用户名: 密码: 验证码:
定向碳纳米管阵列电极的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来为了了解蛋白质的结构,蛋白质发生电子传递的机理,以及在电极表面模拟生物体内的电子传递过程,基于氧化还原蛋白直接电化学的生物传感器受到了广泛的关注和研究。但生物活性物质的电活性中心多被包埋在多肽链中,同时它也容易在电极表面强烈吸附造成电极的钝化,因此在裸电极表面难以实现其直接电子转移。
     碳纳米管以其特有的力学、电学和化学性质以及独特的管状分子结构和应用价值,已成为研究热点。碳纳米管由于易于表面功能化、大的比表面积、促进电子传递反应效应,能提高生物电化学传感器电极的灵敏度;其良好生物相容性,有利于保持固定化的生物体的活性。在引进其他纳米材料如金属纳米颗粒、量子点等后亦能进一步促进生物活性物质和传感器电极的电子传递速率,更持久地保持生物体的活性,为开发更高效,简便,耐用的生物电化学传感器提供新的思路。
     本文利用定向碳纳米管阵列优良的物理、化学、电催化性能以及它们良好的生物兼容性,结合纳米颗粒的量子效应和大的比表面积效应,制备了2种不同类型的定向碳纳米管阵列修饰电极。采用化学气相沉积法在石英基底上成功制备了大面积的定向碳纳米管阵列,并将其制成定向碳纳米管阵列电极,将血红蛋白、葡萄糖氧化酶采用多种方法固定到阵列电极界面上,制备的生物传感器具有较高的灵敏度、较低的检测下限以及快的响应速度等优势。
     第一章绪论
     首先系统介绍了碳纳米管的发现及应用研究,包括碳纳米管的结构和分类、性质、制备方法、分离和纯化以及应用现状。着重介绍定向碳纳米管阵列在生物和化学传感器中的研究进展。
     第二章常压下单控温化学气相沉积法制备定向碳纳米管阵列
     本实验以石英为基底,以金属有机化合物酞菁铁为原料,利用其高温裂解可同时产生碳源和催化剂,采用常压下单控温方式在最高温890℃时制备了大面积的定向碳纳米管阵列,实现了在常压条件下,仅控制单一温度就可以进行化学气相沉积制备定向碳纳米管阵列,有效地降低了实验成本,简化了实验器材。通过对工艺参数的改进和优化,利用化学气相沉积法成功实现了定向碳纳米管阵列的批量制备,获得了大面积的、高度定向排列的碳纳米管,实验制备的定向碳纳米管阵列管长均匀约10μm,管径约50-70 nm。实验探讨了电阻炉最高炉温、升华区位置和酞菁铁用量、载气流速和比例等制备参数以及不同基底上定向碳纳米管阵列生长的情况,对碳纳米管的制备和实际应用研究具有重要意义。
     第三章葡萄糖氧化酶/CdS纳米颗粒/壳聚糖/Pt纳米颗粒修饰定向碳纳米管阵列电极的直接电化学研究
     本章采用化学气相沉积法,以酞菁铁为原料,在石英基底上制备了大面积的定向碳纳米管阵列。将制得的定向碳纳米管阵列表面喷金处理后,用40%的HF溶液使得定向碳纳米管阵列和石英片基片相互分离,制成ACNTs工作电极。场发射扫描电镜图表明,制备的定向碳纳米管阵列生长密度高、排列紧密、长度接近、直径均匀、定向性好。使用了铂和CdS两种类型的纳米颗粒及葡萄糖氧化酶(GOD)对定向碳纳米管阵列电极进行修饰并以此电极作为工作电极:首先在定向碳纳米管阵列上电沉积的铂纳米颗粒(Ptnano);当溶液pH值大于壳聚糖的pKa时,葡萄糖氧化酶(GOD)、CdS纳米颗粒和壳聚糖(CS)的混合溶液电沉积到ACNTs-Ptnano电极表面。实验表明,铂纳米粒子能有效地增加电极表面积、提高电极的电子传递速率;CdS纳米粒子能有效地促进葡萄糖氧化酶与定向碳纳米管阵列电极之间的直接电子传递,实现了葡萄糖氧化酶的活性中心FAD/FADH2的直接电化学。这种基于CS-GOD-CdS/ACNTs-Ptnano电极的葡萄糖生物传感器显示了良好的传感性能,其检测线性范围为0.4 mmol/L-21.2 mmol/L,最低检测限为46.8μmol/L (S/N=3),表观米氏常数Kmapp为11.86mmol/L。电极保存2个星期后,该传感器仍保持了良好的选择性、重复性和稳定的电化学信号。
     第四章血红蛋白在重氮化修饰定向碳纳米管阵列电极上的直接电化学及电催化性质研究
     本章通过在溶液中电化学还原4-羧基苯基重氮盐,对定向碳纳米管阵列电极进行功能化修饰,得到基于表面羧基化的定向碳纳米管阵列电极,并且成功地将血红蛋白(Hb)分子固定在定向碳纳米管阵列电极表面。制备的定向碳纳米管阵列电极具有良好的生物兼容性和导电性,电极表面的羧基提供了更多的蛋白质结合位点,使得血红蛋白分子在此功能界面上可实现直接电子转移。采用循环伏安法和计时电流法对Hb分子的直接电化学和生物电催化活性进行监测。结果表明,在0.1mol/L pH=7.0的PBS溶液中,Hb的式量电位为-0.312 V (vs.Ag/AgCl),异相电子传递速率常数为0.95±0.05 cm/s。该电极对H202有很好的电催化还原作用,其表观米氏常数Kmapp为0.15 mmol/L。
In recent years, in order to understand the structure and the mechanism of electron transfer, as well as on the electrode surface simulations of biological electron transfer processes of proteins in vivo, the direct electrochemistry of redox protein based bio-sensors has been widespread concern and research. However, the electrical bio-active substances are often embedded in the active center of multi-polypeptide chain, while it is also easily and strongly adsorptable on the electrode surface to cause electrode passivation, and therefore the bare electrode surface is difficult to achieve the direct electron transfer.
     Carbon nanotubes for its unique mechanical, electrical and chemical properties, as well as a unique molecular structure of tubular and application value have become a research hotspot. As the easy-to surface functionalization of carbon nanotubes, a large surface area to promote the electron transfer reaction effect, can improve the sensitivity of bio-electrochemical sensor electrode; its good biocompatibility is conducive to maintaining the activity of immobilized organisms. In the introduction of other nanomaterials such as metal nano-particles, quantum dots, etc. After the bio-active substances can also further promote and sensor electrode electron transfer rate, more durable to maintain the activity of organisms, in order to develop more efficient, simple, durable, bio-electrochemical sensors provide a new way of thinking.
     In this paper, aligned carbon nanotube array of excellent physical, chemical, electro-catalytic properties and their good biological compatibility, combined with nano-particles which have quantum effects and large surface area effect, prepared two kinds of different types of modificated aligned carbon nanotube arrays electrode. Using chemical vapor deposition on quartz substrates were successfully prepared large area aligned carbon nanotube arrays, and it's made of aligned carbon nanotube array electrode. We used a variety of ways to fix the hemoglobin, glucose oxidase onto the array electrode interface and prepared bio-sensors which have higher sensitivity, lower detection limit and fast response speed advantages.
     Chapter One:Preface
     First, a systematic introduction to the discovery and application of carbon nanotubes, including carbon nanotubes of the structure and classification, properties, preparation methods, separation and purification as well as the application status. Aligned carbon nanotube arrays in biological and chemical sensors are mainly focuses on and reviewed.
     Chapter Two:Single temperature controlled aligned carbon nanotube arrays synthesizing by chemical vapor deposition method under atmospheric pressure
     In this experiment, we used quartz as substrate, the metal phthalocyanine compounds of iron as raw material which can also produce carbon source and catalyst by its high-temperature pyrolysis, to prepare a large area carbon nanotube arrays with only a single temperature of the maximum temperature 890℃controlled under atmospheric pressure that will effectively reduce the test cost, simplify the experimental equipment. Through the improvement and optimization of process parameters, using chemical vapor deposition was achieved a large area, highly aligned carbon nanotube arrays.The even length of carbon nanotubes is about 10μm while its diameter about 50 - 70 nm. Experimental Investigation of the maximum furnace temperature, sublimation zone and the amount of iron phthalocyanine, carrier gas flow rate and the ratio of the preparation parameters and the substrate to the growth of aligned carbon nanotube arrays on the situation, the preparation and practical application of carbon nanotube research has significance.
     Chapter Three: Glucose oxidase/CdS nanoparticles/chitosan/Pt nanoparticles modified aligned carbon nanotube array electrode and its direct electrochemistry
     This chapter we used the chemical vapor deposition method, iron phthalocyanine as raw materials in the quartz substrate to prepare a large area aligned carbon nanotube arrays.Spraying the surface of aligned carbon nanotube arrays by gold after treatment, and then with 40% HF solution makes the aligned carbon nanotube arrays and quartz film substrate separated and made the ACNTs to be working electrode. Field emission scanning electron micrographs showed that the growth of aligned carbon nanotube arrays prepared are high density, closely arranged, the length and diameter is close, orientation is good. We used two types of Pt and CdS nano-particles and glucose oxidase (GOD) to modify the aligned carbon nanotube arrays electrode as working electrode:first to electro-deposited platinum nano-particles (Ptnano) on the vertical carbon nanotube arrays; When the solution's pH value is greater than the pKa of chitosan, the glucose oxidase (GOD), CdS nanoparticles and chitosan (CS) mixed solution will electro-deposite onto ACNTs-Ptnano electrode surface. Experiments show that Pt nanoparticles can effectively increase the electrode surface area, improve the electrode electron transfer rate; CdS nano-particles can be effective in promoting glucose oxidase and vertical carbon nanotube arrays of direct electron transfer between electrodes to achieve a glucose oxidase Direct Electrochemistry of active site FAD/FADH2. This electrode-based glucose biosensor CS-GOD-CdS/ACNTs-Ptnano showed good sensing properties, with the linear range of detection of 0.4 mM - 21.2 mM, the lowest detection limit of 46.8μmol/L (S/N = 3), the apparent Michaelis-Menten constant of 11.86 mmol/L. After Electrode Saved 2 weeks, the sensor is still maintaining a good selectivity, repeatability and stability of electrochemical signals.
     Chapter Four: The directly electrochemical and electrocatalytic properties of hemoglobin on the diazotization salt modified aligned carbon nanotube array electrode
     This chapter through the electrochemical reduction of 4 - carboxyl-phenyl diazonium salt in the solution, we functional modificated the aligned carbon nanotube array electrode, and successfully made hemoglobin (Hb) molecules fixed in aligned carbon nanotube arrays electrode surface. Prepared aligned carbon nanotube array electrode has a good biological compatibility and electrical conductivity; the electrode surface carboxyl group provides more protein binding sites, making this function interface in the hemoglobin molecule can achieve the direct electron transfer. Using cyclic voltammetry and chronoamperometry we can research the direct electrochemistry and bio-electrocatalytic activity monitoring of Hb molecules. The results show that in 0.1mol/L pH = 7.0 in PBS solution, Hb-type amount of the potential of -0.312 V (vs. Ag / AgCl), heterogeneous electron transfer rate constant of 0.95±0.05 cm/s. The electrode have a good electro-catalytic reduction reactions to H2O2, its apparent Michaelis-Menten constant Kmapp is 0.15 mmol/L.
引文
[1]Sumio Iijima, Helical microtubules of graphitic carbon, Nature,1991,354:56-58
    [2]Sumio Iijima, Toshinari Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993,363:603-605
    [3]D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature,1993, 363:605-607
    [4]L. F. Sun, S. S. Xie, W. Liu, W. Y. Zhou, Z. Q. Liu, D. S. Tang, G. Wang, L. X. Qian, Materials:Creating the narrowest carbon nanotubes, Nature,2000,403:384-384
    [5]Lu-Chang Qin, Xinluo Zhao, Kaori Hirahara, Yoshiyuki Miyamoto, Yoshinori Ando, Sumio [ijima, Materials science:The smallest carbon nanotube, Nature,2000,408:50-50
    [6]N. Wang, Z. K. Tang, G. D. Li, J. S. Chen, Materials science: Single-walled 4 A carbon nanotube arrays, Nature,2000,408:50-51
    [7]L.-M. Peng, Z. L. Zhang, Z. Q. Xue, Q. D. Wu, Z. N. Gu, D. G. Pettifor, Stability of Carbon Nanotubes:How Small Can They Be?, Phys. Rev. Lett.,2000,85(15):3249-3252
    [8]X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R.O. Jones, Y. Ando, Smallest Carbon Nanotube Is 3.3 A in Diameter, Phys. Rev. Lett,2004,92(12):125502
    [9]Shin-ichi Sawada, Noriaki Hamada, Energetics of carbon nano-tubes, Solid State Commun., 1992,83(11):917-919
    [10]A.A. Lucas, On the energetics of tubular fullerenes, J. Phys. Chem. Solids,1993, 54(5):587-593
    [11]Hua Yang, Christine M. Beavers, Zhimin Wang, An Jiang, Ziyang Liu, Hongxiao Jin, Brandon Q. Mercado, Marilyn M. Olmstead, Alan L. Balch, Isolation of a Small Carbon Nanotube: The Surprising Appearance of D5h(1)-C90,Angew. Chem. Int. Ed.,2010,49:886-890
    [12]Bharat Bhushan, 《Springer Handbook of Nanotechnology》 2nd rev. and extended ed., New York, Springer,2007,44-112
    [13]Weiya Zhou, Xuedong Bai, Enge Wang, Sishen Xie, Synthesis, Structure, and Properties of Single-Walled Carbon Nanotubes, Adv. Mater.,2009,21:4565-4583
    [14]Sang Nyon Kim, James F. Rusling, Fotios Papadimitrakopoulos, Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules,Adv. Mater.,2007,19:3214-3228
    [15]Sarbajit Banerjee, Tirandai Hemraj-Benny, Stanislaus S. Wong, Covalent Surface Chemistry of Single-Walled Carbon Nanotubes, Adv. Mater.,2005,17(1):17-29
    [16]Fernando Patolsky, Yossi Weizmann, Itamar Willner, Long-range electrical contacting of redox enzymes by swcnt connectors, Angew. Chem. Int. Ed.,2004,43:2113-2117
    [17]Kun Zhao, Haiyan Song, Shuqi Zhuang, Liming Dai, Pingang He, Yuzhi Fang, Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes, Electrochem. Commun.,2007,9:65-70
    [18]Min Ouyang, Jin-Lin Huang, Charles M. Lieber, Fundamental Electronic Properties and Applications of Single-Walled Carbon Nanotubes, Acc. Chem. Res.,2002,35(12):1018-1025
    [19]Ioana Dumitrescu, Petr V. Dudin, Jonathan P. Edgeworth, Julie V. Macpherson, Patrick R. Unwin, Electron Transfer Kinetics at Single-Walled Carbon Nanotube Electrodes using Scanning Electrochemical Microscopy, J. Phys. Chem. C,2010,114(6):2633-2639
    [20]Lewis M. Gomez, Akshay Kumar, Yi Zhang, Koungmin Ryu, Alexander Badmaev, Chongwu Zhou, Scalable Light-Induced Metal to Semiconductor Conversion of Carbon Nanotubes, Nano Lett.,2009,9(10):3592-3598
    [21]Wei Lu, Yao Xiong, Liwei Chen, Length-Dependent Dielectric Polarization in Metallic Single-Walled Carbon Nanotubes, J. Phys. Chem. C, 2009,113(24):10337-10340
    [22]J. Z. Cai, L. Lu, W. J. Kong, H.W. Zhu, C. Zhang, B. Q. Wei, D. H. Wu, Feng Liu, Pressure-Induced Transition in Magnetoresistance of Single-Walled Carbon Nanotubes, Phys. Rev. Lett.,2006,91:026402
    [23]Albert Liao, Yang Zhao, Eric Pop, Avalanche-Induced Current Enhancement in Semiconducting Carbon Nanotubes, Phys. Rev. Lett.,2008,101:256804
    [24]Anusorn Kongkanand, Prashant V. Kamat, Electron Storage in Single Wall Carbon Nanotubes. Fermi Level Equilibration in Semiconductor-SWCNT Suspensions, ACS Nano, 2007,1(1):13-21
    [25]Qian Dong, Wagner Gregory J, Liu Wing Kam, Yu M in Feng, Ruof Rodney S,碳纳米管的力学,力学进展,2004,34(1):97-138
    [26]Min-Feng Yu, Bradley S. Files, Sivaram Arepalli, Rodney S. Ruoff, Tensile Loading of Ropes of SingleWall Carbon Nanotubes and their Mechanical Properties, Phys. Rev. Lett.,2000, 84(24):5552-5555
    [27]H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan, Direct Synthesis of Long Single-Walled Carbon Nanotube Strands, Science,2002,296:884-886
    [28]Yijun Li, Kunlin Wang, Jinquan Wei, Zhiyi Gu, Zhicheng Wang, Jianbin Luo, Dehai Wu, Tensile properties of long aligned double-walled carbon nanotube strands, Carbon,2005, 43:31-35
    [29]Li Song, Lijie Ci, Li Lv, Zhenping Zhou, Xiaoqin Yan, Dongfang Liu, Huanjun Yuan, Yan Gao, Jianxiong Wang, Lifeng Liu, Xiaowei Zhao, Zengxing Zhang, Xinyuan Dou, Weiya Zhou, Gang Wang, Chaoyin Wang, Sishen Xie, Direct Synthesis of a Macroscale Single-Walled Carbon Nanotube Non-Woven Material, Adv. Mater.,2004,16(17):1529-1534
    [30]Min-Feng Yu, Oleg Lourie, Mark J. Dyer, Katerina Moloni, Thomas F. Kelly, Rodney S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science,2000,287:637-640
    [31]Bei Peng, Mark Locascio, Peter Zapol, Shuyou Li, Steven L. Mielke, George C. Schatz, Horacio D. Espinosa, Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements, Nature Nanotechnology,2008,3:626-631
    [32]E. M. Byrne, M. A. McCarthy, Z. Xia, W. A. Curtin, Multiwall Nanotubes Can Be Stronger than SingleWall Nanotubes and Implications for Nanocomposite Design, Phys. Rev. Lett.,2009, 103:045502
    [33]Lee J. Hall, Vitor R. Coluci, Douglas S. Galvao, Mikhail E. Kozlov, Mei Zhang, Socrates O. Dantas, Ray H. Baughman, Sign Change of Poisson's Ratio for Carbon Nanotube Sheets, Science,2008,320:504-507
    [34]Ali E. Aliev, Jiyoung Oh, Mikhail E. Kozlov, Alexander A. Kuznetsov, Shaoli Fang, Alexandre F. Fonseca, Raquel Ovalle, Marcio D. Lima, Mohammad H. Haque, Yuri N. Gartstein, Mei Zhang, AnvarA. Zakhidov, Ray H. Baughman, Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles, Science,2009,323:1575-1578
    [35]Tienchong Chang, Dominoes in Carbon Nanotubes, Phys. Rev. Lett.,2008,101:175501
    [36]A. M. Rao, E. Richter, Shunji Bandow, Bruce Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus, Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes, Science, 1997,275:187-191
    [37]Mildred S. Dresselhaus, Ado Jorio, Mario Hofmann, Gene Dresselhaus, Riichiro Saito, Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Lett.,2010, 10(3):751-758
    [38]J. C. Tsang, M. Freitag, V. Perebeinos, J. Liu, PH. Avouris, Doping and phonon renormalization in carbon nanotubes, Nature Nanotechnology,2007,2:725-730
    [39]Sergei M. Bachilo, Michael S. Strano, Carter Kittrell, Robert H. Hauge, Richard E. Smalley, R. Bruce Weisman, Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes, Science,2002,298:2361-2366
    [40]Sang-Yong Ju, William P. Kopcha, Fotios Papadimitrakopoulos, Brightly Fluorescent Single-Walled Carbon Nanotubes via an Oxygen-Excluding Surfactant Organization, Science, 2009,323:1319-1323
    [41]Shohei Chiashi, Satoshi Watanabe, Tateki Hanashima, Yoshikazu Homma, Influence of Gas Adsorption on Optical Transition Energies of Single-Walled Carbon Nanotubes, Nano Lett., 2008,8(10):3097-3101
    [42]E. Gaufres, N. Izard, L. Vivien, S. Kazaoui, D. Marris-Morini, E. Cassan, Enhancement of semiconducting single-wall carbon-nanotube photoluminescence, Optics Letters,2009, 34(24):3845-3847
    [43]Zu-Po Yang, Lijie Ci, James A. Bur, Shawn-Yu Lin, Pulickel M. Ajayan, Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array, Nano Lett.,2008,8(2):446-451
    [44]Jean-Marc Bonard, Thomas Stockli, Frederic Maier, Walt A. de Heer, Andre Chatelain, Jean-Paul Salvetat, Laszlo Forro, Field-Emission-Induced Luminescence from Carbon Nanotubes, Phys. Rev. Lett.,1998,81(7):1441-1444
    [45]Jinquan Wei, Hongwei Zhu, Dehai Wu, Carbon nanotube filaments in household light bulbs,. Appl. Phys. Lett.,2009,84(24):4869-4871
    [46]David Mann, Y. K. Kato, Anika Kinkhabwala, Eric Pop1, Jien Cao, Xinran Wang, Li Zhang, Qian Wang, Jing Guo, Hongjie Dai, Electrically driven thermal light emission from individual single-walled carbon nanotubes, Nature Nanotechnology,2007,2:33-38
    [47]Yuwei Fan, S. B. Singer, Raymond Bergstrom, B. C. Regan, Probing Planck's Law with Incandescent Light Emission from a Single Carbon Nanotube, Phys. Rev. Lett.,2009, 102:187402
    [48]Fengnian Xia, Mathias Steiner, Yu-Ming Lin, Phaedon Avouris, A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths, Nature Nanotechnology,2009, 3:609-613
    [49]Zhi-Bo Liu, Jian-Guo Tian, Zhen Guo, Dong-Mei Ren, Feng Du, Jian-Yu Zheng, Yong-Sheng Chen, Enhanced Optical Limiting Effects in Porphyrin-Covalently Functionalized Single-Walled Carbon Nanotubes, Adv. Mater.,2008,20:511-515
    [50]Olivier Muller, Yves Lutz, Anne Teissier, Jean-Pierre Moeglin, Valerie Keller, Optical limiting behavior of carbon nanotubes exposed to infrared laser irradiations studied by the Z-scan technique, Applied Optics,2010,49(7):1097-1103
    [51]Michael T. Pettes, Li Shi, Thermal and Structural Characterizations of Individual Single-, Double-, and Multi-Walled Carbon Nanotubes, Adv. Funct. Mater.,2009,19:3918-3925
    [52]Qingwei Li, Changhong Liu, XueshenWang, Shoushan Fan, Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method, Nanotechnology,2009, 20:145702
    [53]Savas Berber, Young-Kyun Kwon, David Tomanek, Unusually High Thermal Conductivity of Carbon Nanotubes, Phys. Rev. Lett.,2000,84(20):4613-4616
    [54]Mathias Steiner, Marcus Freitag, Vasili Perebeinos, James C. Tsang, Joshua P. Small,Megumi Kinoshita, Dongning Yuan, Jie Liu, Phaedon Avouris, Phonon populations and electrical power dissipation in carbon nanotube transistors, Nature Nanotechnology,2009, 4:320-324
    [55]P. M. Ajayan, M. Terrones, A. de la Guardia, V. Huc, N. Grobert, B. Q. Wei, H. Lezec, G. Ramanath, T. W. Ebbesen, Nanotubes in a Flash-Ignition and Reconstruction, Science,2002, 296:705-705
    [56]Zenghui Wang, Jiang Wei, Peter Morse, J. Gregory Dash, Oscar E. Vilches, David H. Cobden, Phase Transitions of Adsorbed Atoms on the Surface of a Carbon Nanotube, Science, 2010,327:552-555
    [57]Hiroaki Sone, Bunshi Fugetsu, Takayuki Tsukada, Morinobu Endoc, Affinity-based elimination of aromatic VOCs by highly crystalline multi-walled carbon nanotubes, Talanta, 74(5):1265-1270
    [58]Sie Chin Tjong,《Carbon Nanotube Reinforced Composites:Metal and Ceramic Matrices》, Germany, Wiley-VCH,2009,7
    [59]Michael J. O'Connell,《Carbon Nanotubes:Properties and Applications》, USA, CRC Press, 2006,28
    [60]Peter J. F. Harris,《Carbon Nanotube Science: Synthesis, Properties and Applications》, UK, Cambridge University Press,2009,30
    [61]Eric H. Fort, Patrick M. Donovan, Lawrence T. Scott, Diels-Alder Reactivity of Polycyclic Aromatic Hydrocarbon Bay Regions: Implications for Metal-Free Growth of Single-Chirality Carbon Nanotubes, J.Am Chem/ Soc.,2009,131:16006-16007
    [62]Brian D. Steinberg, Edward A. Jackson, Alexander S. Filatov, Atsushi Wakamiya, Marina A. Petrukhina, Lawrence T. Scott, Aromatic π-Systems More Curved Than C60. The Complete Family of All Indenocorannulenes Synthesized by Iterative Microwave-Assisted Intramolecular Arylations, J. Am. Chem. Soc.,2009,131:10537-10545
    [63]Thomas J. Hill, Richard K. Hughes, Lawrence T. Scott, Steps toward the synthesis of a geodesic C60H12 end cap for a C3v carbon[6,6]nanotube, Tetrahedron,2008,64:11360-11369
    [64]Yagang Yao, Chaoqun Feng, Jin Zhang, Zhongfan Liu, "Cloning" of Single-Walled Carbon Nanotubes via Open-End Growth Mechanism, Nano Lett.,2009,9(4):1673-1677
    [65]Avetik R. Harutyunyan, Gugang Chen, Tereza M. Paronyan, Elena M. Pigos, Oleg A. Kuznetsov, Kapila Hewaparakrama, Seung Min Kim, Dmitri Zakharov, Eric A. Stach, Gamini U. Sumanasekera, Preferential Growth of Single-Walled Carbon Nanotubes with Metallic Conductivity, Science,2009,326:116-120
    [66]Shuai Wang, Lena Ai ling Tang, Qiaoliang Bao, Ming Lin, Suzi Deng, Bee Min Goh, Kian Ping Loh, Room-Temperature Synthesis of Soluble Carbon Nanotubes by the Sonication of Graphene Oxide Nanosheets, J.Am. Chem. Soc.,2009,131:16832-16837
    [67]Vilas Ganpat Pol, Pappanan Thiyagarajan, Remediating plastic waste into carbon nanotubes, J. Environ. Monitor.,2010,12:455-459
    [68]Bumsu Kim, Wolfgang M. Sigmund, Density control of self-aligned shortened single-wall carbon nanotubes on polyelectrolyte-coated substrates, Colloid. Surface. A,2005,266:91-96
    [69]Liming Dai, Ajeeta Patil, Xiaoyi Gong, Aligned nanotubes, Chemphyschem,2003, 4:1150-1169
    [70]Debjit Chattopadhyay, Izabela Galeska, Fotios Papadimitrakopoulos, Metal-assisted organization of shortened carbon nanotubes in monolayer and multilayer forest assemblies,J. Am. Chem. Soc.,2001,123:9451-9452
    [71]Jingxian Yu, Joseph G. Shapter, Jamie S. Quinton, Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces:a simple approach for device assembly, Phys. Chem. Chem. Phys.,2007,9:510-520
    [72]Subramanian Viswanathan, Hanna Radecka, Jerzy Radecki, Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA, Biosens. Bioelectron.,2009,24:2772-2777
    [73]Zihan Poh, Benjamin S. Flavel, Cameron J. Shearer, Fabrication and electrochemical behavior of vertically-aligned carbon nanotube electrodes covalently attached to p-type silicon via a thioester linkage, Materials Letters,2009,63:757-760
    [74]Jingquan Liu, Alison Chou, Wibowo Rahmat, Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays, Electroanalysis,2005, 17(1):38-46
    [75]Zhenhai Wen, Qiang Wang, Jinghong Li, Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source:Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts, Adv. Funct. Mater.,2008,18:959-964
    [76]Zhenhai Wen, Suqin Ci, Jinghong Li, Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors,J. Phys. Chem. C,2009,113(31):13482-13487
    [77]Yi-Tao Liu, Xu-Ming Xie, Yan-Fang Gao, Polymer-assisted assembly of carbon nanotubes via a template-based method, Carbon,2006,44:587-610
    [78]J.P. Tua, C.X. Jianga, S.Y. Guo, Micro-friction characteristics of aligned carbon nanotube film on an anodic aluminum oxide template, Materials Letters,2004,58:1646-1649
    [79]Dongyan Ding, Zhi Chen, Suresh Rajaputra, Hydrogen sensors based on aligned carbon nanotubes in an anodic aluminum oxide template with palladium as a top electrode, Sensors and Actuators B,2007,124:12-17
    [80]Shoushan Fan, Michael G. Chapline, Nathan R. Franklin, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science,1999,283:512-514
    [81]Shaoming Huang, Liming Dai, Albert W. H. Mau, Patterned growth and contact transfer of well-aligned carbon nanotube films, J. Phys. Chem. B,1999,103:4223-4227
    [82]C. N. R. Rao, A. Govindaraj, Carbon nanotubes from organometallic precursors, Acc Chem. Res.,2002,35:998-1007
    [83]宋海燕,李艳楠,赵琨,叶晓燕,何品刚,孙卓,方禹之,低压下酞菁裂解法制备定向碳纳米管阵列,高等学校化学学报,2007,28(9):1622-1627
    [84]Yuehe Lin, Fang Lu, Yi Tu, Zhifeng Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles, Nano Lett.,2004,4(2):191-195
    [85]Jun Li, Hou Tee Ng, Alan Cassell, Wendy Fan, Hua Chen, Qi Ye, Jessica Koehne, Jie Han, M. Meyyappan, Carbon nanotube nanoelectrode array for ultrasensitive DNA detection, Nano Lett.,2003,3(5):597-602
    [86]YeoHeung Yun, Zhongyun Dong, Vesselin N Shanov, Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel, Nanotechnology,2007,18:465505
    [87]YeoHeung Yun, Vesselin Shanov, Mark J. Schulz, High sensitivity carbon nanotube tower electrodes, Sensors and Actuators B,2006,120:298-304
    [88]Ke Wang, Harvey A. Fishman, Hongjie Dai, Neural stimulation with a carbon nanotube microelectrode array, Nano Lett.,2006,6(9):2043-2048
    [89]YeoHeung Yun, Vesselin Shanov, Yi Tu, A multi-wall carbon nanotube tower electrochemical actuator, Nano Lett.,2006,6(4):689-693
    [90]Sewan Park, Hyeon CheolKim, Min Hyung Yum, Ji Hoon Yang, Chong Yun Park, Kukjin Chun, Bose Eom, A self-aligned single carbon nanotube field emission source fabricated by UV lithography, Nanotechnology,2008,19:445304
    [91]K. B. K Teo, S-B Lee, M. Chhowalla, V. Semet, Vu Thien Binh, O. Groening, M. Castignolles, A. Loiseau, G. Pirio, P. Legagneux, D. Pribat, D. G. Hasko, H. Ahmed, G. A. J. Amaratunga, W. I. Milne, Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres-how uniform do they grow?, Nanotechnology,2003,14:204-211
    [92]W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J.-P. Schnell, V. Semet, V. Thien Binh, O. Groening, Carbon nanotubes as field emission sources,J. Mater. Chem,2004,14:933-943
    [93]Guangyu Zhang, Pengfei Qi, Xinran Wang, Yuerui Lu, Xiaolin Li, Ryan Tu, Sarunya Bangsaruntip, David Mann, Li Zhang, Hongjie Dai, Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction, Science,2006,314:974-977
    [94]Mandakini Kanungo, Helen Lu, George G. Malliaras, Graciela B. Blanchet, Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions, Science, 2009,323:234-237
    [95]Hongliang Zhang, Yunqi Liu, Lingchao Cao, Dacheng Wei, Yu Wang, Hisashi Kajiura, Yongming Li, Kazuhiro Noda, Guangfu Luo, Lu Wang, Jing Zhou, Jing Lu, Zhengxiang Gao, A Facile, Low-Cost, and Scalable Method of Selective Etching of Semiconducting Single-Walled Carbon Nanotubes by a Gas Reaction, Adv. Mater.,2009,21:813-816
    [96]Takeshi Tanaka, Hehua Jin, Yasumitsu Miyata, Shunjiro Fujii, Hiroshi Suga, Yasuhisa Naitoh, Takeo Minari, Tetsuhiko Miyadera, Kazuhito Tsukagoshi, Hiromichi Kataura, Simple and Scalable Gel-Based Separation of Metallic and Semiconducting Carbon Nanotubes, Nano Lett.,2009,9(4):1497-1500
    [97]Takeshi Tanaka, Yasuko Urabe, Daisuke Nishide, Hiromichi Kataura, Continuous Separation of Metallic and Semiconducting Carbon Nanotubes Using Agarose Gel, Applied Physics Express,2009,2:125002
    [98]Xiaomin Tu, Suresh Manohar, Anand Jagota, Ming Zheng, DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes, Nature,2009,460:250-253
    [99]Jin Hee Kim, Masakazu Kataoka, Yoong Ahm Kim, Daisuke Shimamoto, Hiroyuki Muramatsu, Takuya Hayashi, Morinobu Endo, Mauricio Terrones, Mildred S. Dresselhaus, Diameter-selective separation of double-walled carbon nanotubes, Applied Physics Letters,2008, 93:223107
    [100]王镜岩,朱圣庚,徐长法,《生物化学-上册》第三版,北京,高等教育出版社,2004,294-297
    [101]Xiaoming Sun, Sasa Zaric, Dan Daranciang, Kevin Welsher, Yuerui Lu, Xiaolin Li, Hongjie Dai, Optical Properties of Ultrashort Semiconducting Single-Walled Carbon Nanotube Capsules Down to Sub-10 nm, J. Am. Chem. Soc.,2008,130(20):6551-6555
    [102]Michael S. Arnold, Samuel I. Stupp, Mark C. Hersam, Enrichment of Single-Walled Carbon Nanotubes by Diameter in Density Gradients, Nano Lett.,2005,5(4):713-718
    [103]Michael S. Arnold, Alexander A. Green, James F. Hulvat, Samuel I. Stupp, Mark C. Hersam, Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnology,2006,1:60-65
    [104]Xin Song, Yan Fang, A technique of purification process of single-walled carbon nanotubes with air, Spectrochimica Acta Part A,2007,67:1131-1134
    [105]Hongbing Jia, Yongfu Lian, Midori O. Ishitsuka, Tsukasa Nakahodo, Yutaka Maeda, Takahiro Tsuchiya, Takatsugu Wakahara, Takeshi Akasaka, Centrifugal purification of chemically modified single-walled carbon nanotubes, Science and Technology of Advanced Materials,2005,6:571-581
    [106]Ya-Qiong Xu, Haiqing Peng, Robert H. Hauge, Richard E. Smalley, Controlled Multistep Purification of Single-Walled Carbon Nanotubes, Nano Lett.,2005,5(1):163-168
    [107]Yangqiao Liu, Lian Gao, Jing Sun, Shan Zheng, Linqin Jiang, Yan Wang, Hisashi Kajiura, Yongming Li, Kazuhiro Noda, A multi-step strategy for cutting and purification of single-walled carbon nanotubes, Carbon,2007,45:1972-1978
    [108]Yan Wang, Lian Gao, Jing Sun, Yangqiao Liu, Shan Zheng, Hisashi Kajiura, Yongming Li, Kazuhiro Noda, An integrated route for purification, cutting and dispersion of single-walled carbon nanotubes, Chemical Physics Letters,2006,432:205-208
    [109]Jian-Min Yuan, Xiao-Hua Chen, Xian-Hong Chen, Ze-Fu Fan, Xin-Guo Yang, Zi-Hua Chen, An easy method for purifying multi-walled carbon nanotubes by chlorine oxidation, Carbon,2008,46(9):1266-1269
    [110]Yuhong Chen, Zafar Iqbal, Somenath Mitra, Microwave-Induced Controlled Purification of Single-Walled Carbon Nanotubes without Sidewall Functionalization, Adv. Funct. Mater.,2007, 17:3946-3951
    [111]Kieran MacKenzie, Oscar Dunens, Andrew T. Harris, A review of carbon nanotube purification by microwave assisted acid digestion, Separation and Purification Technology, 2009,66:209-222
    [112]曹灵超,刘云圻,王钰,魏大程,付磊,胡平安,张洪亮,黄丽平,于贵,湿法纯化碳纳米管阵列及其对碳纳米管阵列形貌的影响,物理化学学报,2008,24(6):951-954
    [113]Mahesh Karwa, Somenath Mitra, Gas Chromatography on Self-Assembled, Single-Walled Carbon Nanotubes, Anal. Chem.,2006,78(6):2064-2070
    [114]Andrea Speltini, Daniele Merli, Eliana Quartarone, Antonella Profumo, Functionalized multi-walled carbon nanotubes as stationary phase for gas chromatographic separation of alkanes isomers and aromatic compounds, Journal of Chromatography A,2010,1217(17):2918-2924
    [115]K B Mogensen, L Gangloff, P Boggild, K B K Teo, W I Milne, J P Kutter, Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications, Nanotechnology,2009,20:095503
    [116]Ren-Guei Wu, Chung-Shi Yang, Pen-Cheng Wang, Fan-Gang Tseng, Nanostructured pillars based on vertically aligned carbon nanotubes as the stationary phase in micro-CEC, Electrophoresis,2009,30:2025-2031
    [117]Yandong Guo, Lingyun Huang, Willy R. G. Baeyens, Joris R. Delanghe, Dacheng He, Jin Ouyang, Novel Application of Carbon Nanotubes for Improving Resolution in Detecting Human Serum Proteins with Native Polyacrylamide Gel Electrophoresis, Nano Lett.,2009, 9(4):1320-1324
    [118]Kuanping Gong, Feng Du, Zhenhai Xia, Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction, Science,2009,323:760-763
    [119]Madhu Sudan Saha, Ruying Li, Xueliang Sun, Siyu Ye,3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on nitrogen-doped carbon nanotubes grown on carbon paper, Electrochem. Commun.,2009,11:438-441
    [120]Junbing Yang, Di-Jia Liu, Nancy N. Kariuki, Aligned carbon nanotubes with built-in FeN4 active sites for electrocatalytic reduction of oxygen, Chem. Commun.,2008, (3):329-331
    [121]Weilin Xu, Hao Shen, Yoon Ji Kim, Xiaochun Zhou, Guokun Liu, Jiwoong Park, Peng Chen, Single-Molecule Electrocatalysis by Single-Walled Carbon Nanotubes, Nano Lett.,2009, 9(12):3968-3973
    [122]Hongwei Zhu, Haifeng Zeng, Venkatachalam Subramanian, Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes, Nanotechnology,2008,19:465204
    [123]Jessika E. Trancik, Scott Calabrese Barton, and James Hone, Transparent and Catalytic Carbon Nanotube Films, Nano Lett.,2008,8(4):982-987
    [124]E Kymakis, P Servati, P Tzanetakis, Effective mobility and photocurrent in carbon nanotube-polymer composite photovoltaic cells, Nanotechnology,2007,18:435702
    [125]Ana Fla'via Nogueira, Bruno S. Lomba, Mauro A. Soto-Oviedo, Polymer Solar Cells Using Single-Wall Carbon Nanotubes Modified with Thiophene Pedant Groups, J. Phys. Chem. C,2007,111(49):18431-18438
    [126]Jinquan Wei, Yi Jia, Qinke Shu, Zhiyi Gu, Kunlin Wang, Darning Zhuang, Gong Zhang, Zhicheng Wang, Jianbin Luo, Anyuan Cao, Dehai Wu, Double-Walled Carbon Nanotube Solar Cells, Nano Lett.,2007,7(8):2317-2321
    [127]hangxin Chen, Yang Lu, Eric S. Kong, Yafei Zhang, Shuit-Tong Lee, Nanowelded Carbon-Nanotube-Based Solar Microcells, Small,2008,4(9):1313-1318
    [128]Patrice Simon, Yury Gogotsi, Materials for electrochemical capacitors, Nature Materials, 2008,7:845-854
    [129]Li Li Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev.,2009,38:2520-2531
    [130]郑丽萍,王先友,李娜,安红芳,碳纳米管的修饰及其在超级电容器中的应用,化学通报,2009,8:720-727
    [131]Hao Zhang, Gaoping Cab, Yusheng Yang, Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries, Energy & Environmental Science,2009, 2:932-943
    [132]叶晓燕,王艳芝,宋海燕,孙卓,何品刚,方禹之,直立碳纳米管超级电容器的研究,电化学,2008,14(1):24-29
    [133]Qiao-Ling Chen, Kuan-Hong Xue, Wei Shen, Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors, Electrochimica Acta,2004, 49:4157-4161
    [134]Yong Jung Kim, Yoong Ahm Kim, Teruaki Chino, Chemically Modified Multiwalled Carbon Nanotubes as an Additive for Supercapacitors, Small,2006,2(3):339-345
    [135]In Young Jang, Hiroyuki Muramatsu, Ki Chul Park, Capacitance response of double-walled carbon nanotubes depending on surface modification, Electrochem. Commun., 2009,11:719-723
    [136]Don N. Futaba, Kenji Hata, Takeo Yamada, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nature Materials,2006,5(12):987-994
    [137]Oleg N. Kalugin, Vitaly V. Chaban, Valentin V. Loskutov, Uniform Diffusion of Acetonitrile inside Carbon Nanotubes Favors Supercapacitor Performance, Nano Lett.,2008, 8(8):2126-2130
    [138]Osamu Kimizuka, Osamu Tanaike, Junya Yamashita, Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes, Carbon,2008,46:1999-2001
    [139]Tatsuki Hiraoka, Ali Izadi-Najafabadi, Takeo Yamada, Don N. Futaba, Satoshi Yasuda, Osamu Tanaike, Hiroaki Hatori, Motoo Yumura, Sumio lijima, Kenji Hata, Compact and Light Supercapacitor Electrodes from a Surface-Only Solid by Opened Carbon Nanotubes with 2 200 m2 g-1 Surface Area, Adv. Funct. Mater.,2010,20:422-428
    [140]Martti Kaempgen, Candace K. Chan, J. Ma, Yi Cui, George Gruner, Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes, Nano Lett.,2009,9(5):1872-1876
    [141]Liangbing Hu, Jang Wook Choi, Yuan Yang, Sangmoo Jeong, Fabio La Mantia, Li-Feng Cui, and Yi Cui, Highly conductive paper for energy-storage devices, PNAS,2009, 106(51):21490-21494
    [142]Liangbing Hu, Mauro Pasta, Fabio La Mantia, LiFeng Cui, Sangmoo Jeong, Heather Dawn Deshazer, Jang Wook Choi, Seung Min Han, Yi Cui, Stretchable, Porous, and Conductive Energy Textiles, Nano Lett.,2010,10:708-714
    [143]王艳芝,庞飞燕,杨静,徐颖,何品刚,方禹之,Mn02电沉积直立碳纳米管制备超级电容器,应用化学,2009,26(6):702-706
    [144]Xianbo Jin, Wuzong Zhou, Shengwen Zhang, George Z. Chen, Nanoscale Microelectrochemical Cells on Carbon Nanotubes, Small,2007,3(9):1513-1517
    [145]Hao Zhang, Gaoping Cao, Zhiyong Wang, Yusheng Yang, Zujin Shi, Zhennan Gu, Growth of Manganese Oxide Nanoflowers on Vertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive Energy Storage, Nano Lett.,2008,8(9):2664-2668
    [146]Hao Yu, Xiaobo Fu, Chunmei Zhou, Feng Peng, Hongjuan Wang, Jian Yang, Capacitance dependent catalytic activity of RuO2·xH2O/CNT nanocatalysts for aerobic oxidation of benzyl alcohol, Chem. Commun.,2009,2408-2410
    [147]Qiaohui Guo, Xiaoping Zhou, Xiaoyan Li, Shuiliang Chen, Agarwal Seema, Andreas Greiner, Haoqing Hou, Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes, J. Mater. Chem.,2009,19:2810-2816
    [148]Xiangqin Lin, Yanhui Xu, Facile synthesis and electrochemical capacitance of composites of polypyrrole/multi-walled carbon nanotubes, Electrochimica Acta,2008,53:4990-4997
    [149]Hao Zhang, Gaoping Cao,WeikunWang, Keguo Yuan, Bin Xu, Wenfeng Zhang, Jie Cheng, Yusheng Yang, Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes, Electrochimica Acta,2009,54:1153-1159
    [150]Dingshan Yu, Liming Dai, Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors, J. Phys. Chem. Lett.,2010,1:467-470
    [151]Robert C. Tenent, Teresa M. Barnes, Jeremy D. Bergeson, Andrew J. Ferguson, Bobby To, Lynn M. Gedvilas, Michael J. Heben, and Jeffrey L. Blackburn, Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying, Adv. Mater.,2009,21:1-7
    [152]Vincent C. Tung, Li-Min Chen, Matthew J. Allen, Jonathan K. Wassei, Kurt Nelson, Richard B. Kaner, Yang Yang, Low-Temperature Solution Processing of Graphene#Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors, Nano Lett.,2009, 9(5):1949-1955
    [153]G. E. Begtrup, W. Gannett, T. D. Yuzvinsky, V. H. Crespi, A. Zettl, Nanoscale Reversible Mass Transport for Archival Memory, Nano Lett.,2009,9(5):1835-1838
    [154]Ryan J. Kershner, Luisa D. Bozano, Christine M. Micheel, Albert M. Hung, Ann R. Fornof, Jennifer N. Cha, Charles T. Rettner, Marco Bersani, Jane Frommer, Paul W. K. Rothemund, Gregory M. Wallraff, Placement and orientation of individual DNA shapes on lithographically patterned surfaces, Nature Nanotechnology,2009,4:557-561
    [155]L. Nougaret, H. Happy, G. Dambrine, V. Derycke, J.-P. Bourgoin, A. A. Green, M. C. Hersam,80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes, Applied Physics Letters,2009,94:243505
    [156]Yuhei Hayamizu, Takeo Yamada, Kohei Mizuno, Robert C. Davis, Don N. Futaba, Motoo Yumura, Kenji Hata, Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers, Nature Nanotechnology,2008,3:289-294
    [157]Complex Integrated Circuits Made of Carbon Nanotubes. http://www.technologyreview.com/computing/24236/page1/
    [158]Li Song, Hui Zhang, Zhong Zhang, Sishen Xie, Processing and performance improvements of SWNT paper reinforced PEEK nanocomposites, Composites Part A,2007,38:388-392
    [159]Wenjun Ma, Luqi Liu, Rong Yang, Taihua Zhang, Zhong Zhang, Li Song, Yan Ren, Jun Shen, Zhiqiang Niu, Weiya Zhou, and Sishen Xie, Monitoring a Micromechanical Process in Macroscale Carbon Nanotube Films and Fibers, Adv. Mater.,2009,21(5):603-608
    [160]Qiang Zhang, Mengqiang Zhao, Yi Liu, Anyuan Cao, Weizhong Qian, Yunfeng Lu, Fei Wei, Energy-Absorbing Hybrid Composites Based on Alternate Carbon-Nanotube and Inorganic Layers, Adv. Mater.,2009,21:2876-2880
    [161]Liangti Qu, Liming Dai, Morley Stone, Zhenhai Xia, Zhong Lin Wang, Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off, Science,2008,322:238-242
    [162]Huisheng Peng, Xuemei Sun, Fangjing Cai, Xuli Chen, Yinchao Zhu, Guipan Liao, Daoyong Chen, Qingwen Li, Yunfeng Lu, Yuntian Zhu, Quanxi Jia, Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres, Nature Nanotechnology,2009,4:738-741
    [163]Geza Toth, Jani Ma'klin, Niina Halonen, Jaakko Palosaari, Jari Juuti, Heli Jantunen, Krisztian Kordas, W. Gregory Sawyer, Robert Vajtai, Pulickel M. Ajayan, Carbon-Nanotube-Based Electrical Brush Contacts, Adv. Mater.,2009,21:1-5
    [164]Vaikunth R. Khalap, Tatyana Sheps, Alexander A. Kane, Philip G. Collins, Hydrogen Sensing and Sensitivity of Palladium-Decorated Single-Walled Carbon Nanotubes with Defects, Nano Lett.,2010,10(3):896-901
    [165]Wenrong Yang, Kyle R. Ratinac, Simon P. Ringer, Pall Thordarson, J. Justin Gooding, Filip Braet, Carbon Nanomaterials in Biosensors:Should You Use Nanotubes or Graphene?, Angew. Chem. Int. Ed.,2010,49(12):2114-2138
    [166]Chia-Ling Chen, Chih-Feng Yang, Vinay Agarwal, Taehoon Kim, Sameer Sonkusale, Ahmed Busnaina, Michelle Chen, Mehmet R Dokmeci, DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry, Nanotechnology,2010, 21:095504
    [167]Guifen Jie, Lingling Li, Chao Chen, Jie Xuan, Jun-Jie Zhu, Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay, Biosens. Bioelectron.,2009,24:3352-3358
    [168]Libing Zhang, Tao Li, Bingling Li, Jing Li, Erkang Wang, Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(II) ion, Chem. Commun., 2010,46:1476-1478
    [169]YeoHeung Yun, Zhongyun Dong, Vesselin Shanov, William R. Heineman, H. Brian Halsall, Amit Bhattacharya, Laura Conforti, Raj K. Narayan, William S. Ball, Mark J. Schulz, Nanotube electrodes and biosensors, Nano Today,2007,2(6):30-37
    [170]Li Mao, Ruo Yuana, Yaqin Chai, Ying Zhuo, Xia Yang, Shirong Yuan, Multi-walled carbon nanotubes and Ru(bpy)32+/nano-Au nano-sphere as efficient matrixes for a novel solid-state electrochemiluminescence sensor, Talanta,2010,80:1692-1697
    [171]Isao Sasaki, Nobutsugu Minami, Annamalai Karthigeyan, Konstantin Iakoubovskii, Optimization and evaluation of networked single-wall carbon nanotubes as a NO2 gas sensing material, Analyst,2009,134:325-330
    [172]Syed Mubeen, Ting Zhang, Nicha Chartuprayoon, Youngwoo Rheem, Ashok Mulchandani, Nosang V. Myung, Marc A. Deshusses, Sensitive Detection of H2S Using Gold Nanoparticle Decorated Single-Walled Carbon Nanotubes, Anal. Chem.,2010,82(1):250-257
    [173]Meng Du, Tao Yang, Yongchun Zhang, Kui Jiao, Sensitively Electrochemical Sensing for Sequence-Specific Detection of Phosphinothricin Acetyltransferase Gene: Layer-by-Layer Films of Poly-1-Lysine and Au-Carbon Nanotube Hybrid, Electroanalysis,2009,21(23):2521-2526
    [174]Sagnik Basuray, Satyajyoti Senapati, Andrew Aijian, Andrew R. Mahon, Hsueh-Chia Chang, Shear and AC Field Enhanced Carbon Nanotube Impedance Assay for Rapid, Sensitive, and Mismatch-Discriminating DNA Hybridization, ACS Nano,2009,3(7):1823-1830
    [175]Mark E. Roberts, Melburne C. LeMieux, Zhenan Bao, Sorted and Aligned Single-Walled Carbon Nanotube Networks for Transistor-Based Aqueous Chemical Sensors, ACS Nano,2009, 3(10):3287-3293
    [176]Gustavo A. Rivas, Mar'ia D. Rubianes, Marcela C. Rodriguez, Nancy F. Ferreyra, Guillermina L. Luque, Maria L. Pedano, Silvia A. Miscoria, Concepcion Parrado, Carbon nanotubes for electrochemical biosensing, Talanta,2007,74:291-307
    [177]Fernando Patolsky, Yossi Weizmann, Itamar Willner, Long-range electrical contacting of redox enzymes by swcnt connectors, Angew. Chem. Int. Ed.,2004,43:2113-2117
    [178]Alison Chou, Paul K. Eggers, Michael N. Paddon-Row, Self-assembled carbon nanotube electrode arrays:effect of length of the linker between nanotubes and electrode, J. Phys. Chem. C,2009,113:3203-3211
    [179]Pingang He, Liming Dai, Aligned carbon nanotube-DNA electrochemical sensors, Chem.Commun.,2004,348-349
    [180]Liao-Chuan Jiang, Wei-De Zhang, Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing, Electroanalysis,2009,21(8):988-993
    [181]Wei-De Zhang, Bin Xu, A solid-state pH sensor based on WO3-modified vertically aligned multiwalled carbon nanotubes, Electrochem. Commun.,2009,11:1038-1041
    [182]Liao-Chuan Jiang, Wei-De Zhang, Electroanalysis of dopamine at RuO2 modified vertically aligned carbon nanotube electrode, Electroanalysis,2009,21(16):1811-1815
    [183]G.D. Withey, A.D. Lazareck, M.B. Tzolov, A. Yin, P. Aich, J.I. Yeh, J.M. Xu, Ultra-high redox enzyme signal transduction using highly ordered carbon nanotube array electrodes, Biosens. Bioelectron.,2006,21:1560-1565
    [184]Kuanping Gong, Supriya Chakrabarti, Liming Dai, Electrochemistry at carbon nanotube electrodes:is the nanotube tip more active than the sidewall?, Angew. Chem.,2008,120: 5526-5530
    [185]G. Ruffini, S. Dunne, L. Fuentemilla, C. Grau, E. Farres, J. Marco-Pallares, P.C.P.Watts, S.R.P. Silva, First human trials of a dry electrophysiology sensor using a carbon nanotube array interface, Sensors and Actuators A,2008,144:275-279
    [186]Xianming Liu, Keith H. R. Baronian, Alison J. Downard, Patterned Arrays of Vertically Aligned Carbon Nanotube Microelectrodes on Carbon Films Prepared by Thermal Chemical Vapor Deposition, Anal. Chem.,2008,80:8835-8839
    [187]Riju Singhal, Sayan Bhattacharyya, Zulfiya Orynbayeva, Elina Vitol, Gary Friedman, Yury Gogotsi, Small diameter carbon nanopipettes, Nanotechnology,2010,21:015304
    [188]Jun Shen, WeiWang, Qing Chen, MingshengWang, Shengyong Xu, Yinglin Zhou, Xin-Xiang Zhang, The fabrication of nanoelectrodes based on a single carbon nanotube, Nanotechnology,2009,20:245307
    [189]Amol V. Patil, Anne F. Beker, Frank G. M. Wiertz, Hendrik A. Heering, Giacomo Coslovich, Rifka Vlijm, Tjerk H. Oosterkamp, Fabrication and characterization of polymer insulated carbon nanotube modified electrochemical nanoprobes, Nanoscale,2010, DOI: 10.1039/b9nr00281b
    [190]Naoto Saito, Yuki Usui, Kaoru Aoki, Nobuyo Narita, Masayuki Shimizu, Kazuo Hara, Nobuhide Ogiwara, Koichi Nakamura, Norio Ishigaki, Hiroyuki Kato, Seiichi Tarutac, Morinobu Endo, Carbon nanotubes:biomaterial applications, Chemical Society Reviews,2009, 38:1897-1903
    [191]Dimitrios Tasis, Nikos Tagmatarchis, Alberto Bianco, Maurizio Prato, Chemistry of Carbon Nanotubes, Chem. Rev.,2006,106:1105-1136
    [192]Zhuang Liu, Scott Tabakman, Kevin Welsher, Hongjie Dai, Carbon Nanotubes in Biology and Medicine:In vitro and in vivo Detection, Imaging and Drug Delivery, Nano Res,2009, 2:85-120
    [193]Bin Zhang, Yuehan Xing, Zhenwei Li, Hongyu Zhou, Qingxin Mu, Bing Yan, Functionalized Carbon Nanotubes Specifically Bind to r-Chymotrypsin's Catalytic Site and Regulate Its Enzymatic Function, Nano Lett.,2009,9(6):2280-2284
    [194]Zhuang Liu, Kai Chen, Corrine Davis, Sarah Sherlock, Qizhen Cao, Xiaoyuan Chen, Hongjie Dai, Drug Delivery with Carbon Nanotubes for In vivo Cancer Treatment, Cancer Research,2008,68(16):6652-6660
    [195]Rodney P. Feazell, Nozomi Nakayama-Ratchford, Hongjie Dai, Stephen J. Lippard, Soluble Single-Walled Carbon Nanotubes as Longboat Delivery Systems for Platinum(IV) Anticancer Drug Design, J. Am. Chem. Soc.,2007,129:8438-8439
    [196]Zhuang Liu, Xiaoming Sun, Nozomi Nakayama-Ratchford, and Hongjie Dai, Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery, ACS Nano,2007, 1(1):50-56
    [197]Maurizio Prato, Kostas Kostarelos, Alberto Bianco, Functionalized Carbon Nanotubes in Drug Design and Discovery, Accounts of Chemical Research,2008,41(1):60-68
    [198]Daniel A. Heller, Hong Jin, Brittany M. Martinez, Dhaval Patel, BrigidM. Miller, Tsun-Kwan Yeung, Prakrit V. Jena, Claudia Hobartner, Taekjip Ha, Scott K. Silverman, Michael S. Strano, Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes, Nature Nanotechnology,2009,4:114-120
    [199]Hong Jin, Daniel A. Heller, Marie Kalbacova, Jong-Ho Kim, Jingqing Zhang, Ardemis A. Boghossian, Narendra Maheshri, Michael S. Strano, Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes, Nature Nanotechnology,2010,5:302-309
    [200]C. Zavaleta, A. de la Zerda, Z. Liu, S. Keren, Z. Cheng, M. Schipper, X. Chen, H. Dai, S. S. Gambhir, Noninvasive Raman Spectroscopy in Living Mice for Evaluation of Tumor Targeting with Carbon Nanotubes, Nano Lett.,2008,8(9):2800-2805
    [201]Adam De La Zerda, Cristina Zavaleta, Shay Keren, Srikant Vaithilingam, Sunil Bodapati, Zhuang Liu, Jelena Levi, Bryan R. Smith, Te-Jen Ma, Omer Oralkan, Zhen Cheng, Xiaoyuan Chen, Hongjie Dai, Butrus T. Khuri-Yakub, Sanjiv S. Gambhir, Carbon nanotubes as photoacoustic molecular imaging agents in living mice, Nature Nanotechnology,2008, 3:557-562
    [202]Zhuang Liu, Weibo Cai, Lina He, Nozomi Nakayama, Kai Chen, Xiaoming Sun, Xiaoyuan Chen, Hongjie Dai, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice, Nature Nanotechnology,2007,2:47-52
    [203]Zhuang Liu, Corrine Davis, Weibo Cai, Lina He, Xiaoyuan Chen, Hongjie Dai, Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy, PNAS,2008,105(5):1410-1415
    [204]Zhuo Chen, Scott M Tabakman, Andrew P Goodwin, Michael G Kattah, Dan Daranciang, Xinran Wang, Guangyu Zhang, Xiaolin Li, Zhuang Liu, Paul J Utz, Kaili Jiang, Shoushan Fan, Hongjie Dai, Protein microarrays with carbon nanotubes as multicolor Raman labels, Nature Biotechnology,2008,26(11):1285-1292
    [205]Zhuang Liu, Xiaolin Li, Scott M. Tabakman, Kaili Jiang, Shoushan Fan, Hongjie Dai, Multiplexed Multicolor Raman Imaging of Live Cells with Isotopically Modified Single Walled Carbon Nanotubes, J.Am. Chem. Soc.,2008,130:13540-13541
    [206]Kevin Welsher, Zhuang Liu, Sarah P. Sherlock, Joshua Tucker Robinson, Zhuo Chen, Dan Daranciang, Hongjie Dai, A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice, Nature Nanotechnology,2009,4:773-784
    [207]Jong-Ho Kim, Jin-Ho Ahn, Paul W. Barone, Hong Jin, Jingqing Zhang, Daniel A. Heller, Michael S. Strano, A Luciferase/Single-Walled Carbon Nanotube Conjugate for Near-Infrared Fluorescent Detection of Cellular ATP, Angew. Chem. Int. Ed.,2010,49(8):1456-1459
    [208]Pavitra Chakravarty, Radu Marches, Neil S. Zimmerman, Austin D.-E. Swafford, Pooja Bajaj, Inga H. Musselman, Paul Pantano, Rockford K. Draper, Ellen S. Vitetta, Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes, PNAS,2008, 105(25):8697-8702
    [209]Andrew Burke, Xuanfeng Ding, Ravi Singh, Robert A. Kraft, Nicole Levi-Polyachenko, Marissa Nichole Rylander, Chris Szot, Cara Buchanan, Jon Whitney, Jessica Fisher, Heather C. Hatcher, Ralph D'Agostino, Jr, Nancy D. Kock, P. M. Ajayan, David L. Carroll, Steven Akman, Frank M. Torti, Suzy V. Torti, Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation, PNAS,2009, 106(31):12897-12902
    [1]Sumio Iijima, Helical microtubules of graphitic carbon, Nature,1991,354:56-58
    [2]Liming Dai, Ajeeta Patil, Xiaoyi Gong, Zhixin Guo, Luqi Liu, Yong Liu, Daoben Zhu, Aligned nanotubes, Chemphyschem,2003,4:1150-1169
    [3]袁倬斌,王月伶,张君,吕元琦,碳纳米管在电分析中的应用,化学通报,2004,7:473-476
    [4]蔡称心,陈静,包建春,陆天虹,碳纳米管在分析化学中的应用,分析化学,2004,32(3):381-387
    [5]王光灿,师真,朱光辉,曹胜兰,尹家元,王丽坤,碳纳米管修饰电极在分析化学中的应用,理化检验-化学分册,2008,44(8):801-806
    [6]麦智彬,谭学才,邹小勇,基于碳纳米管的化学修饰电极及电化学生物传感器的研究进展,分析测试学报,2006,25(3):120-125
    [7]Fushen Lu, Lingrong Gu, Mohammed J. Meziani, Xin Wang, Pengju G. Luo, Lucia Monica Veca, Li Cao, Ya-Ping Sun, Advances in bioapplications of carbon nanotubes, Adv. Mater.,2008, 20:1-14
    [8]Hongjie Dai, Carbon nanotubes:synthesis,integration, and properties, Acc. Chem. Res.,2002, 35:1035-1044
    [9]Sang Nyon Kim, James F. Rusling, Fotios Papadimitrakopoulos, Carbon nanotubes for electronic and electrochemical detection of biomolecules,Adv. Mater.,2007,19:3214-3228
    [10]Joseph Wang, Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis, 2005,17(1):7-14
    [11]Dimitrios Tasis, Nikos Tagmatarchis, Alberto Bianco, Maurizio Prato, Chemistry of carbon nanotubes, Chemical Reviews,2006,106(3):1105-1136
    [12]Xiaohui Peng, Stanislaus S. Wong, Functional covalent chemistry of carbon nanotube surfaces, Adv. Mater.,2008,20:1-18
    [13]S.V. Ahir, Y.Y. Huang, E.M. Terentjev, Polymers with aligned carbon nanotubes:active composite materials, Polymer,2008,49:3841-3854
    [14]肖素芳,王宗花,罗国安,碳纳米管的功能化研究进展,分析化学,2005,33(2):261-266
    [15]王月荣,胡坪,梁琼麟,罗国安,王义明,碳纳米管修饰电极在生命化学和生物传感器中的应用进展,分析化学,2008,36(8):1011-1016
    [16]张文惠,张伟德,碳纳米管基气体传感器研究进展,化学通报,2009,3:202-207
    [17]Fernando Patolsky, Yossi Weizmann, Itamar Willner, Long-range electrical contacting of redox enzymes by swcnt connectors, Angew. Chem. Int. Ed.,2004,43:2113-2117
    [18]Kun Zhao, Haiyan Song, Shuqi Zhuang, Liming Dai, Pingang He, Yuzhi Fang, Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes, Electrochem. Commun.,2007,9:65-70
    [19]Kun Zhao, Shuqi Zhuang, Zhu Chang, Haiyan Songm, Liming Dai, Pingang He, Yuzhi Fang, Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode, Electroanalysis,2007,19(10):1069-1074
    [20]宋海燕,李艳楠,赵琨,叶晓燕,何品刚,孙卓,方禹之,低压下酞菁裂解法制备定向碳纳米管阵列,高等学校化学学报,2007,28(9):1622-1627
    [21]Shaoming Huang, Liming Dai, Albert W. H. Mau, Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films,J. Phys. Chem. B,1999,103(21):4223-4227
    [22]Airat Khasanov, Jian He, Jay Gaillard, Keqin Yang, Apparao M. Rao, C. Michelle Cameron, J. M. Schmeltzer, John G. Stevens, Amar Nath, The role of γ-iron nanoparticulates in the growth of carbon nanotubes, Applied Physics Letters,2008,93:013103
    [23]M. Perez-Cabero, J. B. Taboada, A. Guerrero-Ruiz, A. R. Overwegb, I. Rodriguez-Ramos, The role of alpha-iron and cementite phases in the growing mechanism of carbon nanotubes:a 57Fe Mossbauer spectroscopy study, Physical Chemistry Chemical Physics,2006,8:1230-1235
    [24]Won Seok Seo, Jin Hyung Lee, Xiaoming Sun, Yoriyasu Suzuki, David Mann, Zhuang Liu, Masahiro Terashima, Philip C. Yang, Michael V. McConnell, Dwight G. Nishimura, Hongjie Dai, FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents, Nature Materials,2006,5:971-976
    [25]Shaoming Huang, Albert W. H. Mau, Selective Growth of Aligned Carbon Nanotubes on a Silver-Patterned Substrate by the Silver Mirror Reaction, J.Phys.Chem.B,2003, 107(15):3455-3458
    [1]Ling Meng, Juan Jin, Gaixiu Yang, Tianhong Lu, Hui Zhang, Chenxin Cai, Nonenzymatic Electrochemical Detection of Glucose Based on Palladium-Single-Walled Carbon Nanotube Hybrid Nanostructures, Anal. Chem.,2009,81(17):7271-7280
    [2]董绍俊,车广礼,谢远武,《化学修饰电极》,北京,科学出版社,2003,492
    [3]Xiaoqing Liu, Wenxin Niu, Haijuan Li, Shuang Han, Lianzhe Hu, Guobao Xu, Glucose biosensor based on gold nanoparticle-catalyzed luminol electrochemiluminescence on a three-dimensional sol-gel network, Electrochem. Commun.,2008,10:1250-1253
    [4]Zhuang Liu, Scott Tabakman, Kevin Welsher, Hongjie Dai, Carbon Nanotubes in Biology and Medicine: In vitro and in vivo Detection, Imaging and Drug Delivery, Nano Res.,2009, 2:85-120
    [5]Kannan Balasubramanian, Marko Burghard, Biosensors based on carbon nanotubes, Anal. Bioanal. Chem.,2006,385(3):452-468
    [6]Gustavo A. Rivas, Maria D. Rubianes, Marcela C. Rodriguez, Nancy F. Ferreyra, Guillermina L. Luque, Maria L. Pedano, Silvia A. Miscoria, Concepcion Parrado, Carbon nanotubes for electrochemical biosensing, Talanta,2007,74(3):291-307
    [7]Da Chen, Geng Wang, Jinghong Li, Interfacial Bioelectrochemistry: Fabrication, Properties and Applications of Functional Nanostructured Biointerfaces,J. Phys. Chem. C,2007, 111(6):2351-2367
    [8]Fernando Patolsky, Yossi Weizmann, Itamar Willner, Long-range electrical contacting of redox enzymes by swcnt connectors, Angew. Chem. Int Ed.,2004,43:2113-2117
    [9]Jing-Yang Chiu, Chung-Mu Yu, Miao-Ju Yen, Lin-Chi Chen, Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes, Electrochem. Commun.,2009,24:2015-2020
    [10]Xiuming Wu, Bo Zhao, Ping Wu, Hui Zhang, Chenxin Cai, Effects of Ionic Liquids on Enzymatic Catalysis of the Glucose Oxidase toward the Oxidation of Glucose,J. Phys. Chem. B, 2009,113(40):13365-13373
    [11]Michael E. G. Lyons, Gareth P. Keeley, Immobilized enzyme-single-wall carbon nanotube composites for amperometric glucose detection at a very low applied potential, Chem. Commun., 2008,2529-2531
    [12]X.B. Yan, X.J. Chen, B.K. Tay, K.A. Khor, Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase, Electrochem. Commun.,2007,9(6):1269-1275
    [13]Yinxi Huang, Wenjun Zhang, Han Xiao, Genxi Li, An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode, Biosens. Bioelectron.,2005, 21(5):817-821
    [14]Rohan Fernandes, Li-Qun Wu, Tianhong Chen, Hyunmin Yi, Gary W. Rubloff, Reza Ghodssi, William E. Bentley, Gregory F. Payne, Electrochemically Induced Deposition of a Polysaccharide Hydrogel onto a Patterned Surface, Langmuir,2003,19(10):4058-4062
    [15]江林,陈霞,杨文胜,靳健,杨百全,徐力,李铁津,一种表面具有自由羧基的CdS纳米团簇,高等化学学报,2001,22:1397-1399
    [16]Yong Liu, Jun Chen, Weimin Zhang, Zifeng Ma, Gerhard F. Swiegers, Chee O. Too, Gordon G. Wallace, Nano-Pt Modified Aligned Carbon Nanotube Arrays Are Efficient, Robust, High Surface Area Electrocatalysts, Chem. Mater.,2008,20(8):2603-2605
    [17]Rohan Fernandes, Li-Qun Wu, Tianhong Chen, Hyunmin Yi, Gary W. Rubloff, Reza Ghodssi, William E. Bentley, Gregory F. Payne, Electrochemically Induced Deposition of a Polysaccharide Hydrogel onto a Patterned Surface, Langmuir,2003,19(10):4058-4062
    [18]吴守国,袁倬斌,《电分析化学原理》,合肥,中国科学技术大学出版社,2006,134
    [19]A. J. Bard, L. R. Faulkner,著邵元华,朱果逸,董献堆,张柏林,译《电化学方法原理和应用》第二版,北京,化学工业出版社,2005,408
    [20]E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems,J. Electroanal. Chem.,1979,101:19-28
    [21]Changzhi Zhao, Yi Meng, Changli Shao, Li Wan, Kui Jiao, Unadulterated Glucose Biosensor Based on Direct Electron Transfer of Glucose Oxidase Encapsulated Chitosan Modified Glassy Carbon Electrode, Electroanalysis,2008,20(5):520-526
    [22]Yinxi Huang, Wenjun Zhang, Han Xiao, Genxi Li, An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode, Biosens. Bioelectron.,2005, 21(5):817-821
    [23]Chunyan Deng, Jinhua Chen, Xiaoli Chen, Chunhui Xiao, Lihua Nie, Shouzhuo Yao, Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode, Biosens. Bioelectron.,2008,23(8):1272-1277
    [24]Yi Zhou, Hui Yang, Hong-Yuan Chen, Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes, Talanta, 2008,76(2):419-423
    [25]J.I. Yeh, A. Lazareck, J. Ho Kim, J. Xu, S. Du, Peptide nanowires for coordination and signal transduction of peroxidase biosensors to carbon nanotube electrode arrays, Biosens. Bioelectron.,2007,23(4):568-574
    [26]Ralph A. Kamin, George S. Wilson, Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer, Anal.Chem.,1980, 52(8):1198-1205
    [27]朱传征,许海涵,《物理化学》,北京,科学出版社,2004,368-370
    [I]Scott Calabrese Barton, Josh Gallaway, Plamen Atanassov, Enzymatic Biofuel Cells for Implantable and Microscale Devices, Chem. Rev.,2004,104(10):4867-4886
    [2]Vanesa Sanz, Susana de Marcos, Javier Galban, Using blood hemoglobin for blood analysis, Analyst,2007,133:59-66
    [3]Randall E. Holt, Therese M. Cotton, Surface-enhanced resonance Raman and electrochemical investigation of glucose oxidase catalysis at a silver electrode. J. Am. Chem. Soc.,1989, 111(8):2815-2821
    [4]Hui-Hong Liu, Zhi-Quan Tian, Zhe-Xue Lu, Zhi-Ling Zhang, Min Zhang, Dai-Wen Pang, Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films, Biosens. Bioelectron.,2004,20:294-304
    [5]Yinglin Zhou, Zhen Li, Naifei Hu, Yonghuai Zeng, James F. Rusling, Layer-by-Layer Assembly of Ultrathin Films of Hemoglobin and Clay Nanoparticles with Electrochemical and Catalytic Activity, Langmuir,2002,18(22):8573-8579
    [6]Songqin Liu, Baoping Lin, Xiaodi Yang, Qianqian Zhang, Carbon-Nanotube-Enhanced Direct Electron-Transfer Reactivity of Hemoglobin Immobilized on Polyurethane Elastomer Film, J. Phys. Chem. B,2007,111:1182-1188
    [7]Qian Zhang, Ling Zhang, Jinghong Li, DNA-Hemoglobin-Multiwalls Carbon Nanotube Hybrid Material with Sandwich Structure: Preparation, Characterization, and Application in Bioelectrochemistry, J. Phys. Chem. C,2007,111:8655-8660
    [8]Dongxiao Chen, Qian Wang, Juan Jin, Ping Wu, Hui Wang, Shuqin Yu, Hui Zhang, Chenxin Cai, Low-Potential Detection of Endogenous and Physiological Uric Acid at Uricase-Thionine-Single-Walled Carbon Nanotube Modified Electrodes, Anal. Chem.,2010, 82(6):2448-2455
    [9]Zhen-Gang Wang, Bei-Bei Ke, Zhi-Kang Xu, Covalent Immobilization of Redox Enzyme on Electrospun Nonwoven Poly(Acrylonitrile-co-Acrylic Acid) Nanofiber Mesh Filled With Carbon Nanotubes:A Comprehensive Study, Biotechnol. Bioeng.,2007,97(4):708-720
    [10]Benjamin P. Corgier, Alain Laurent, Pascal Perriat, LoiTc J. Blum, Christophe A. Marquette, A Versatile Method for Direct and Covalent Immobilization of DNA and Proteins on Biochips, Angew. Chem. Int. Ed.,2007,46(22):4108-4110
    [11]Lasse T. Nielsen, Karina H. Vase, Mingdong Dong, Flemming Besenbacher, Steen U. Pedersen, Kim Daasbjerg, Electrochemical Approach for Constructing a Monolayer of Thiophenolates from Grafted Multilayers of Diaryl Disulfides, J.Am. Chem. Soc.,2007, 129(7):1888-1889
    [12]Jeffrey L. Bahr, Jiping Yang, Dmitry V. Kosynkin, Michael J. Bronikowski, Richard E. Smalley, James M. Tour, Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts:A Bucky Paper Electrode,J. Am. Chem. Soc.,2001,123(27):6536-6542
    [13]Chang-Soo Lee, Sarah E. Baker, Matthew S. Marcus, Wensha Yang, Mark A. Eriksson, Robert J. Hamers, Electrically Addressable Biomolecular Functionalization of Carbon Nanotube and Carbon Nanofiber Electrodes, Nano. Letters.,2004,4(9):1713-1716
    [14]Guozhen Liu, J. Justin Gooding, An Interface Comprising Molecular Wires and Poly(ethylene glycol) Spacer Units Self-Assembled on Carbon Electrodes for Studies of Protein Electrochemistry, Langmuir,2006,22(17):7421-7430
    [15]Jannie C. Swarts, Derek Laws, William E. Geiger, An Organometallic Electrode Based on Covalent Attachment of the Cobaltocenium Group to Carbon, Organometallics,2005, 24(3):341-343
    [16]Richa Sharma, Joon Hyun Baik, Chrisantha J. Perera, Michael S. Strano, Anomalously Large Reactivity of Single Graphene Layers and Edges toward Electron Transfer Chemistries, Nano Lett.,2010,10:398-405
    [17]Dodzi Zigah, Jean-Marc Noe l, Corinne Lagrost, Philippe Hapiot, Charge Transfer between Electroactive Species Immobilized on Carbon Surfaces by Aryl Diazonium Reduction. SECM Investigations, J. Phys. Chem. C,2010,114(7):3075-3081
    [18]Sarah E. Baker, Kiu-Yuen Tse, Eve Hindin, Beth M. Nichols, Tami Lasseter Clare, Robert J. Hamers, Covalent Functionalization for Biomolecular Recognition on Vertically Aligned Carbon Nanofibers, Chem. Mater.,2005,17(20):4971-4978
    [19]Zhangquan Peng, Allan Hjarbaek Holm, Lasse Tholstrup Nielsen, Steen Uttrup Pedersen, Kim Daasbjerg, Covalent Sidewall Functionalization of Carbon Nanotubes by a. "Formation-Degradation" Approach, Chem. Mater.,2008,20(19):6068-6075
    [20]Susan Boland, Frederic Barriere, Donal Leech, Designing Stable Redox-Active Surfaces: Chemical Attachment of an Osmium Complex to Glassy Carbon Electrodes Prefunctionalized by Electrochemical Reduction of an In Situ-Generated Aryldiazonium Cation, Langmuir,2008, 24(12):6351-6358
    [21]Jay R. Lomeda, Condell D. Doyle, Dmitry V. Kosynkin, Wen-Fang Hwang, James M. Tour, Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets, J. Am. Chem. Soc.,2008,130(48):16201-16206
    [22]Benjamin P. Corgier, Christophe A. Marquette, Loi c J. Blum, Diazonium-Protein Adducts for Graphite Electrode Microarrays Modification:Direct and Addressed Electrochemical Immobilization, J.Am. Chem. Soc.,2005,127:18328-18332
    [23]Ronen Polsky, Jason C. Harper, Shawn M. Dirk, Dulce C. Arango, David R. Wheeler, and Susan M. Brozik, Diazonium-Functionalized Horseradish Peroxidase Immobilized via Addressable Electrodeposition:Direct Electron Transfer and Electrochemical Detection, Langmuir,2007,23(2):364-366
    [24]Wenrong Yang, Pall Thordarson, J Justin Gooding, Simon P Ringer, Filip Braet, Carbon nanotubes for biological and biomedical applications, Nanotechnology,2007,18:412001
    [25]Alexis Laforgue, Tania Addou, Daniel Belanger, Characterization of the Deposition of Organic Molecules at the Surface of Gold by the Electrochemical Reduction of Aryldiazonium Cations, Langmuir,2005,21(15):6855-6865
    [26]Sini George, Hian Kee Lee, Direct Electrochemistry and Electrocatalysis of Hemoglobin in Nafion/Carbon Nanochip Film on Glassy Carbon Electrode, J. Phys. Chem. B,2009, 113:15445-15454
    [27]Khaled Charradi, Claude Forano, Vanessa Prevot, Abdesslem Ben Haj Amara, Christine Mousty, Direct Electron Transfer and Enhanced Electrocatalytic Activity of Hemoglobin at Iron-Rich Clay Modified Electrodes, Langmuir,2009,25(17):10376-10383
    [28]Pierre R. Marcoux, Philippe Hapiot, Patrick Batail, Jean Pinson, Electrochemical functionalization of nanotube films:growth of aryl chains on single-walled carbon nanotubes, New Journal of Chemistry,2004,28:302-307
    [29]Wei Sun, Ruifang Gao, Kui Jiao, Electrochemistry and Electrocatalysis of Hemoglobin in Nafion/nano-CaCO3 Film on a New Ionic Liquid BPPF6 Modified Carbon Paste Electrode, J. Phys. Chem. B,2007,111:4560-4567
    [30]Emmanuel Topoglidis, Yeni Astuti, Francine Duriaux, Michael Gratzel, James R. Durrant, Direct Electrochemistry and Nitric Oxide Interaction of Heme Proteins Adsorbed on Nanocrystalline Tin Oxide Electrodes, Langmuir,2003,19(17):6894-6900
    [31]A. J. Bard, L. R. Faulkner著,邵元华,朱果逸,董献堆,张柏林译,《电化学方法原理和应用》第二版,北京,化学工业出版社,2005,408
    [32]Ralph A. Kamin, George S. Wilson, Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer, Anal.Chem.,1980, 52(8):1198-1205
    [33]朱传征,许海涵,《物理化学》,北京,科学出版社,2004,368-370
    [34]Shihong Chen, Ruo Yuan, Yaqin Chai, Lingyan Zhang, Na Wang, Xuelian Li, Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles, Biosens. Bioelectron.,2007, 22(7):1268-1274

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700