用户名: 密码: 验证码:
高压相变中的载流子行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用金刚石对顶砧(DAC)以及相关的高压原位物理量测量方法,系统研究了LiCr0.35Mn0.65O2、Zn系硫化物(ZnX,X=S、Se、Te)高压结构相变过程中的电学性质和载流子行为的变化。
     LiCr0.35Mn0.65O2在5.83GPa时由菱方结构转变为立方结构(Fd/3m);至20.35GPa时转变为四方结构相,空间群为(I41/amd)。在1.10–5.36GPa内,压力导致活化焓增加,载流子受到的散射较小,电导率的增加,界面状态发生了改变。卸压力后,活化焓会减小至常压值,但压力作用后形成的界面状态得以保留。在6.32–21.66GPa和22.60–26.22GPa压力区,电导率的增加源于载流子浓度的增加,压力对晶粒区域的电输运变化影响较小且可逆;而在晶界区域,加压使得晶界缺陷的种类和数量发生改变,是不可逆的。
     霍尔系数、载流子浓度、迁移率在ZnX(X=S,Se,Te)相变压力点均出现不连续变化。在6.59GPa以前,ZnTe电导率增加是由于载流子浓度和迁移率同时增加引起的,而且迁移率的变化对电导率增加的影响大于载流子浓度的变化;而在6.59GPa后,电导率的增加是由于载流子浓度的增加而引起的。ZnSe岩盐矿相电导率增加主要来自于载流子浓度的增加。
High pressure method is very important in basic physics research. The structure and interior mutual actions will have special changes under high pressure, such as structure phase transition, electronic phase transition, metallized phase transition, superconductivity etc. Phase transitions under action of pressure present the most interest as they lead to sharp changes both of crystal lattice and also of electron transportation. Carrier is the basic partical in electrical transportation process, and the changes of electrical transportation properties can be obtained through analyzing the changes of carrier behavior. Therefore, to know the the changes of electrical transportation properties in phase transition process, it is necessary to study the carrier behavior under high pressure. In this thesis, using DAC and integrated microcircuit, the structure and electrical properties of LiCr0.35Mn0.65O2 have been studied, and Hall effect of ZnX(X=S、Se、Te)has been investigated.
     Synchrotron X-ray diffraction showed that the rhombohedral phase of LiCr0.35Mn0.65O2 transforms to a cubic phase with space group Fd/3m at 5.83 GPa, and the LiCr 0.35Mn0.65O2 structure is a tetragonal unit cell with space group I41/amd after 20.35 GPa. Pressure decreases the ionic radius of Cr3+, which leads the Cr3+ ion can not limit the length of Mn-O bond. The spin configuration of the Mn3+ ion varies from low-spin to high-spin. At the same time, the atoms at the octahedral sites are unlike, which lowers the kinetic barriers involved in the redistribution of cations. These lead the structural phase transformation of LiCr0.35Mn0.65O2 occurs at 5.63 GPa. At every phase transition pressure, the discontinuous changes of activation enthalpy and conductivity have been found. The plot of temperature dependence of conductivity indicates that all the phases of LiCr0.35Mn0.65O2 have the semi-conducting character. The conductivity increases with pressure increasing in the whole pressure region, while the change mechanisms of conductivity are different in different phases. In the pressure range 1.10--5.36 GPa, the activation enthalpy increases with pressure increasing, which results in the carrier concentration decreasing, so that the conductivity should be reduced. In fact, the conductivity increases with pressure increasing in this range. This result indicates that the carrier scattering decreases with pressure, and the increase of conductivity induced by carrier scattering variation exceeds the decrease of conductivity induced by carrier concentration decrease, which finally leads to the increase of conductivity. In the pressure ranges 6.32--21.66 GPa and 22.60--26.22 GPa, the activation enthalpy decreases with pressure increasing, which has a positive contribution to the conductivity increase. Moreover, the increase of conductivity is mainly from the decrease of activation enthalpy.
     Conductivity is an important parameter to characterize electrochemical performance of the cathode materials. Our experimental results indicate that both pressure and temperature have positive contributions to the electrical conductivity increase, which is useful for raising the electrochemical performance of LiCr0.35Mn0.65O2. Although the increase of activation enthalpy is not helpful for increasing the conductivity in pressure range of 1.10--5.36 GPa, the interface feature has been improved, which is confirmed by carrier scattering decrease under compression. As the pressure is unloaded, the activation enthalpy will return to the value under ambient condition, while the interface improvement can be reserved. It can be concluded that to treat LiCr0.35Mn0.65O2 under high pressure, in fact, is an effective method to improve its electrochemical performance.
     The impedance spectroscopy of the Nyquist representation shows two overlapped arcs in the complex impedance plane which correspond to the electrical transportation of grain and grain boundary respectively under different pressures. Approximately at 5.63GPa and 19.63GPa, both the resistance and the relaxation frequency of grain and grain boundary change discontinuously, corresponding to the phase transitions of LiCr0.35Mn0.65O2. In the lower pressure region, the grain boundary resistance is higher than grain resistance, while it is lower than that after 22.60 GPa, which indicates that the pressure changes the dominant region of charge carrier transportation from the grain boundary to the grain. In the grain region, the transportation property changes are reversible under pressure; while in the grain boundary region, the Pressure induces the variation of the type and amount of defects in the grain boundary region, which is irreversible. These finally leads that the sample resistance in the decompression process is much lower than that in the compression process. Pressure increases the resistance activation energy and the carrier concentration, which finally leads to the decrease of resistance. Pressure decreases the frequency activation energy and the relaxation energy barrier, and increases the relaxation frequency of grain and grain boundary. In the whole region, dERGR/dp is smaller than dERGB/dp, which indicates that pressure has a larger effect on the transportation properties of grain boundary than that of grain.
     The Hall effect of ZnTe showed that Hall coefficient, carrier concentration and mobility change discontinuously at 9.73 and 12.45 GPa, corresponding to the phase transitions of ZnTe from zinc blende to cinnabar then to Cmcm structure. The carrier concentration and mobility change discontinuously at 14.36 GPa, which is maybe related to the occurrence of unknown phase. At 6.59 GPa, the deep-to-shallow transition of acceptor levels results in the increase of the charge carrier concentration by three orders of magnitude. The decrease of the deep acceptor ionization energy leads to the increase of the charge carrier concentration of zinc blende and cinnabar structure with pressure.
     The conductivity increases with pressure increasing in the whole pressure region, while the change mechanisms of conductivity are different in different phases. Before 6.59 GPa, the conductivity increase is from the increases of carrier concentration and mobility, and the effect of mobility variation on conductivity is larger than that of carrier concentration. In the pressure region of 6.59-9.73 GPa, the conductivity increase is from the increase of carrier concentration. In the cinnabar and Cmcm phases, the carrier concentration increase leads t the conductivity increase.
     The theoretic result showed that in the Cmcm phase of ZnTe, the conduction-band and valence-band are overlapped, which would exhibit electron-like conductivity. However, our experimental result indicates that the Cmcm phase has hole-like conductivity. The theoretic calculation bases on the perfect single crystal; while the sample used in our experiment is polycrystalline, which has numbers of acceptor defects, the acceptors are ionized at room temperature, and finally leads to the number of hole is larger than that of electron and the hole transportation is dominant.
     The Hall effect of ZnSe showed that all the parameters change discontinuously at the transition region from zinc blende to rock salt phase. The conductivity increase of rock salt structure is mainly from the carrier concentration increase. According to the carrier concentration and mobility variation trends, the conductivity increase of zinc blende structure is also mainly from the carrier concentration increase. Hall coefficient changes from negative to positive at 12.32 GPa, which indicates that the dominant carrier changes from electron to hole, then Hall coefficient returns to negative at 22.06 GPa, indicating the dominant carrier returns to electron.
     The Hall effect of ZnS showed that all the parameters change discontinuously at the transition region from zinc blende to rock salt phase. Hall coefficient changes from negative to positive at 20.71 GPa, which indicates that the dominant carrier changes from electron to hole. By compared the conductivity in compression process with that in decompression process, the phase transition of ZnS exhibits hysteresis character.
     In conclusion, using high pressure XRD, dc-conductivity and ac-impedance technologies, the structure and electrical properties of LiCr0.35Mn0.65O2 have been investigated, and the carrier behavior under high pressure ZnX (X=S, Se, Te) has been studied.
引文
[1] G. R. Olhoeft, Low-frequency electrical properties, Geophysics, 1985, 50(12), 2492-2503.
    [2] R. J. Knight and A. Nur, The dielectric constant of sandstones, 60 kHz to 4 MHz, Geophysics, 1987, 52 (5):644-654.
    [3] J. J. Roberts and J. A. Tyburczy, Frequency dependent electrical properties of polycrystalline olivine compacts, J. Geophys. Res. 1991, 96(B10): 16205-16222.
    [4] J. J. Roberts and J. A. Tyburczy, Frequency dependent electrical properties of dunite as functions of temperature and oxygen fugacity, Phys. Chem. Minerals, 1993,19(11): 545-561.
    [5] J. J. Roberts and J. A. Tyburczy, Impedance spectroscopy of single and polycrystalline olivine: evidence for grain boundary transport, Phys. Chem. Minerals, 1993, 20: 19-26.
    [6] J. S. Hubener and R. G. Dillenburg, Impedance spectra of dry silicate minerals and rock: qualitative interpretation of spectra, American Mineralogist, 1995, 80: 46-64.
    [7] R. Hinrichs and J. A. H. da. Jornada, Piston–cylinder apparatus for high-pressure impedance spectroscopy, Rev. Sci. Instrum., 1997, 68 (1): 193-196
    [8] Y. S. Xu, B. T. Poe and T. S. Shankland, Electrical conductivity of olivine, Wadsleyite, and Ringwoodite under upper-mantle conditions, Science, 1998, 280: 1415-1418.
    [9] D Sakamoto, A Yoshiasa, T Yamanaka, O Ohtaka1 and K Ota, Electric conductivity of olivine under pressure investigated using impedance spectroscopy, J. Phys.: Condens. Matter,2002, 14: 11375–11379.
    [10] T. J. Shankland and H. S. Waff, Partital melting and electrical conductivity anomalies in the upper mantle, J. Geophys. Res., 1977, 82: 5409-5417.
    [11] R. N. Schock, A. G. Dura, H. C. Heard, M. Manghnani and S. Akimoto, High pressure Research: Application in Geophysics [C]. Academic, San Diego, 1977, 39-51.
    [12] D. C. Presnall, C. L. Simmons, and H. Porath, Changes in electrical conductivity of a synthetic basalt during melting, J. Geophys. Res. 1972, 77: 5665-5672.
    [13] H. S. Waff, Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry, J. Geophys. Res. 1974, 79(26): 4003-4010.
    [14] B. J. Wanamaker and A. G. Duba, Electrical conductivity of polycrystalline olivine containing a silicate glass, Geophys. Res. Lett. 1993, 20(19): 2107.
    [15] J. J. Roberts and J. A. Tyburczy, Partial-melt electrical conductivity: influence of melt composition, J. Geophys. Res. 1999, 104(B4): 7055-7065.
    [16] G. M. Partzsch, F. R. Schilling and J. Arndt, The influence of partial melting on the electrical behavior of crustal rocks: laboratory examinations, model calculations and geological interpretations, Tectonophysics, 2000, 317: 189-203.
    [17] J. Maumus, N. Bagdassarov and H. S. Schmeling, Electrical conductivity and partial melting of mafic rocks under pressure, Geochimica et Cosmochimica Acta, 2005, 69(19): 4703-4718.
    [18] J. J. Roberts and J. A. Tyburczy, Frequency dependent electrical properties of minerals and partial-melts, Surv. Geophys. 1994, 15: 239-262.
    [19] G. Nover, S. Heikamp, D. Freund. Natural Hazards, 2000, 21: 317.
    [20] Xu Yousheng, Xie Hongsen, Guo Jie, et al., The conductivity of NaCl solution at 0.4~5.0 GPa and 25~500℃, Science in China (Series D), 1997, 40(4): 398-402.
    [21] Zheng Haifei, Xie Hongsen, Xu Yousheng, et al., Measurement of electrical conductivity of 0.001 mol NaCl solution under high pressure Chinese Science Bulletin, 1997, 42(18): 1563-1565.
    [22]苏根利,谢鸿森,丁东业等,高温高压下流体中离子缔合常数的确定,高压物理学报, 1999, 13(Suppl):147-150.
    [23] N.S.Bagdassarov and N. Dele′pine,α–βInversion in quartz from low frequency electrical impedance spectroscopy, Journal of Physics and Chemistry of Solids, 2004, 65(8-9): 1517-1526.
    [24] N. Bagdassarov, N. C, H. Freiheit and A. Putnis, Ionic conductivity and pressure dependence of trigonal-to-cubic phase transition in lithium sodium sulphate, Solid State Ionics, 2001, 143(3-4): 285-296.
    [25] N. Bagdassarov and G. Lentz, High pressure behaviour of KHSO studied by electrical impedance spectroscopy, 4Solid State Communications, 2005, 136(1): 16-21.
    [26] D. Long, Effects of Pressure on the Electrical Properties of Semiconductors, Physical Review, 1956, 101: 1256
    [27] D. Long, Effects of Pressure on the Electrical Properties of Indium Antimonide, Physical Review, 1955, 99: 388-390
    [28] J. R. Vai?nys and R. S. Kirk, Magnetogalvanic Measurements to 60 000 Bar, Review of Scientific Instruments, 1965, 36: 1799
    [29] Eliezer Rapoport, Melting-Curve Maxima at High Pressure. II. Liquid Cesium. Resistivity, Hall Effect, and Composition of Molten Tellurium, Journal of Chemical Physics, 1968, 48:1433
    [30] Ashok K. Saxena, Deep levels in Ga1-xAlxAs under pressure, Applied Physics Letters, 1980, 36: 79
    [31] D. W. Harrison, Observation of the transition from semiconductor to high-Tc superconductor in (SnxEu1–x)yMo6S8 under high pressure, Physical Review Letters,1981, 46:280
    [32] H. Boppart and P. Wachter, Semiconductor-Metal Transition in Intermediate-Valence Tm Compounds: Novel Features, Physical Review Letters, 1984, 53:1759
    [33] H. K. Mao, et al, Year book of Carnegie Institution of Washington, 1976, 75: 824
    [34] H. K. Mao and P. M. Bell, Electrical resistivity measurements of conductors in the diamond-window, high-pressure cell, Review of Scientific Instruments, 1981, 52: 615
    [35] T. A. Grzybowski and A. L. Ruoff, Band-overlap metallization of BaTe, Physical Review Letters, 1984, 53: 489
    [36] D. Patel, et al, Hall effect measurement in the diamond anvil high-pressure cell, Review of Scientific Instruments, 1986, 57: 2795
    [37] D. Patel, et al, Pressure dependence of electron transport in InP, Applied Physics Letters, 1987, 50: 1829
    [38] D. Patel, et al, Effect of pressure on the transport properties of (In, Ga)As, Journal of Applied Physics, 1988, 64: 2790
    [39] D. W. Koon, et al, What do you measure when you measure the Hall effect? Review of Scientific Instruments, 1993, 64: 510
    [40] S. liu, et al, Effect of probe geometry on the Hall response in an inhomogeneous magnetic field: A numerical study, Journal of Applied Physics, 1998,83: 6161
    [41] J. K. Scherschligt, et al, Measuring the Hall weighting function for square and cloverleaf geometries, Review of Scientific Instruments, 2000, 71: 587
    [42] Yonghao Han, Chunxiao Gao, et al, Exploring pressure-induced phase transitions of C3 N4 with graphite structure by electrical resistance measurements, Carbon, 2005, 43: 1109
    [43] Yonghao Han, Chunxiao Gao, et al, Integrated microcircuit on a diamond anvil for high-pressure electrical resistivity measurement, Applied Physics Letters, 2005, 86: 064104
    [44] T. Yamauchi, et al, Hall Effect of Iodine in High Pressure, Journal of the Physical Society of Japan, 1994, 63: 3207
    [45] M. Holz, et al, Enhanced sensitivity due to current redistribution in the Hall effect of semiconductor-metal hybrid structures, Applied Physics Letters, 2005, 86: 072513
    [46] V. Peňa, et al,Giant Magnetoresistance in Ferromagnet/Superconductor Superlattices, Physical Review Letters, 2005, 94: 057002
    [47] V. A. Sidorov, et al, Superconducting and normal-state properties of heavily hole-doped diamond, Physical Review B, 2005, 71: 060502
    [48] Y. Dagan, et al, Origin of the Anomalous Low Temperature Upturn in the Resistivity of the Electron-Doped Cuprate Superconductors, Physics Review Letters, 2005, 94: 057005
    [49] C. Z. Selim, The GaAs Hall element as a pressure transducer, Review of Scientific Instruments, 1995, 66: 4996
    [50] S. Kaji, et al, Pressure enhanced tunnel magnetoresistance in Co-Al-O granular films, Physical Review B, 2003, 68:054429
    [51] J. S. Tse, et al, Electron-phonon coupling in high-pressure Nb, Physical Review B, 2004, 69: 132101
    [52]“在金刚石对顶砧上集成金属电极的方法”,韩永昊,高春晓等,国家发明专利,批准号:ZL 02132456.5
    [53] R. S. Hixson, D. A. Boness, J. W. Shaner and J. A. Moriarty, Acoustic Velocities and Phase Transitions in Molybdenum under Strong Shock Compression, Phys. Rev. Lett. 1989, 62(6): 637-640.
    [54] A. P. Jeptcoat, R. J. Hemley and H. M. Mao, X-ray diffraction of ruby(Al2O3 :Cr 3+) to 175 GPa, Physica B, 1988, 150: 115-121.
    [55] R. J. Hemley, H. K. Mao, G. Shen, J. Badro, P. Gillet, M. Hanfland and D. Hauserman, X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures, Science, 1997, 276: 1242-1245.
    [56] R. Richet, J. Xu, and H. K. Mao, Quasi-hydrostatic compression of ruby to 500 Kbar, Phys. Chem. Minerals, 1988, 16: 207-211.
    [57]韩永昊,金刚石对顶砧上原位电导率测量方法.吉林:吉林大学原子与分子物理研究所,2005.
    [58]贺春元,高压下II-VI族化合物CdX(X=S、Se、Te)的电输运性质.吉林:吉林大学原子与分子物理研究所,2007.
    [59] van der Pauw, L. J., A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Res. Reports, 1958, 13: 1-9。
    [60]胡廷静,金刚石对顶砧上原位霍尔效应测量方法.吉林:吉林大学原子与分子物理研究所,2008.
    [61] B. Scrosati, challenge of portable power, Nature, 1995, 373: 557-558.
    [62] J.-M. Tarascon and M. Armand, issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414: 359-367.
    [63] M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novμk, insertion electrode materials for rechargeable lithium batteries, Adv. Mater, 1998, 10: 725-763.
    [64] W. D. Johnston, R. R. Heikes, and D. Sestrich, the preparation, crystallography, and magnetic properties of the LixCo(1?x)O system, J. Phys. Chem. Solids, 1958, 7: 1-13.
    [65] F. Ronci, B. Scrosati, V. Rossi Albertini, and P. Perfetti, in situ energy dispersive X-ray diffraction study of LiNi0.8Co0.2O2 cathode material for lithium batteries, J. Phys. Chem. B, 2001, 105: 754-759.
    [66] J. Lei, F. McLarnon, and R. Kostecki, in situ raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in a Li-Ion battery composite cathode, J. Phys. Chem. B, 2005, 109: 952-957.
    [67] J. B. Goodenough, D. G. Wickham and W. J. Croft, Some magnetic and crystallographic properties of the system Li+xNi++1?2xni+++xO, J. Phys. Chem. Solids, 1958, 5: 107-116.
    [68] A. R. Armstrong, P. G. Bruce, synthesis of layered LiMnO2 as an electrode for rechargeable lithium btteries, Nature, 1996, 381: 499-500.
    [69] G. Dittrich, R. Hoppe, Zur Kristallstruktur von LiMnO2, Z. Anorg. Allg. Chem., 1969, 365: 337.
    [70] F. Capitaine, P. Gravereau, C. Delmas, a new variety of LiMnO2 with a layered structure, Solid State Ionics, 1996, 89: 197-202.
    [71] R. J. Gummow, D.C. Liles and M.M. Thackeray, Lithium extraction from orthorhombic lithium manganese oxide and the phase transformation to spinel, Mater. Res. Bull., 1993, 28: 1249-1256.
    [72] G. Ceder, S. K. Mishra, the stability of orthorhombic and monoclinic layered LiMnO2 , Electrochem. Solid-state Lett., 1999, 2: 550-552.
    [73] S.–J. Hwang, H.–S. Park, J.–H. Choy, G. Campet, evolution of local structure around manganese in layered LiMnO2 upon chemical and electrochemical delithiation/relithiation, Chem. Mater., 2002, 12: 1818-1826.
    [74] D. D. MacNeil, Z. Lu and J. R. Dahn, structure and electrochemistry of Li[NixCo1–2xMnx]O2, J. Electrochem. Soc., 2002, 149: A1332-A1336.
    [75] T. Ohzuku, Y. Makimura, Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries, Chem. Lett., 2001, 30: 744-752.
    [76] S. T. Myung, S. Komaba, N. Hirosaki et al., structural investigation of layered Li1–2xMnxCr1–xO2 by XANES and in situ XRD measurements, J. Electrochem. Soc., 2003, 150: A1560-A1568.
    [77] S. Gopukumar, K. Y. Chung, K. B. Kim, novel synthesis of layered LiNiMnO2 as cathode material for lithium rechargeable cells, ElectroChimica Acta, 2002, 49: 803-810.
    [78] S.Venkatraman and A. Manthiam, structural and chemical characterization of layered Li1-xNi1-yMnyO2 Oxides, Chem. Mater., 2003, 15: 5003-5009.
    [79] Junji Akimoto, Yasuhiko Takahashi, Yoshito Gotoh and Kenji Kawaguchi, synthesis, crystal structure, and magnetic property of delithiated LixMnO2 (x < 0.1) single crystals: a novel disordered rocksalt-type manganese dioxide, Chem. Mater., 2003, 15: 2984-2990.
    [80] Yingjin Wei, Kwnag Bum Kim and Gang Chen, evolution of the local structure and electrochemical properties of spinel LiNixMn2?xO4 (0≤x≤0.5), ElectroChimica Acta, 2006, 51: 3365-3373.
    [81] R. Alcántara, M. Jaraba, P. Lavela and J. L. Tirado, X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4electrodes, Journal of Electroanalytical Chemistry, 2004, 566: 187-192.
    [82] C. Wolverton, A. Zunger, prediction of Li intercalation and battery voltages in layered vs. cubic LiCoO2 , J. Electrochem. Soc., 1998, 145: 2424-2431.
    [83] X. Wang, I. Loa, K. Kunc, K. Syassen, M. Amboage, effect of pressure on the structural properties and Raman modes of LiCoO2, Phy. Rev. B.2005, 72: 224102(8).
    [84] F. Coustier, J. Hill, B. B. Owens, S. Passerini, W. H. Smyrl, doped vanadium oxides as host materials for lithium intercalation, J. Electrochem. Soc., 1999, 146: 1355-1360.
    [85] Zeng YueWu, Tu XiaoYan, Lu GuangLei, preparation and structure of chromium substituted layered LiMnO2 in electrochemical process, Chinese Journal of Nonferrous Metals,2005, 15: 42-46.
    [86] Y. J. Wei, L. Y. Yan, C. Z. Wang, X. G. Xu, F. Wu and G. Chen, effects of Ni doping on [MnO6] octahedron in LiMn2O4, J. Phys. Chem. B, 2004, 108: 18547-18551.
    [87] A. R. Armstrong, A. D. Robertson, R. Gitzendanner, P. G. Bruce, the layered intercalation compounds Li(Mn1-yCoy)O2: positive electrode materials for lithium-ion batteries, J. Solid State Chem.,1999, 145: 549-556.
    [88] X. G. Xu, C. Li, J. X. Li, U. Kolb, F. Wu, and G. Chen, electronic structure of Li(Co, Mg)O2 studied by electron energy-loss spectrometry and first-principles calculation, J. Phys. Chem. B, 107: 11648-11651.
    [89] S. Kano, M. Sato, Structure and lithium insertion characteristics of LiCrMnO4 , Solid State Ionics.,1995, 79: 215.
    [90] Z. F. Huang, F. Du, C. Z. Wang, D. P. Wang, G. Chen, low-spin Mn3+ ion in rhombohedral LiMnO2 predicted by first-principles calculations, Phy. Rev. B, 2007, 75: 054411(7).
    [91] J. C. C. Abrantes, J. A. Labrincha, J. R. Frade, an alternative representation of impedance spectra of ceramics Mater. Res. Bull., 2000, 35: 727-740.
    [92] J. H. Chang, T. Takai, B. H. Koo, J. S. Song, T. Handa, and T. Yao, Aluminum-doped n-type ZnTe layers grown by molecular-beam epitaxy, Appl. Phys. Lett., 2001, 79: 785-787.
    [93] J. H. Chang, T. Takai, K. Godo, J. S. Song, B. H. Koo, T. Handa, and T.Yao, ZnTe-Based Light-Emitting-Diodes Grown on ZnTe Substrates by Molecular Beam Epitaxy, Phys. Status Solidi B, 2002, 229: 995-999.
    [94] Weiming Wang, Albert S. Lin, and Jamie D. Phillips, intermediate-band photovoltaic solar cell based on ZnTe:O, Appl. Phys. Lett., 2009, 95: 011103(3).
    [95] G. A. Samara and H. G. Drickamer, pressure induced phase transitions in some II–VI compounds, J. Phys. Chem. Solids, 1962, 23: 457-461.
    [96] A. Ohtani, M. Motobayashi, A. Onodera, polymorphism of ZnTe at elevated pressure, Phys. Lett. A, 1980, 75: 435-437.
    [97] A. San Miguel, A. Polian, M. Ganthier, J. P. Itié, ZnTe at high pressure: X-ray-absorption sepcttrscopy and X-ray-diffraction studies, Phys. Rev. B,1993, 48: 8683-8693.
    [98] A. Onodera, A. Ohtani, S. Tsuduki and O. Shimomura, synchrotron X-ray diffraction study of ZnTe at high pressure,Solid State Commun., 2008, 145: 374-378.
    [99] J. Camacho, I. Loa, A. Cantarero, K. Syassen, vibrational properties of ZnTe at high pressures, J. Phys.: Condens. Matter, 2002, 14: 739-757.
    [100] Shoichi Endo, Akira Yoneda, Masashi Ichikawa, Shoichi Tanaka and Shin-ichi Kawabe, high pressure study of transition in ZnTe by manganin coil method, J. Phys. Soc. Jpn, 1982, 51: 138-140.
    [101] Sergey V. Ovsyannikov, Vladimir V. Shchennikov, phase transitions investigation in ZnTe by thermoelectric power measurements at high pressure, Solid State Commun.,132: 333-336.
    [102] R. Franco, P. Mori-Sánchez, J. M. Recio, R. Pandey, theoretical compressibilities of high-pressure ZnTe polymorphs, Phys. Rev. B, 2003, 68: 195208(5).
    [103] G. D. Lee, J. Ihm, microscopic study of the pressure-induced structural phase transition of ZnTe, Phys. Rev. B,1996, 53: R7622-R7625.
    [104] M. C?té, O. Zakharov, A. Rubio, M. L. Cohen, ab initio calculations of the pressure-induced structural phase transitionsfor four II-VI compounds, Phys. Rev. B,1997, 55: 13025-13031.
    [105] R. J. Nelmes, M. I. McMahon, N. G. Wright, D. R. Allan, crystal structure of ZnTe III at 16 GPa, Phys. Rev. Lett., 1994, 73:1805-1808.
    [106] A. San Miguel, A. Polian, J. P. Itié, a variable coordination structure in II–VI semiconductors: the cinnabar phase, J. Phys. Chem. Solids,1995, 56:555-558.
    [107] R. Gangadharan, V. Jayalakshmi, J. Kalaiselvi, S. Mohan, R. Murugan, B. Palanivel, E lectronic and structural properties of zinc chalcogenides ZnX (X=S, Se, Te), J. Alloys Compd.,2003, 359: 22-26.
    [108] D. Errandonea, A. Segura, D. Martínez-García, and V. Mu?oz-San Jose, Hall-effect and resistivity measurements in CdTe and ZnTe at high pressure: Electronic structure of impurities in the zinc-blende phase and the semimetallic or metallic character of the high-pressure phases, Phys. Rev. B, 2009, 79: 125203(6).
    [109] M. M. Li, D. J. Strachan, T. M. Ritter, M. Tamargo, and B. A. Weinstein, Luminescence of deep phosphorous and arsenic impurities in ZnSe at high pressure, Phys. Rev. B, 1994, 50: 4385-4390.
    [110] B. A. Weinstein, T. M. Ritter, D. Stracha, M. Li, H. Luo, M. Tamarg, and R. Park, competition of deep and shallow impurities in wide-gap II-VI semiconductors under pressure, Phys. Status Solidi B,1996, 198: 167-180.
    [111] V. Iota and B. A. Weinstein, effects of pressure on the Zn vacancy in ZnSe: essential role of lattice relaxation for a basic C3υdefect, Phys. Rev. Lett.,1998, 81: 4955-4958.
    [112] J. P. Perdew and Y. Wang, Atom, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 1992, 46: 6671-6687.
    [113] J. A. White and D. M. Bird, Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calaculations, Phys. Rev. B, 1994, 50: 4954-5957.
    [114] John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77: 3865-3868.
    [115] S. R. Tiong, M. Hiramatsu, Y. Matsushima and E. Ito, the phase transition pressures of zincsulfoselenide single crystals, Japan. J. Appl. Phys., 1989, 28: 291-292.
    [116] G. Itkin, R. G. Hearne, E. Sterer, M. P. Posternak and W. Potzel, pressure-induced metallization of ZnSe, Phys. Rev. B,1995, 51: 3195-3197.
    [117] G. J. Piermarini and S. Block, ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale, Rev. Sci. Instrum., 1975, 46: 973-979.
    [118] S. Ves, K. Str?ssner, E. N. Christensen, C. K. Kim and M. Cardona, pressure dependence of the lowest direct absorption edge of ZnSe, Solid State Commun.,1985, 56: 479-483.
    [119] H. Karzel, W. Potzel, M. K?fferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz and M. P. Pasternak,lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Phys. Rev. B, 1996, 53: 11425-11438.
    [120] P. L. Smith and J. E. Martin, the high-pressure structures of zinc sulphide and zinc selenide, Phys. Lett, 1965, 19: 541-543.
    [121] V. I. Smelyansky and J. S. Tse, theoretical study on the high-pressure phase transformation in ZnSe, Phys. Rev. B, 1995, 52: 4658-4661.
    [122] M. I. McMahon and R. J. Nelmes, new structural systematics in the II-VI, III-V, and group-IV semiconductors at High Pressure, Phys. Status Solidi b, 1996, 198: 389-402.
    [123] R. G. Greene, H. A. Luo, and A. L. Ruoff, high pressure X-ray and Raman study of ZnSe, J. Phys. Chem. Solids, 1995, 56: 521-524.
    [124] J. Pellicer-Porres, A. Segura, V. Mu?oz, J. Zú?iga, J. P. Itié, A.Polian and P. Munsch, cinnabar phase in ZnSe at high pressure, Phys. Rev. B, 2002, 65: 012109(4).
    [125] A. Qteish and A. Mun?z, ab initio study of the phase transformations of ZnSe under high pressure: stability of the cinnabar and SC16 phases, J. Phys.: Condens. Matter, 2000, 12: 1705-1713.
    [126] V. K. Arora and T. Sakuntala, high-pressure phase transitions in Zn1-xMnxSe: a Raman-scattering and photoluminescence, Phys. Rev. B, 1995, 52: 11052-11058.
    [127] V. K. Arora, E. -K. Suh, U. Debska and A. K. Ramdas, Raman-scattering study of the high-pressure phase transition in Zn1-xMnxSe, Phys. Rev. B, 1988, 37: 2927-2932.
    [128] M. Uchino, T. Mashimo,, M. Kodama, T. Kobayashi, E. Takasawa, T. Sekine,Y. Noguchi, H. Hikosaka, K. Fukuoka, Y. Syono, T. Kondo and T. Yagi, phase transition and EOS of zinc sulfide under shock and static compressions up to 135 GPa, J. Phys. Chem. Solids, 1999, 60: 827-837.
    [129] J. López-Solano, A. Mujica, P. Rodríguez-Hernández and A. Mu?oz, theoretical study of ZnS under high pressure, Phys. Stat. Sol. (b), 2003, 235, 452 -455.
    [130] Serge Desgreniers, Luc Beaulieu, and Ian Lepage, pressure-induced structural changes in ZnS, Phys. Rev. B, 2000, 61: 8726-8733.
    [131] A. Qteish and M. Parrinello, stability and structural properties of the SC16 phase of ZnS under high pressure, Phys. Rev. B, 2000, 61: 6521-6524.
    [132] Yanhua Zhou, Andrew J. Campbell and Dion L. Heinz, equations of stateand optical properties of the high pressure phase of zinc sulfide, J. Phys. Chem. Solids,1991, 52: 821-825.
    [133] S.Ves, U. Schwarz, N. E. Christensen, K. Syassen and M. Cardona, cubic ZnS under high pressure: optical-absorption edge, phase transition, and calculation equation of state, Phys. Rev. B, 1990, 42: 9113-9118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700