]A.Mette.New Concepts for Front Side Metallization of Industrial Silicon Solar Cells thesis,2007,5.
    [10]杨德仁.太阳电池材料.北京:化学工业出版社.2006,54-62.
    [11]A.Goetzberger,C.Hebling and H.W.Schock.Photovoltaic materials,history,status and outlook.Materials Science & Engineering R-Reports.2003,40(1),1-46.
    [12]R.Einhaus,E.Vazsonyi,J.Szlufcik,J.Nijs and R.Mertens.Isotropic texturing of multicrystalline silicon wafers with acidic texturing solutions.26th IEEE Photovoltaic Specialists Conference.1997,167-170.
    [13]P.Campbell and M.A.Green.Light trapping properties of pyramidally textured surfaces.Journal of Applied Physics.1987,62(1),243-249.
    [14]S.Narayanan,J.Zolper,F.Yun,S.R.Wenham,A.B.Sproul,C.M.Chong and M.A.Green.18%efficient polycrystalline silicon solar cells.21st IEEE Photovoltaic Specialists Conference.1990,678-680.
    [15]L.-j.Wang,C.-c.Liu,Y.-w.Chen,G.-j.Xin,Y.-x.Zuo and L.-j.Zhang.Investigation of acid texturing for polycrystalline silicon solar cells.Chinese Journal of Power Sources.2008,784-786.
    [16]U.Gangopadhyay,S.K.Dhungel,P.K.Basu,S.K.Dutta,H.Saha and J.Yi.Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication.Solar Energy Materials and Solar Cells.2007,91(4),285-289.
    [17]A.Focsa,A.Slaoui,H.Charifi,J.R.Stoquert and S.Roques.Surface passivation at low temperature of p- and n-type silicon wafers using a double layer a-Si:H/SiNx:H.Materials Science and Engineering B-Advanced Functional Solid-State Materials.2009,159-60,242-247.
    [18]M.Kyunghae Kl,S.K.Dhungel,J.Yoo,J.Sungwook,D.Mangalaraj and Y.Junsin.Hydrogenated silicon-nitride thin films as antireflection and passivation coatings for multicrystalline silicon solar cells.Journal of the Korean Physical Society.2007,1659-1662.
    [19]B.Karunagaran,J.S.Yoo,D.Y.Kim,K.Kyunghae,S.K.Dhulgel,D.Mangalaraj and Y.Junsin.Plasma enhanced chemical vapor deposited SiN layers for large area mc-Si solar cell processing.31st IEEE International Conference On Plasma Science 2004.
    [20]张世强,李万河,徐品烈.硅太阳能电池的丝网印刷技术.电子工业专用设备.2007,(148),55-68.
    [21]http://en.wikipedia.org/wiki/Solar_cell.
    [22]J.H.Zhao,A.H.Wang,M.A.Green and F.Ferrazza.19.8%efficient"honeycomb"textured multicrystalline and 24.4%monocrystalline silicon solar cells.Applied Physics Letters.1998,73(14),1991-1993.
    [23]O.Schultz,S.W.Glunz and G.P.Willeke.Multicrystalline silicon solar cells exceeding 20%efficiency.Progress in Photovoltaics.2004,12(7),553-558.
    [24]J.H.Zhao,A.H.Wang,P.P.Altermatt,S.R.Wenham and M.A.Green.24%efficient PERL silicon solar cell:Recent improvements in high efficiency silicon cell research.Solar Energy Materials and Solar Cells.1996,41-2,87-99.
    [25]史济群.PERL硅太阳电池的性能及结构特点.太阳能学报.1994,15(2),97-99.
    [26]C.M.Chong,S.R.Wenham and M.A.Green.High efficiency,laser grooved,buried contact silicon solar cells.Applied Physics Letters.1988,52(5),407-409.
    [27]S.R.Wenham,C.B.Honsberg and M.A.Green.Buried contact silicon solar cells.Solar Energy Materials and Solar Cells.1994,34(1-4),101-110.
    [28]赵玉文,李仲明,莫春东,何少琪,于元.机械刻槽埋栅高效硅太阳电池.太阳能学报.1998,19(1),1-3.
    [29]屈盛,刘祖明,廖华,陈庭金.选择性发射极太阳电池结构及其实现方法.技术交流.2004,42-45.
    [30]屈盛,陈庭金,刘祖明,廖华.太阳电池选择性发射极结构的研究.云南师范大学学报.2005,25(3),21-24.
    [31]L.Z.QU Sheng,CHEN Tingjin,LIAO Hua,MA Xun,DU Zhongming.Fabrication of Selective Emitter Solar Cells.Journal of Yunnan Normal University.2006,26(1),34-37.
    [32]Y.Tsunomura,Y.Yoshimine,M.Taguchi,T.Baba,T.Kinoshita,H.Kanno,H.Sakata,E.Maruyama and M.Tanaka.Twenty-two percent efficiency HIT solar cell.Solar Energy Materials and Solar Cells.2009,93(6-7),670-673.
    [33]L.Zhao,H.L.Li,C.L.Zhou,H.W.Diao and W.J.Wang.Optimized resistivity of p-type Si substrate for HIT solar cell with Al back surface field by computer simulation.Solar Energy.2009,83(6),812-816.
    [34]A.Muller,M.Ghosh,R.Sonnenschein and P.Woditsch.Silicon for photovoltaic applications.Materials Science and Engineering B-Solid State Materials for Advanced Technology.2006,134(2-3),257-262.
    [35]R.M.Swanson.Developments in silicon solar cells.2007 IEEE International Electron Devices Meeting.2007,359-362.
    [36]K.A.Munzer,K.T.Holdermann,R.E.Schlosser and S.Sterk.Thin monocrystalline silicon solar cells.IEEE Transactions on Electron Devices.1999,46(10),2055-2061.
    [37]G.P.Willeke.Thin crystalline silicon solar cells.Solar Energy Materials and Solar Cells.2002,72(1-4),191-200.
    [38]A.L.F.Henley,S.Kang,Z.Liu and L.Tian..Direct film transfer(DFT) thchnology for kerf-free silicon wafering.23rd European Photovoltaic Conference.2008.
    [39]F.Dross,J.Robbelein,B.Vandevelde,E.Van Kerschaver,I.Gordon,G.Beaucarne and J.Poortmans.Stress-induced large-area lift-off of crystalline Si films.Applied Physics a-Materials Science & Processing.2007,89(1),149-152.
    [40]A.M.Frederic Dross,Jo Robbelein,Ivan Gordon,Pierre-Olivier Bouchard,Guy Beaucarne,Jef Poortmans.SLIM-CUT:A Kerf-loss-free method for wafering 50-μm-thick crystalline Si wafers based on stress-induced lift-off.23rd European Photovoltaic Conference.2008.
    [41]http://www.sigen.net/.
    [42]T.F.C.Kohn,R.Kiibler,J.Beinert,G.Kleer,F.Clement,D.Erath,I.Reis,F.Martin,A.M(u|¨)ller.Analyses of warpage effects induced by passivation and electrode coatings in silicon solar cells.22nd European Photovoltaic Solar Energy Conference.2007,1270-1273.
    [43]P.C.F.Duerinckx,G.Beaucarne,R.J.S Young,M.Rose,J.A.Raby.Improved Screen Printing Process for Very Thin Multicrystalline Silicon Solar Cells.19th EPVSEC.2004,443-446.
    [44]李东升,杨德仁,阙端麟.单晶硅材料机械性能研究及进展.材料科学与工程.2000,18(3),100-104.
    [45]K.S.Masanori Akatsuks,etc.Pinning effect on punched out dislocations in silicon wafers investigated using intendation method,36(1997) L1422-LI425.Japanese Journal of Applied Physics.1997,(36),L1422-L1425.
    [46]I.Yonenaga and K.Sumino.Influence of oxygen precipitation along dislocations on the strength of silicon crystals.Journal of Applied Physics.1996,80(2),734-738.
    [47]K.Jurkschat,S.Senkader,P.R.Wilshaw,D.Gambaro and R.J.Falster.Onset of slip in silicon containing oxide precipitates.Journal of Applied Physics.2001,90(7),3219-3225.
    [48]I.Yonenaga and K.Sumino.Mechanical behavior of Czochralski silicon crystals as affected by precipitation and dissolution of oxygen atoms.Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers.1982,21(1),47-55.
    [49]A.Karoui,F.S.Karoui,G.A.Rozgonyi and D.Yang.Oxygen precipitation in nitrogen doped Czochralski silicon wafers.I.Formation mechanisms of near-surface and bulk defects.Journal of Applied Physics.2004,96(6),3255-3263.
    [50] A. Karoui and G A. Rozgonyi. Oxygen precipitation in nitrogen doped Czochralski silicon wafers. II. Effects of nitrogen and oxygen coupling. Journal of Applied Physics. 2004, 96 (6), 3264-3271.
    
    [51] A. Giannattasio, S. Senkader, R. J. Falster and P. R. Wilshaw. Dislocation locking by nitrogen impurities in FZ-silicon. Physica B-Condensed Matter. 2003, 340, 996-1000.
    
    [52] J. D. Murphy, C. R. Alpass, A. Giannattasio, S. Senkader, R. J. Falster and P. R. Wilshaw. Nitrogen in silicon: Transport and mechanical properties. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms. 2006, 253 (1-2), 113-117.
    
    [53] G Wang, D. Yang, D. Li, Q. Shui, J. Yang and D. Que. Mechanical strength of nitrogen-doped silicon single crystal investigated by three-point bending method. Physica B-Condensed Matter. 2001, 308,450-453.
    
    [54] V. Orlov, H. Richter, A. Fischer, J. Reif, T. Muller and R. Wahlich. Mechanical properties of nitrogen-doped CZ silicon crystals. Materials Science in Semiconductor Processing. 2002, 5 (4-5), 403-407.
    
    [55] K. Nakai, Y. Inoue, H. Yokota, A. Ikari, J. Takahashi, A. Tachikawa, K. Kitahara, Y. Ohta and W. Ohashi. Oxygen precipitation in nitrogen-doped Czochralski-grown silicon crystals. Journal of Applied Physics. 2001, 89 (8), 4301-4309.
    
    [56] A. Lotnyk, J. Bauer, O. Breitenstein and H. Blumtritt. A TEM study of SIC particles and filaments precipitated in multicrystalline Si for solar cells. Solar Energy Materials and Solar Cells. 2008, 92 (10), 1236-1240.
    
    [57] O. Breitenstein, J. P. Rakotoniaina, M. H. Al Rifai and M. Werner. Shunt types in crystalline silicon solar cells. Progress in Photovoltaics. 2004, 12 (7), 529-538.
    
    [58] J. Bauer, O. Breitenstein and J. P. Rakotoniaina. Electronic activity of SiC precipitates in multicrystalline solar silicon. Physica Status Solidi a-Applications and Materials Science. 2007, 204(7), 2190-2195.
    
    [59] S. Gupta, S. Messoloras, J. R. Schneider, R. J. Stewart and W. Zulehner. Oxygen precipitation in carbon doped silicon. Semiconductor Science and Technology. 1992, 7 (1), 6-11.
    
    [60] T. Fukuda and A. Ohsawa. Mechanical strength of Czochralski silicon crystals with carbon concentrations at and below 10~(15)cm~(-13). Journal of Applied Physics. 1993, 73 (1), 112-117.
    
    [61] I. Yonenaga and K. Sumino. Mechanical strength of GeSi alloy. Journal of Applied Physics. 1996, 80(6), 3244-3247.
    
    [62] I. Yonenaga. Growth and mechanical properties of GeSi bulk crystals. Journal of Materials Science-Materials in Electronics. 1999, 10 (5-6), 329-333.
    
    [63] I. Yonenaga. Growth and fundamental properties of SiGe bulk crystals. Journal of Crystal Growth. 2005, 275 (1-2), 91-98.
    
    [64] I. Yonenaga. Dislocation velocities and mechanical strength of bulk GeSi crystals. Physica Status Solidi a-Applied Research. 1999, 171(1), 41-46.
    [65]I.Yonenaga and K.Sumino.Dislocation velocity in GeSi alloy.Applied Physics Letters.1996,69(9),1264-1266.
    [66]C.A.Londos,A.Andrianakis,V.V.Emtsev,G.A.Oganesyan and H.Ohyama.The effect of germanium doping on the evolution of defects in silicon.Materials Science and Engineering B-Advanced Functional Solid-State Materials.2008,154,133-136.
    [67]H.Li,D.R.Yang,X.Y.Ma,X.G.Yu and D.L.Que.Germanium effect on oxygen precipitation in Czochralski silicon.Journal of Applied Physics.2004,96(8),4161-4165.
    [68]J.H.Chen,D.R.Yang,H.Li,X.Y.Ma and D.L.Que.Germanium effect on as-grown oxygen precipitation in Czochralski silicon.Journal of Crystal Growth.2006,291(1),66-71.
    [69]J.H.Chen,D.R.Yang,H.Li,X.Y.Ma and D.L.Que.Enhancement effect of germanium on oxygen precipitation in Czochralski silicon.Journal of Applied Physics.2006,99(7),073509.
    [70]张维连,李嘉席,陈洪建,孙军生,张建新,张思怀,赵红生.掺锗CZSi原生晶体中氧的微沉淀.半导体学报.2002,23(10),1073-1077.
    [71]冀志江,张维连,刘彩池.硅中Ge对硅片机械强度的影响.半导体技术.1994,10(5),33-34.
    [72]C.Jiahe,Y.Deren,M.Xiangyang,Z.Zhidan,T.Daxi,L.Liben,Q.Duanlin and G.Longfei.Influence of germanium doping on the mechanical strength of Czochralski silicon wafers.Journal of Applied Physics.2008,123521.
    [73]P.Rupnowski and B.Sopori.Strength of silicon wafers:fracture mechanics approach.International Journal of Fracture.2009,155(1),67-74.
    [74]O.Borrero-Lopez,T.Vodenitcharova,M.Hoffman and A.J.Leo.Fracture Strength of Polycrystalline Silicon Wafers for the Photovoltaic Industry.Journal of the American Ceramic Society.2009,92(11),2713-2717.
    [75]H.J.Moiler.Basic mechanisms and models of multi-wire sawing.Advanced Engineering Materials.2004,6(7),501-513.
    [76]K.W.A.Bidiville,J.Michler,C.Ballif,M.Van der Meer and P.M.Nasch.Towards the correlation of mechanical properties and sawing parameters of silicon wafers.22nd European Photovoltaic Solar Energy Conference.2007,1130-1134.
    [77]L.H.J.Barredo,A.Fraile,J.C.Jimeno and E.Alarc6n.The influence of different surface treatments on the mechanical strength of silicon wafers.22nd European Photovoltaic Solar Energy Conference 2007,1164-1167.
    [78]C.Funke,S.Kaminski,W.Fiitterer,H.J.M(o|¨)ller.Mechanical properties of thin silicon wafers.21st European Photovoltaic Solar Energy Conference.2006.
    [79]S.Schoenfelder,M.Ebert,C.Landesberger,K.Bock and J.Bagdahn.Investigations of the influence of dicing techniques on the strength properties of thin silicon.Microelectronics Reliability.2007,47(2-3),168-178.
    [80]G.Omar,N.Tamaldin,M.R.Muhamad and H.Tan Chong.Correlation of silicon wafer strength to the surface morphology.IEEE International Conference on Semiconductor Electronics. 2000.
    
    [81] H. H. Jiun, I. Ahmad, A. Jalar and G Omar. Effect of wafer thinning methods towards fracture strength and topography of silicon die. Microelectronics Reliability. 2006, 46 (5-6), 836-845.
    
    [82] N. McLellan, N. Fan, S. L. Liu, K. Lau and J. S. Wu. Effects of wafer thinning condition on the roughness, morphology and fracture strength of silicon die. Journal of Electronic Packaging. 2004, 126(1), 110-114.
    
    [83] S. Schonfelder, M. Ebert and J. Bagdahn. Influence of the thickness of silicon dies on strength. Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems. Proceedings of EuroSimE 2006. 2006, 1.
    
    [84] I. Paul, B. Majeed, K. M. Razeeb and J. Barton. Statistical fracture modelling of silicon with varying thickness. Acta Materialia. 2006, 54 (15), 3991-4000.
    
    [85] W. Weibull. A statistical distribution function of wide applicability. Journal of Applied Mechanics-Transactions of the Asme. 1951, 18 (3), 293-297.
    
    [86] X. F. Brun and S. N. Melkote. Analysis of stresses and breakage of crystalline silicon wafers during handling and transport. Solar Energy Materials and Solar Cells. 2009, 93 (8), 1238-1247.
    
    [87] A. Y. V.A.Popovich, M.Janssen, I.M.Richardson, I.J.bennett. Effect of silicon solar cell processing parameters and crystallinity on mechanical strength. 19th PVSEC. 2009.
    
    [88] L. Zhang, W. Wu, M. Li, Q. Su, Y. H. Zhang and Z. Q. Ma. Thickness impacts of aluminum and silicon on bow of silicon solar cells - art. no. 69840W. Thin Film Physics and Applications, Sixth International Conference. 2008, 6984, W9840-W9840.
    
    [89] E. P. N. Le Quang, O. Nichiporuk, F. Coustier, M. Gauthier, S. Mermet, D. Chavrier, F. Madon, G. Goaer. Large size 450kg ingots and very thin wafer cutting-one industrial approach to reduce mc-Si wafer cost. 22nd European Photovoltaic Solar Energy Conference 2007, 943-947.
    
    [90] A. M. Barnett, J. A. Rand, R. B. Hall, J. C. Bisaillon, E. J. DelleDonne, B. W. Feyock, D. H. Ford, A. E. Ingram, M. G Mauk, J. P. Yaskoff and P. E. Sims. High current, thin silicon-on-ceramic solar cell. Solar Energy Materials and Solar Cells. 2001, 66 (1-4), 45-50.
    
    [91] K. Jung Min and K. Young Kwan. Thin crystalline silicon solar cell bonded to sintered substrate with aluminum paste. Solar Energy Materials and Solar Cells. 2005, 86 (4), 577-584.
    
    [92] A. S. A. Kranzl, I. Melnyk. . Different aspects of back-surface field (BSF) formation for thin multi-crystalline silicon wafers. Asian J. Energy Environ. 2004, 5 (4), 275-283.
    
    [93] B. Yeung and T. Y. T. Lee. An overview of experimental methodologies and their applications for die strength measurement. Ieee Transactions on Components and Packaging Technologies. 2003, 26 (2), 423-428.
    
    [94] J. H. Zhao, J. Tellkamp, V. Gupta and D. R. Edwards. Experimental Evaluations of the Strength of Silicon Die by 3-Point-Bend Versus Ball-on-Ring Tests. IEEE Transactions on Electronics Packaging Manufacturing. 2009, 32 (4), 248-255.
    
    [95] M. Y. Tsai and C. S. Lin. Testing and evaluation of silicon die strength. Ieee Transactions on Electronics Packaging Manufacturing. 2007, 30 (2), 106-114.
    
    [96] M. Y. Tsai and C. H. Chen. Evaluation of test methods for silicon die strength. Microelectronics Reliability. 2008,48 (6), 933-941.
    
    [97] A. B. S. Schoenfelder, J. Bagdahn. Comparison of test methods for strenth characterization of thin solar wafer. 22nd European Photovoltaic Solar Energy Conference 2007, 1636-1640.
    
    [98] A. B. K. Wasmer, J. Michler, C. Ballif, M. Van der Meer, P. Nasch. Effect of strength test methods on silicon wafer strength measurements. 22nd European Photovoltaic Solar Energy Conference. 2007, 1135-1140.
    
    [99] R. F. Cook. Strength and sharp contact fracture of silicon. Journal of Materials Science. 2006, 41, 841-872.
    
    [100] S. M. Hu. Indentation dislocation rosettes in silicon. Journal of Applied Physics. 1975, 46 (4), 1470-1472.
    
    [101] W. C. Oliver and G M. Pharr. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research. 2004, 19 (1), 3-20.
    
    [102] S. N. Rea, J. D. Lawrence and J. M. Anthony. Effective segregation coefficient of germanium in Czochralski silicon. Journal of the Electrochemical Society. 1987, 134 (3), 752-753.
    
    [103] W. L. Zhang, S. X. Yan and Z. J. Ji. Effective segregation coefficient and steady state segregation coefficient of germanium in Czochralski silicon. Journal of Crystal Growth. 1996, 169 (3), 598-599.
    
    [104] X. H. Niu, W. L. Zhang, G Q. Lu and Z. W. Jiang. Distribution of Ge in high concentration Ge-doped Czochralski-Si crystal. Journal of Crystal Growth. 2004, 267 (3-4), 424-428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700