用户名: 密码: 验证码:
脐带间充质干细胞对淋巴细胞的影响及淋巴细胞活化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文主要分为两大部分:(1)应用原子力显微镜、共聚焦显微镜、流式细胞仪等分析方法,初步研究了脐带间充质干细胞对淋巴细胞活化增殖的影响;(2)应用原子力显微镜的高分辨率和力谱特性,探测不同T淋巴细胞在刺激剂作用下的形态变化以及粘附力和杨氏模量的变化,应用激光共聚焦显微镜对细胞表面抗原分子的识别进行研究。
     本文第一部分应用原子力显微镜、激光共聚焦显微镜、流式细胞仪等分析方法,探测了脐带间充质干细胞对淋巴细胞增殖活化的影响。分析比较静息、PHA刺激、与脐带间充质干细胞共培养的三种淋巴细胞的形貌和生物物理性质,原子力显微镜观察到共培养过程中干细胞与淋巴细胞相互接触,淋巴细胞粘附在干细胞上,CCK-8检测提示在hUC-MSC共培养条件下,丝裂原刺激T淋巴细胞增殖受到抑制,且抑制的程度与hUC-MSC的剂量正相关,流式细胞仪检测在hUC-MSC共培养情况下,经丝裂原刺激后,外周血淋巴细胞CD69表达与对照组(52.5±4.7%)的阳性率相比较,下降至37.9±3.4%,激光共聚焦实验进一步验证了黏附在干细胞上的细胞为T淋巴细胞。观察hUC-MSCs的免疫调节作用,进一步探讨hUC-MSCs的免疫调控机制,为hUC-MSCs的临床应用提供实验依据。
     本文第二部分基于原子力显微术,结合激光共聚焦显微术和荧光半导体量子点(Quantum dots, QDs)标记技术、流式细胞术和倒置荧光显微镜技术,以淋巴细胞为研究对象,在纳米尺度研究了活化前后以及不同活化阶段T细胞生物物理特性的变化,即细胞结构形态、膜表面纳米结构、膜孔变化、膜表面粘附特性、膜表面受体分子分布等。主要研究结果如下:(1)对处于不同活化阶段的Jurkat细胞进行了细胞全貌和细胞膜表面纳米结构成像和探测研究,比较不同状态下细胞表面的粘附力变化。随着超抗原刺激时间的延长,Jurkat细胞的体积、高度、半宽度、粗糙度等参数发生明显的变化,活化48h、72 h时细胞与针尖间的相互作用力大约是活化6 h时的5倍,活化过程中细胞膜表面纳米结构的改变引起其机械性能的变化。(2)完成了对重组质粒真核表达载体pIRES-EGFP-BCL 11B电转染人幼稚T细胞的研究,重组质粒转染幼稚T细胞后,细胞的体积、高度、半宽度、粗糙度、表面颗粒大小等参数发生了变化,细胞杨氏模量以及细胞硬度也呈现很大变化,CCK-8结果显示,重组质粒pIRES-EGFP-BCL 11B电转染人幼稚T细胞后影响细胞的增殖。(3)比较了静息、丝裂原、超抗原活化淋巴细胞的形态结构、膜表面抗原分子的表达等差异性。丝裂原PHA刺激的淋巴细胞大多呈成群聚集,而超抗原SEA刺激的淋巴细胞大多数呈分散状。两组活化后淋巴细胞体积均大于静息组,且活化过程中发生极化作用迁移淋巴细胞,形成了膜凸起。丝裂原和超抗原刺激淋巴细胞12 h后,都能使淋巴细胞表达CD69抗原分子,但在量表达上存在差异性(PHA:39.5±8.7%;SAE:8.3±1.8%), CD3和CD69分子在细胞膜上呈不均匀分布状态,且SEA活化后的T淋巴细胞表面受体CD3和CD69分子在空间上形成了微结构域。
This dissertation includes two parts:(1) Based on atomic force microscopy (AFM). combined with laser scanning confocal microscopy, flow cytometry and inverted microscope, the effects of umbilical cord mesenchymal stem cells on proliferation and activation of allogeneic lymphocytes were being preliminarily investigated. (2)Using the high-resolution and force spectrum of the AFM, detect the changes of the morphology, adhesion force and Young's modulus properties of the different T lymphocytes by stimulation. the cell surface antigen receptor molecules recognition was performed by laser scanning confocal microscopy.
     In the first part, atomic force microscopy, laser scanning confocal microscopy combinationed with quantum dots, flow cytometry and inverted microscope were used to investigate the effects of umbilical cord mesenchymal stem cells on proliferation and activation of allogeneic lymphocytes. The morphology and biophysical properties of the resting, PHA activated, coculture with hUC-MSCs were analyzed and compared. Lymphocyte cells intercontact with hUC-MSCs, and adhesion on them. HUC-MSCs had a dose dependent inhibitory effect on lymphocyte proliferation induced by PHA was found by CCK-8. FCM showed hUC-MSCs could inhibit CD69 expression on PHA activated T lymphocyte cells from 52.5±4.7%to 37.9±3.4%. Laser scanning confocal microscopy further illustrated that T lymphocytes adhesion on hUC-MSCs.
     The second part of this paper, on the base of lymphocytes, AFM, flow cytometry, laser scanning confocal microscopy, quantum dots mark, fluorescence microscope were used to study the biophysical properties(the parameters including morphology, membrane nanostructure, membrane pore, adhesion, distribution of antigen receptor molecules and so on) of T lymphocytes stimulated different time and different stimulation, the main results are the following(1):Studyed the cellular surface ultrastructures and nanomechanical properties of acute T lymphoblastic leukemic cell (Jurkat cell) which was treated with staphylococcal enterotoxin A (SEA) at different time and compared the adhesive force of Jurkat cell at different states. The morphosructure and cell membrane of Jurkat cell exposed to SEA changed significantly and the ultrastructures became more complex with the time prolonging. The adhesion force values of Jurkat cells treated with SEA at 24 and 48 h were five times than those of Jurkat cell treated with SEA at 6h. The changes of the ultrastructures and membrane structure of Jurkat cell have caused the change of mechanical function. (2)BCL 11B were inserted into PIRES-EGFP eukaryotic expression vector to construct recombinant PIRES-EGFP-BCL 11B plasmid, which was transfected into human Naive T cell by electroporation. the morphology, ultrastructure, Young's modulus and stiffness of different four Naive T cell changed greatly after transfection, and BCL 11B promote the proliferation of Naive T cell of human.(3)The differences of morphology and surface antigen receptor molecules of resting, PHA or SEA activated human lymphocyte were compared. PBMCs formed colony after stimulation of PHA, and scattered after stimulation of PHA.Volume of activated lymphocytes in both groups were greater than resting group, and the activation polarization occurs during lymphocyte migration to form a membrane protrusion. the mean relative of CD69 expression after stimulation of PHA (39.5±8.7%) were higher than stimulation of SEA(8.3±1.8%), also illustrate that CD3 and CD69 receptors inhomogenously distributing on cell membrane, and the surface receptors CD3 and CD69 of T-lymphocytes activated by SEA forming micro-domain in space.
引文
[1]Binning G, Rohrer H. Scanning tunneling microscopy [J]. Helv. Phys. Acta,1982,55(6): 725-726.
    [2]Binning G, Quate C F, Gerber C. Atomic force microscopy [J]. Phys. Rev. Lett,1986,56: 930-933.
    [3]Tsuchida H, Hashimoto J, Crawford E. et al. Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats [J].Orthopaed Res,2003,21:44-53.
    [4]Gould S, Marti O, Drake B et al. Molecular Resolution Images of Amino Acid Crystals with the Atomic Force Microscope [J]. Nature,1988,332:332-334.
    [5]Drake B, Prater CB, Weisenhorn AL et al. Imaging crystals, polymers, and processes in water with the atomic force microscope [J]. Science,1989,243:1586-1589.
    [6]Egger M, Ohnesorge F, Weisenhorn AL et al. Wet lipid-protein membranes imaged at submolecular resolution by atomic force microscopy [J]. Struct Biol,1990,103:89-94.
    [7]Butt H, Downing KH, Hansma PK. Imaging the membrane protein bacteriorhodopsin with the atomic force microscope [J]. Biophys,1990,58:1473-1480.
    [8]Andreas E, Yuri L, Daniel Muller. Atomic force microscopy:a powerful tool to observe biomolecules at work [J]. Trends Cell Biol,9:77-80.
    [9]Wu A, Li Z, Yu L. Plasmid DNA network on a mica substrate investigated by atomic force microscopy [J]. Anal Sci,2001,17(5):583-584.
    [10]Tiner WJ Sr, Potaman VN, Sinden RR. The structure of intra-molecular triplex DNA: atomic force microscopy study [J]. Mol Biol,2001,314(3):353-357.
    [11]Kiselyova OI, Yaminsky IV, Karger EM. Visualization by atomic force microscopy of tobacco mosaic virus movement protein-RNA complexes formed [J]. Gen Virol,2001,82 (Pt 6):1503-1508.
    [12]Krautbauer R, Pope LH, Schrader T. Discriminating small molecule DNA binding modes by single molecule force spectroscopy [J]. FEBS Lett,2002,510(3):154-158.
    [13]Hoyt PR, Doktycz MJ, Warmack RJ. Spin-column isolation of DNA-protein interactions from complex protein mixtures for AFM imaging [J].Ultramicroscopy,2001,86(1-2):139-43.
    [14]tanigawa M, Gotoh M, Machida M, et al. Detection and mapping of mismatched base pairs in DNA molecules by atomic force microscopy [J].Nucleic Acids Res,2000,28:38.
    [15]Kuznetsov YG, Daijogo S, Zhou JS, et al. Atomic force microscopy analysis of icosahedral virus RNA [J]. J Mol Biol,2005,347:41-52.
    [16]Oberringer M, Englisch A, Heinz B, et al. Atomic force microscopy and scanning near-field optical microscopy studies on the characterization of human metaphase chromosomes, Eur Biophys [J],2003,32:620-627.
    [17]Hoshi O, Owen R, Miles M, Ushiki T. Imaging of human metaphase chromosomes by atomic force microscopy in liquid [J]. Cytogenet Genomes Res,2004,107(1-2):28-31.
    [18]Hohsi O, Shigeno M, Ushiki T. Atomic force microscopy of native human metaphase chromosomes in a liquid [J]. Arch Histol Cytol,2006,69(1):73-78.
    [19]Di Bucchianico S, Venora G, Lucretti S, et al. Saponaria officinalis karyology and karyotype by means of image analyzer and atomic force microscopy [J]. Microsc Res tech, 2008,71(10):730-736.
    [20]Murakami M, Minamihisamatsu M, Sato K, et al. Structural analysis of heavy ion radiation-induced chromosome aberrations by atomic force microscopy [J]. Biochem Biophys Msthod,2001,48(3):293-301.
    [21]Mosher C, Jondle D, Ambrosio L, et al. Microdissection and measurement of polytene chromosomes using the atomic force microscope [J]. Scanning Microsco,1994,8:491-497.
    [22]Thalhammer S, Stark RW, Muller S, et al. the atomic force microscope as a new micro dissecting tool for the generation of genetic probes [J]. Struct Biol,1997,119(2):232-237.
    [23]Muller DJ, Janovjak H, Lehto T, et al. Observing structure, function and assembly of single proteins by AFM [J]. Prog Molecular Biol,2002,79:1-43.
    [24]Horber JKH, Miles M J. Scanning probe evolution in biology [J]. Science,2003,302: 1002-1005.
    [25]Seeler TH, Poetsch A, Dencher N. Proton powered turbine of a plant motor [J]. Nature, 2000,405:418-419.
    [26]Kolb EM, et al. Structure of the light-driven chloride pumphalorhodopsin at 1.8A resolution [J]. Science,2000,288:1390-1396.
    [27]Krishna M B. Slit-Round about signaling neutralizes netrinfrazzled mediated attractant cue to specify the lateral positioning of longitudinal axon pathways [J]. Genetics,2005,170: 149-159.
    [28]Guo LQ, Dong XY, Zhao TQ. The application of carbon nanotube atomic force microscopic probes in the structural biology [J]. Chinese J Anal Chem,2004,32 (4):525-528.
    [29]Heymann JB, Engel A. Structural clues in the sequence of the aquaporins [J]. Mol Biol, 2000,295:1039-1053.
    [30]Fotiadis D. Surface tongue-and-groove contours on lens MIP facilitate cell-to-cell adherence [J]. J Mol Biol,200,300:779-789
    [31]Daniel J. Observing membrane protein diffusion at subnanometer resolution [J]. J Mol Biol,2003,327 (5):925-930.
    [32]Tiinal N, Marta M, Marino Z. Observing the growth of individual actin laments in cell extracts by time-lapse atomic force microscopy [J]. FEBS Let ters,2003,551:25-28.
    [33]Fotiadis D. Imaging and manipulation of biological structures with the AFM [J]. Micron, 2002,33 (4):385-397.
    [34]Gau JJ, Lan EH, Dunn B, et al. AMEMS based amperometric detector for E.Coli bacteria using self-assembled monolayers [J].Biosensors & Bioelectronics,2001,16:745-755.
    [35]董飒英,王洪仁,罗国安.自组装金电极的电化学测试及其FtIR和AFM分析[J]分析科学学报,2002,18(5):357-360.
    [36]邓文礼,杨大本,方晔等.Au表面硫醇自组装单分子层微结构的原子力显微镜表征[J].学物理学报,1996,9(2):187-191.
    [37]张浩力,郭云,力虎林,等.AFM诱导十八硫醇在金基底上的选择性生长[J].高等学校化学学报,1999,20(9):1460-1462.
    [38]赵健伟,阚蓉蓉,郭彦等.扫描探针显微术在巯醇自组装单分子膜纳米刻蚀中的应用[J].物理化学学报,2006,(1):132-138.
    [39]Piner R D, Zhu J, Xu F. "Dip-Pen" Nanolithography [J]. Science,1999,283(29):661-663
    [40]胡晓东,郭彤,胡小唐.利用AFM动态电场在Si表面实现纳米氧化结构[J].半导体学报,2002,23(11):1182-1186.
    [41]Chung T, Liu DZ, Wang SY, et al. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale [J]. Biomaterials,2003,24:4655.
    [42]Affrossman S, Henn G, Neill O, et al. Surface topography and composition.of deuterated polystyrene-poly (bromostyrene) blends. Macromolecules,1996,29:5010.
    [43]Affrossman S, Neill O, Stamm M. topography and surface composition of thin films of blends of polystyrene with bromiated polystyrenes:Effects of varying the degree of bromination and annealing [J]. Macromolecules,1998,31:6280.
    [44]Affrossman S, Stamm M. The effect of molecular weight on the topography of thin films of blends of poly(42bromostyrene) and polystyrene[J]. Colloid Polymer Sci,2000,278:888.
    [45]Dalby MJ, Riehle MO, Johnstone H, et al. Investigating the limits of filopodial sensing: A brief report using SEM to image the interaction between 10nm high nanotopography and fibroblast filopodia[J]. Cell Biol Int,2004,28:229.
    [46]Dalby MJ, Giannaras D, Riehle MO, et al. Rapid fibroblastadhesion to 27nm high polymer demixed nanotopography [J]. Biomaterials,2004,25:77.
    [47]Dalby MJ, Yarwood SJ, Riehle MO, et al. Increasing fibroblast response to materials using nanotopography:Morphological and genetic measurements of cell response to 132nm high polymerdemixed islands [J]. Exp Cell Res,2002,276:1.
    [48]Dalby MJ, Riehle MO, Johnstone H, et al. In vitro reaction ofendot helial cells to polymer demixed nanotopography [J]. Biomaterials,2002,23:2945
    [49]Buttiglieri S, Pasqui D, Migliori M, et al. Endothelization and adherence of leucocytes to nanostructured surfaces [J]. Biomaterials,2003,24:2731.
    [50]Yamamoto S, Tanaka M, Sunami H, et al. Relationship between adsorbed fibronectin and cell adhesion on a honeycombpat terned film [J]. Surface Science,2006,600:3785.
    [51]Woodcock SE, Johnson WC, Chen Z. Collagen adsorption and structure on polymer surfaces observed by atomic force microscopy [J]. Journal of Colloid and Interface Science, 2005:29:299.
    [52]Elliott J T, Woodward J T, Umarji A, et al. the effect of surface chemistry on the formation of thin films of native fibrillar collagen [J]. Biomaterials,2007:28:576.
    [53]Chan WCW, Nie SM:Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science 1998,281:2016-2018.
    [54]Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics [J].Science,2005,307(5709):538-544.
    [55]孙德平,杨凯,陈睿.半导体量子点对原代培养大鼠牙乳头细胞生物相容性的研究 [J].重庆医科大学学报,2007,32(12):1237-1241.
    [56]Chan WCW. Maxwell DJ, Gao XH, et al. Luminescent quantum dots for multiplexed biological detection and imaging [J].Curr Opin Biotechnol,2003,13(1):40-46.
    [57]杨凯,孙德平,陈睿.半导体量子点对舌鳞状细胞癌Tca8113系生物学行为影响的研究[J].中华口腔医学杂志,2007,42(8):483-486.
    [58]Tada H, Higuchi H, Wanatabe tM, et al. Invivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice [J]. Cancer Res,2007, 67(3):1138-1144.
    [59]Jaiswal JK, Simon SM. Imaging single events at the cell membrane [J].Nat ChemBiol, 2007,3(2):92-98.
    [60]Jaiswal JK, Simon SM:Potentials and pitfalls of fluorescent quantum dots for biological imaging [J]. Trends Cell Biol,2004,14:497-504.
    [61]Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics [J]. Science,2005,307(5709):538-544.
    [62]Chen F Q, Geri on D. Nano. Lett.,2004,4 (10):1827-1832.
    [63]Giepmans BNG, Deerinck tJ, Smarr BL, Jones YZ, EllismanM H. Nat.Meth.,2005,2 (10):743-749.
    [64]Howarth M, takao K, Hayashi Y, et al. Targeting quantum dots to surface proteins in living cells with biotin ligase [J]. Proc. Natl. Acad. Sci. USA,2005,102 (21):7583-7588.
    [65]Hasegawa U, Nomura SIM, Kaul SC, et al. Nanogel-quantum dot hybrid nanoparticles for live cell imaging [J]. Biochem. Bioph. Res. Co.,2005,331 (4):917-921.
    [66]Tomlinson ID, Mason JN, Blakely RD, et al. High-affinity serotonergic ligands for conjugation with quantum dots [J].Bio.&Med.Chem. Lett.,2005,15(23):5307-5310.
    [67]Bharali DJ, Lucey DW, Jaykumar H, et al. J. Am. Chem. Soc.,2005,127 (32): 11364-11371
    [68]Huh YM, Jun YW, Song T, et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals [J].J. Am. Chem. Soc.,2005,127 (35): 12387-12391.
    [69]Wu X, Liu H, Liu.J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nat Biotechnol,2003,21(1):41-46.
    [70]Dahan M, Levi S, Luccardin IC, et al. Diffusion dynamicsof glycine receptors revealed by single quantum dot tracking[J] Science,2003,302 (5644):442-445.
    [71]ParakWJ, Boudreau R, Le GrosM, et al. Cellmotility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks [J]. AdvMater,2002,14 (12):882-885.
    [72]Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat Biotechnol,2004,22 (8):969-976.
    [73]Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nat Bi otechnol,2003,21 (1):41-46.
    [74]Chen X, Conti PS, Moats RA. In vivo near infrared fluorescence imaging of integrin avβ3 in brain tumor xenografts [J]. Cancer Res,2004,64 (1):8009-8014.
    [75]Zhang Y,Deng Z T, Yue J C, et al. Using cadmium telluride quantum dots as a proton flux sensor and applying to detect Havian influenza virus [J]. Anal B iochem,2007,364 (2): 1222-127.
    [76]Kim S, Lim T, Bawendi EG, et al. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymphnode mapping [J]. Nat Biotechnol,2004,22 (1):93-97.
    [77]Akerman M E, Chan W C, Laakkonen P, et al. Nanocrystal targeting in vivo [J]. Proc Natl Acad Sci,2002,99(20):12617-12621.
    [78]Dahan M, Levi S, Luccardini C, et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking [J]. Science,2003,302(5644):442-445.
    [79]Lidke DS, Nagy P, Heintzmann R, et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction[J].Nat Biotechnol,2004,22(2):198-203.
    [80]Bakalova R, Ohba H, Zhelev Z, et al. Quantum dots as photosensitizers? [J]. Nat Biotechnol,2004,22(11):1360-1361.
    [81]Samia ACS, Dayal S, Burda C.Quantum dot-based energy transfer:Perspectives and potential for applications in photodynamic therapy [J].Photochem Photobiol,2006,82(3): 617-625.
    [82]Hoshino A, Manabe N, Fujioka K, et al. Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine:surface modification regulates biological function, including cytotoxicity [J]. J Artif Organs,2007, 10(3):149-157.
    [83]Mattheakis LC, Dias JM, Choi YJ, et al. Optical coding of mammalian cells using semiconductor quantum dots [J]. Anal Biochem,2004,327(2):200-208.
    [1]Koc ON, Day J, Nieder M, et al. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD[J].) and Hurler syndrome (MPS-I H) [J]. Bone Marrow transplant,2002,30 (4):215-222.
    [2]Chen SL, Fang W, Ye F, et al. Effect on left ventricular function of in tracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction [J]. American journal cardiology.2004,94 (1):92-95.
    [3]王茜,杨琨,白海等.人脐血间充质干细胞抑制异体T淋巴细胞反应的实验及临床意义[J].第四军医大学学报,2007,28(18):1649-1651.
    [4]白海,王茜,吴涛等.人脐血间充质干细胞培养及对异体外周血T淋巴细胞增殖的影响[J].中国组织工程研究与临床康复.2008,12(3):338-441.
    [5]王蒙,杨媛,杨东明等.人脐血源性MSCs的免疫调节作用[J].免疫学杂志,2007,23(3):287-294.
    [6]陶艳玲,张颢.脐血间充质干细胞对T淋巴细胞增殖和激活影响的实验研究[J].中国实用儿科杂志,2007,23(4):287-294.
    [7]Wonil O, Dal-Soo K, Yoon SY, et al Immunological properties of umbilical cord blood-derived mesenchymal stromal cells [J]. Cellular Immunology,2008,251:116-123.
    [8]Mark LW, Cameron A, Satish M, et al. Immune Properties of Human Umbilical Cord Wharton's Jelly-Derived Cells[J]. Stem cells,2008,26:2865-2874.
    [9]Evans EA, Calderwood DA. Forces and bond dynamics in cell adhesion [J]. Science, 2007,316(5828):1148-1153.
    [10]Wu ZZ, Zhang G, Long M, et al. Comparison of the viscoelastic properties of normal hepatocytes and hepato cellular carcinoma cells under cytoskeletal perturbation [J]. Biorheology,2000,37 (4):279-290.
    [11]Cross SE, Jin YS, Rao JY, et al. Nanomechanical analysis of cells from cancer patients [J]. Nature Nanotechnology,2007,2(12):780-783.
    [12]Crick SL, Yin FCP. Assessing micromechanical properties of cells with atomic force microscopy:importance of the contact point [J].Biomechanics and Modeling in Mechanobiology,2007,6(3):199-210.
    [13]Suresh S.Biomechanics and biophysics of cancer cell [J]. Acta Biomaterialia,2007, 3(4):413-438.
    [14]Li QS, Lee GYH, Ong CN, et al. AFM indentation study of breast cancer cells. Biochemical and Biophysical Research Communication,2008,374(4):609-613.
    [15]Hsieh CH, Lin YH, Lin S, et al. Surface ultrastructure and mechanical property of human chondrocyte revealed by atomic force microscopy [J]. Osteoarthritis and Cartilage, 2008,16(4):480-488.
    [16]Karahuseyinoglu, Cinar, Kilic, et al. Biology of Stem Cells Human Umbilical Cord Stroma:In Situ and In Vitro Survey Stem Cells,2007,25:319-331.
    [17]Weiss ML, Medicetty S, Bledsoe AR, et al. Human umbilic cord matrix stem cells: preliminary characterization and effect transplantation in a rodent model of Parkinson's disease [J]. Stem Cells,2006,24:781-792.
    [18]Conconi MT, Burra P, DiLiddo R, et al. CD105(+) cells from Wharton's jelly show in vitro and in vivo myogenic differentative potential [J]. Int J Mol Med,2006,18 (6): 1089-1096.
    [19]Lupatov AY, Karalkin PA, Suzdal'tseva YG, et al. Cytofluorometric analysis of phenotypes of human bone marrow and umbilcal fibroblast-like cells. Bull Exp Biol Med, 2006,142(4)521-526.
    [20]Seung HY, Min JP, Il HY, et al. Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10 [J]. Experimenal and Molecular Medicine, 2009,41(5):315-324.
    [21]Madec AM, Mallone R, Afonso G, et al. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells [J]. Diabetologia,2009,52:1391-1399.
    [22]Olle R, Mehmet U, Ida R, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease [J]. Transplantation,2006,81:1390-1397.
    [23]Markl W, Satish M, Amber RB, et al. Human Umbilical Cord Matrix Stem Cells: Preliminary Characterization and Effect of transplantation in a Rodent Model of Parkinson's Disease [J]. Stem Cell,2006,24:781-792.
    [24]Karahuseyinoglu, Cinar, Kilic, et al. Biology of Stem Cells Human Umbilical Cord Stroma:In Situ and In Vitro Survey [J].Stem Cells,2007,25:319-331.
    [25]Conconi Mt, Burra P, DiLiddo R, et al. CD 105 (+) cells from Wharton's jelly show in vitro and in vivo myogenic differentative potential[J]. Int J Mol Med,2006,18 (6): 1089-1096.
    [26]Lupatov AY, Karalkin PA, Suzdal'tseva YG, et al. Cytofluorometric analysis of phenotypes of human bone marrow and umbilcal fibroblast-like cells [J]. Bull Exp Biol Med, 2006,142 (4):521-526.
    [27]Markl W, Cameron A, Satish M, et al. Immune Properties of Human Umbilical Cord Wharton's Jelly-Derived Cells [J]. Stem Cells,2008,26:2865-2874.
    [28]Yu SF,Yun CC, Maan YA, et al. Conversion of Human Umbilical Cord Mesenchymal Stem Cells in Wharton's Jelly to Dopaminergic Neurons In Vitro:Potential therapeutic Application for Parkinsonism [J]. Stem Cells,2006,24:115-124.
    [29]Chang CY, Yang HS, Miau H, et al. Transplantation of Human Umbilical Mesenchymal Stem Cells from Wharton's Jelly after Complete transection of the Rat Spinal Cord [J]. PLoS ONE,2008,10 (3336):1-11.
    [30]Winston C, Italia K, Manisha M, et al. Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical Cord and its potential for cardiomycyte generation [J]. J tissue Eng Regen Med 2008,2:394-399.
    [31]Meyer T, Pfeifroth A, Hocht B.Isolation and characterization of mesenchymal stem cells in Wharton's jelly of the human umbilical cord:potent cells for cell-based therapies in paediatric surgery [J]. Eur Surg,2008,40/5:239-244.
    [32]Sachin SK, Shubha T, Ramesh R.B, et al. Simultaneous isolation of vascular endothelial cells and mesenchymal stem cells from the human umbilical cord [J]. In Vitro Cell. Dev. Biol.-Animal,2009,45:23-27.
    [33]Ming YC, Pu CL, Zhi LL, et al. Endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells [J]. Experimental Hematology,2009,37:629-640.
    [34]张颢,龚伟,孟磊等.脐带间充质干细胞对t细胞的免疫调控研究[J].中国免疫学杂志.2007,23(12):1102-1105.
    [35]张浪辉,刘拥军,吕璐璐等.脐带源间充质干细胞对异源性脐带血t淋巴细胞激活与增殖的抑制作用[J].中国肿瘤生物治疗杂志.2006,13(3):191-195.
    [36]Le BK, tammik C, Go"therstro"m C, et al. HLA-expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells [J]. Exp Hematol 2003,31: 890-896.
    [37]Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses [J].Blood,2005,105:1-8.
    [38]Ida R, Olle R, Berit S, et al. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms [J]. Experimental Cell Research,2005; 305:33-41.
    [39]Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigens pecific T cells to their cognate peptide [J]. Blood, 2003,101(9):3722-3729.
    [1]Hopkins PA, Fraser JD, Pridmore AC, et al. Superantigen recognition by HLA class II on monocytes up-regulates toll-like receptor and enhances proin flammatory responses to endotoxin [J]. Blood,2005,105 (9):3655-3662.
    [2]韩从辉,郑宝钟,田军等.超抗原诱导杀伤性T细胞体内外对膀胱肿瘤的杀伤作用研究[J].中华肿瘤杂志,2000,22(5):392.
    [3]Chu RL, Post DE, Khuri FR, VanMeir EG. Use of replicating oncolytic adenoviruses in combination therapy for cancer [J]. Clin Cancer Res,2004,10 (16):5299-5312.
    [4]Lulevich V, Zink T, Chen HY.Cell Mechanics Using Atomic Force Microscopy-Based Single-Cell Compression [J]. Langmuir,2006,22(19):8151-8155.
    [5]Fiorenza R, Matthias H, Eugeny A, et al. Synthesis and in Vitro testing of a Pyropheophorbide-a-Fullerene Hexakis Adduct Immunoconjugate for Photodynamic Therapy [J]. Bioconjugate Chem,2007,18(4):1078-1086.
    [6]Wojcikiewicz EP, Abdulreda MH, Zhang XH. Force Spectroscopy of LFA-1 and Its Ligands, ICAM-1 and ICAM-2 [J]. Biomacro molecules,2006,7(11):3188-3195.
    [7]Yutaka A, torkel V, Lutz T. TCR-induced down regulation of protein tyrosine phosphatase PESt augments secondary T cell responses [J].Molecular Immunology,2008,45(11): 3074-3084.
    [8]段志坚,高波,徐薇等.人TRIM22基因真核表达质粒的构建和表达及TRIM22对Jurkat T细胞增殖的影响[J].现代免疫学.2008,28(4):285-290.
    [9]Diaz LA, Pai R, Endres J. Xenogeneic cells and superantigen induce human T-cell activation in the absence of t-cell recognition of xenoantigen [J]. J Lab Clin Med,2003,142 (3):149-157.
    [10]邓晓芳,曾波航.超抗原金黄色葡萄球菌肠毒素A对T淋巴细胞分化的作用[J].广州医学院学报.2006,34(3):6-8.
    [11]黄杨,宋祖军,张秀敏.超抗原SEA对小鼠脾淋巴细胞活化和增殖的影响[J].中国急救医,2007(3):229-231.
    [12]钟丽云,廖问陶,蔡继业.SNOM结合量子点标记进行T淋巴细胞体外刺激活化的研究电[J].子显微学报,2006,25(5):401-404
    [13]Mageel AI, Adler J. Cold-induced coalescence of T-cell plasma membrane microdomains activates signalling pathways [J]. Journal of Cell Science.2005,118 (14): 3141-3151.
    [14]Wakabayashi Y, Watanabe H, Inoue J, et al. BCL 11B is required for differentiation and survival of ap T lymphocytes [J]. Nat Immunol,2003,4(6):533-539.
    [15]Przybylski G K, Dikw W A, Wanzeck J, et al. Disruption of the BCL 11B gene through inv (14)(q11.2q32.31) results in the expression of BCL 11B tRDC fusion transcripts and is associated with the absence of wild-type BCL 11B transcripts in T-ALL[J]. Leukemia,2005, 19(2):201-208.
    [16]胡明铅,蔡继业.不同刺激条件下人外周血淋巴细胞超微结构与粘滞力的AFM分析[J].分析测试学报,2008,27(12):1263-1268.
    [17]阮湘元,谭琰,陈小明.原子力显微镜对细胞色素C分子结构的形态研究[J].分析测试学报,2007,26(1):34-37.
    [18]Cuerrier C M, Lebel R, Grandbois M. Single cell transfection using plasmid decorated AFM probes [J]. Biochem Biophys Res Commun,2007,355(3):632-636.
    [19]Afrin R, Zohorau S, Uehara H, et al. Atomic force microscopy for cellular level manipulation:imaging intracellular structures and DNA delivery through a membrane hole [J]. J Mol Recognit,2009,22(5):363-372.
    [20]Yang C, Wang X, Li HZ, et al. Cationic polyrotaxanes as gene carriers:physicochemical properties and real-time observation of DNA complexation, and gene transfection in cancer cells [J]. J Phys Chem B,2009,113(20):7903-7911.
    [21]Groll A, Levin Y, Barbosa M C, et al. Linear DNA low efficiency transfection by liposome can be improved by the use of cationic lipid as charge neutralizer [J]. Biotechnol Prog,2006,22(4):1220-1224.
    [22]Evans EA, CalderwoodAL D A. Forces and bond dynamics in cell adhesion [J]. Science, 2007,316(5828):1148-1153.
    [23]Wu ZZ, Zhang G, Long M, et al. Comparison of the viscoelastic properties of normal hepatocytes and hepato cellular carcinoma cells under cytoskeletal perturbation [J]. Biorheology,2000,37(4):279-290.
    [24]Lam W A, Rosenbluth M J, Fletcher D A. Chemotherapy exposure increases leukemia cell stiffness [J]. Blood,2007,109(8):3505-3508.
    [25]Butt H J. Cappella B. Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications [J]. Surf Sci Rep,2005,59(1/6):1-152.
    [26]Strasser S, Zink A, Kada G, et al. Age determination of blood spots in forensic medicine by force spectroscopy [J]. Forensic Sci Int,2007,170(1):8-14.
    [27]Gunning AP, Chambers S, Pin C, et al. Mapping specific adhesive interactions on living human intestinal epithelial cells with atomic force microscopy [J]. FASEB J,2008,22(7): 2331-2339
    [28]Dimitriadi E K, Horkay F, Maresca J, et al. Determination of elastic moduli of thin layers of soft material using the atomic force microscope [J]. Biophys J,2002,82(5): 2798-2810.
    [29]Brochu H, Vermettr P. Young's Moduli of surface-bound liposomes by atomic force microscopy force measurements [J]. Langmuir,2008,24(5):2009-2014.
    [30]Laney DE, Garcia RA, Parsons S M, et al. Changes in the elastic properties of cholinergic synaptic vesicles as measured by atomic force microscopy [J]. Biophy J,1997, 72(2):806-813.
    [31]Liang XM, Mao GZ, Simonng KY. Probing small unilamellar Egg PC vesicles on mica surface by atomic force microscopy [J]. Colloids Surf B,2004,34(1):41-51.
    [32]Radmacher M. Measuring the elastic properties of living cells by the atomic force microscope [J]. At Force Microsc Cell Biol,2002,68:67-90.
    [33]Cismastu V B, Ghant S, Duque J, et al. BCL 11B participates in the activation of IL-2 gene expression in CD4+ T lymphocytes[J]. Blood,2006,108(8):2695-2702.
    [34]Hopkins P A, Fraser J D, P ridmore A C, et al. Superantigen recognition by HLA class Ⅱ on monocytes up-regulates toll-like receptor 4 and enhances proin flammatory responsesto endotoxin [J]. Blood,2005,105(9):3655-3662.
    [35]Baumgartner P, Raemaekers RJM, Durieux A, et al. Large-scale production, purification, and characterisation of recombinant phaseolus vulgaris phytohemagglutin in E-form expressed in the methylotrophic yeast Pichia Pastoris[J]. Protein Expr Purif,2002,26(3):394.
    [36]Oberringer M, Englisch A, Heinz B, et al. Atomic force microscopy and scanning near-field optical microscopy studies on the characterization of human metaphase chromosomes [J]. Eur Biophys J,2003,32(7):620-627.
    [37]Michalet X, Pinaud FF, Bentolila L A. et al. Quantum dots for live cells. in vivo imaging. and diagnostics [J]. Science,2005,307(5709):538-544.
    [38]Hu MQ, Wang JK, Cai JY, et al. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+T cell by atomic force microscopy [J]. Biochem Biophys Res Commun,2008,374(1):90-94.
    [39]Hu MQ, Wang JK, C ai JY, et al. Nanostructure and nanomechanics analysis of lymphocyte using AFM:from resting, activated to apoptosis [J]. J Biomech.2009.42(10): 1513-1519.
    [40]胡明铅,蔡继业.不同刺激条件下人外周血淋巴细胞超微结构与粘滞力的AFM分析[J].分析测试学报,2008,27(12):1263-1268.
    [41]黄飞程,郜世隽,蔡继业等.基于原子力显微镜的人外周血CD8+T细胞形貌观察与力谱分析[J].分析测试学报,2009,28(10):1143-1147.
    [42]龚超群,郜世隽,蔡继业等.重组质粒pIRES-EGFP-BCL 11B电转染幼稚t细胞的可视化研究[J].分析测试学报,2009,28(12):1389-1395.
    [43]Shaw AS, Veillette A. Lymphocyte activation-editorial overview [J]. Curr Opin Immunol 2003; 15(3):247-248.
    [44]何球藻,吴厚生,曹雪涛.细胞与分子免疫学[M].上海:上海科学技术文献出版社,2000:16-17.
    [45]David S, Manuel G, Francisco S M. CD69 is an immunoregulatory molecule induced following activation [J]. Trends Immunol,2005,26(3):136-140.
    [46]Francesc MM, Mathilde H, Renuka KP, et al Medical-grade silicone induces release of proinflammatory cytokines in peripheral blood mononuclear cells without activating T cells [J].Inc J Biomed Mater Res:B,2009,90B:510-520.
    [47]陈采凤,刘彦信,郑德先.TCR/CD3介导T细胞活化的信号途径[J].中国免疫学杂志,2006,22(10):970-975.
    [48]Olga B, Gerrit B, Adrianode S, et al. Induction of lymphocytes activated marker CD69 following exposure to chitosanand alginate biopolymers [J]. Int J Pharm,2007,337(1-2): 254-264.
    [49]Fabiola A, Monica S, ANNA M, et al. Induction of CD69 activation molecule on human neutrophils by GM-CSF, IFN-y,and IFN-a[J]. Cell Immunol,2002(1),220:20-29.
    [50]Cambos M, Belanger B, Jacques A, et al. Natural regulatory (CD4CD25 FOXP) T cells control the production of proinflammatory cytokines during Plasmodium chabaudi adami infection and do not contribute to immune evasion [J]. Int J Parasitol,2008,38(2):229-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700