用户名: 密码: 验证码:
掺杂锐钛矿型二氧化钛光催化性能的第一性原理计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛是作为一种氧化物半导体材料,有着很广泛的实际应用价值。其优点为:原料产地广且多,物质本身有很强的稳定性、光催化活性并且对人体无伤害,使其在光催化材料制备方面受到人们的青睐。在太阳能的储存和利用、空气净化以及杀菌、光化学转换、废水处理、贵金属回收和防雾、自洁表面等方面的有着广泛应用。但是,TiO2也拥有致命的光催化的缺陷,也就是产生的电子-空穴对容易复合,使其光催化活性受到限制。
     为了提高其光催化活性,也就是减少电子-空穴对的复合,本论文通过第一性原理的密度泛函数理论,采用掺杂改性的方法分别就非金属元素、过渡金属元素、浓度进行单因素实验计算,最终得出过渡金属元素与非金属元素共掺杂锐钛矿型Ti02的最优浓度。
     计算发现:典型非金属元素掺入TiO2中,N元素为最佳掺入元素,同时其浓度为掺N4×1×1超晶胞时为最佳浓度,禁带宽度为1.592eV,光响应范围扩展为537nm;过渡金属元素掺入TiO2中,Cu元素为最佳掺入元素,其浓度为掺Cu4×1×1超晶胞时为最佳浓度,禁带宽度为1.14ev。并且TiO2晶胞中产生了晶格畸变,形成氧空缺,能更好的捕获光电子;最终得出N-Cu共掺4×1×1超晶胞为最优掺杂方式,其禁带宽度为1.083ev,同时兼有掺N的紫外光区域吸收特性和掺Cu的氧空位机制,大大提高了TiO2的光催化综合性能,光响应范围扩展为678nm,为实际锐钛矿型TiO2掺杂改性提供了理论设计。
Titanium dioxide as an oxide semiconductor material, has a very wide range of practical value. Its advantages are: raw materials, and more widely, the material itself has a strong stability and photocatalytic activity of the human body without harm to the photocatalytic material in preparation of people of all ages. In solar energy storage and utilization, air purification and sterilization, photochemical conversion, wastewater treatment, metals recovery and fog, and other aspects of self-cleaning surface has a wide range of applications. However, TiO2 photocatalytic also has a fatal defect, which is produced by electron-hole for easy compound to the photocatalytic activity is restricted.
     In order to improve its photocatalytic activity, which is to reduce the electron-hole pair of composite, the paper by first-principles density functional theory, using the modified method of doping elements in respect of non-metallic, transition metal elements, the concentration of calculation of single-factor experiments, concluded that the transition metal elements with non-metallic elements doped anatase TiO2 optimal concentration.
     Calculated that: incorporation of TiO2 in a typical non-metallic elements, N elements is the best mixed elements, while the concentration of doped N4 x 1 x 1 supercell when the optimal concentration, band gap of 1.592eV, the light response range extended to 380nm~537nm; incorporation of transition metals in TiO2, Cu element is the best mixed elements, the concentration of doped Cu4 x 1 x 1 supercell when the optimal concentration, band gap 1.14ev. TiO2unit cell and lattice distortion produced, the formation of oxygen vacancies, can better capture the photoelectron; eventually come to N-Cu-doped 4×1×1 supercell approach for the optimal doping, the band gap 1.083ev, with both N-doped region of the N-Cu absorption properties of Cu doped with oxygen vacancies and mechanism for greatly improving the overall performance of TiO2, the light response range 678nm, the actual change-doped anatase TiO2 nature provides a theoretical design.
引文
[1]Ulrike Diebold, The surface scienc eoftitanium dioxide.surfacesciencereports,2003,48: 53.229.
    [2]张金龙,陈峰,何斌,[M]光催化,华东理工大学出版社,2004
    [3]马荣骏,TiO2的光催化作用及其研究进展(Ⅰ),稀秀.金属与硬质合金,2006,34(2):40-43.
    [4]M. Muruganandham, N. Shobana, M. Swaminathan, Optimization of solar photo catalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO2, Journal ofMolecular Catalysis A:Chemical,2006,246:154-161.
    [5]Wojciech Baran, Andrzcj Makowsld, Wladyslaw Wardas. The effect of UVradiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2 The effect of UV mdiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2, Dyes andPigments,2008,76: 226-230.
    [6]Maria Kositzi, Ioannis Poulios, Konstantini Samara, Euthimia Tsatsaroni, Efthymios Darakas, Photocatalytic oxidation of Cibacron Yellow LS-R, Journal of Hazardous Materials,2007,146:680-685.
    [7]Pantelis A. Pekakis, Nikolaos P. Xekoukoulotakis, Dionissios Mantzavinos, Treatment of textile dyehouse wastewater by TiO2 photocatalysis, Water Research,2006,40: 1276-1286.
    [8]Shengping Ruan, Fengqing Wu, Tong Zhang, Wei Gao, Baokun Xu, Muyu Zhao, Surface state studies of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 dispersions, Materials Chemistry and Physics,2001,69:7-9.
    [9]Fernando Fresno, Chantal Guillard, Juan M. Coronado, Jean. Marc Chovelon, David Tudel, Javier Sofiaa, Jean-Marie Herrmann. Photocatalytic degradation of a sulfonylurea herbicide over pureand tin doped TiO? photocatalysts,Journal of Photochemistry and Photobiology A:Chemistry,2005,173:13-20.
    [10]Jarnuzi Gunlazuardi, Winarti Andayani Lindu, Photocatalytic degradation of Penta-chlorophenol in aqueous solution employing immobilized TiO2 supported ontitanium metal。 Journal of Photochemistry and Photobiology A:Chemistry,2005,173:51—55.
    [11]E. Evgcnidou, K. Fytianos, I. Poulios, Photocatalytic oxidation ofdimethoate in aqueous solutions, Journal of Photochemistry and Photobiology A, Chemistry,2005, 175:29-38.
    [12]Jian-Qiu Chela, Duo Wang, Mao·Xu Zhu, Cong-Jie Gao, Photocatalytic degradation of dimethoate using nanosized TiO2 powder, Desalination,2007,207:87.94.
    [13]Ling Zan, Songlin Wang, wenjun Fa, Yanhe Hu, Lihong Tian, Kejian Deng, Solid phase photocatalytic degradation of polystyrene with modified llano-TiO2 Catalyst, Polymer,2006,47:8155-8162.
    [14]Huang Chen, Soo Wohn Lee, Tae Ho Kim, Bo Young Hut. Photocatalytic decomposition of benzene with plasmasprayed TiO2 based coatings on foamed aluminum, Journal ofthe European Ceramic Society,2006,26:2231-2239.
    [15]徐自力,薛宝永,杨秋景,谢超,张剑宝,杜尧国,纳米TiO2.SnO2的制备及其对庚烷的气相光催化性能,应用化学,2004,21:980.983.
    [16]Guo-Min Zuo, Zhen-Xing Cheng, Hong Chen, Guo-Wen Li, Ting Miao. Study on photocatalytic degradation of several volatile organic compounds, Journal of Hazardous Materials B,2006,128:158-163.
    [17]黄婉霞,孙作凤,吴建春,涂铭旌,纳米二氧化钛光催化作用降解甲醛的研究,稀有金属,2005,29:34.38.
    [18]梁世强,穆筱梅,葛建芳活性炭纤维负载纳米TiO2在光反应器中降解空气中微量甲醛的研究,应用化学,2006,23:456-459.
    [19]Hong QI, De—zhi SUN, Guo—qing CHI, Formaldehyde degradation by UV/TiO2/03 process using continuous flow mode, Journal ofEnvironmental Sciences,2007,19:1136.1 140.
    [20]Hai HU, Wenjun XIAO, Jian YUAN, Jianwei SHI, Mingxia CHEN, Wenfeng SHANG GUAN, Preparations of TiO2 film coated on foam nickel substrate by sol gel processes and its photocatalytic activity for degradation of acetaldehyde,Journal of Environmental Sciences,2007,19:80-85.
    [21]A. A. Ismail,I. A. Ibrahim,M. S. Ahmed, R. M. Mohamed,H. E1-Shall, Sol-gel synthesis of titania-silica photocatalyst for cyanide photodegradation, Journal of Photochemistry andPhotobiology A:Chemistry,2004,163:445-451.
    [22]A. Bozzi, I. Guasaquillo and J. Kiwi, Accelerated removal of cyanides from industrial effluents by supported TiO2 photo-catalysts, Applied Catalysis B:Environmental,2004, 51:203.211.
    [23]Xiang-Rong Xu, Hua-Bin Li, Ji-Dong Gu, Simultaneous decontamination ofhexavalent chromium and methyl tert-butyl ether by UV/TiO2 process Chemosphere,2006,63:254-260.
    [24]Zhang Junying, Ge Qi, Yang Chun, Wang Tianmin, Bactericidal Effect of LightStoring Photocatalyst on E. Coli,稀有金属材料工程,2007,36:1037-1040.
    [25]曾炽涛,陈爱平,陈爱华,刘伟,戴智铭,负载型TiO2/玻璃弹簧的光催化杀菌作用,环境与工程2003,24:520-524.
    [26]刘恩科,朱秉升,罗晋生,[M]半导体物理学,国防工业出版社,1999.
    [27]刘守新,刘鸿,[M]光催化及光电催化基础与应用,化学工业出版社,2005
    [28]施周,张文辉.环境纳米技术.化学工业出版社.2003年
    [29]钱苏华,TiO2-SnO2二元复合催化剂的制备及其光催化降解斯蒂酚酸的研究,南京理工大学硕士学位论文,2005.
    [30]夏炎,纳米TiO2光电催化降解亚甲基蓝的研究,东北大学硕士学位论文,2006.
    [31]Jimmy C. Yu, Jiaguo Yu, Wingkei Ho, Jincai Zhao, Light-induced superhydrophilicity and photocatalytic activity of mesoporous TiO2 thin films, Journal of Photochemistry andPhotobiology A:Chemistry,2002,148:331-339.
    [31]王侃,陈英旭,叶芬霞,SiO2负载的TiO2光催化剂可见光催化降解染料污染物,催化学报,2004.25:931-936.
    [32]姜艳丽,刘惠玲,姜兆华,崔瑞海,TiO2/Ti光电催化体系中羟自由基的测定,材料科学与工艺。2006.14:162-165.
    [33]施利毅,戴清,袁春伟,SnO2-Ti02复合颗粒的形态结构及其光催化降解染料溶液 的研究,化学工艺,2000,14:248-252.
    [34]孙秀云,王连军,徐林,李健生,纳米二氧化钛光催化降解斯蒂酚酸影响因素的研究,环境工程,2003,21:76-79.
    [35]Leo Chau-Kuang Liau, Chu-Che Lin, Fabrication and characterization of Fe3+ doped titania semiconductor electrodes with p--n homojunction devices, Applied Surface Science, 2007,253:8798-8801.
    [36]Jian. Wen Shi, Jing. Tang Zheng, Yan Hu, Yu. Cui Zhao, Influence of Fe3+ and HO3+ co-doping on the photocatalytic activity of TiO2, Materials Chemistry and Physics, 2007,106:247-249.
    [37]熊裕华,李凤仪,Fe3+掺杂TiO2光催化降解聚乙烯薄膜的研究,物理化学学报,2005,21:607.611.
    [38]马荣骏,Ti02的光催化作用及其研究进展(Ⅱ),稀有金属与硬质合金,2006,34(3):23-29.
    [39]An-Wu Xu, Yuan Gao, Han·Qin Liu, The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth·Doped TiO2 Nanoparticles, Journal of Catalysis, 2002,207:151-157.
    [40]Chen WEN, Hua DENG, Jun-ying TIAN, Ji-mei ZHANG, Photocatalytic activity enhancing for TiO2 photocatalyst by doping with La, Transactions of Nonferrous Metals Society ofChina,2006,16:728-731.
    [41]Ollis D F, Pelizzetti E, Berpoae N. Photocatatysis fundamentals and applications[M]. New York: john Wiley,1994.
    [42]Nageveni K, Hegde M S, Ravishankar N, et al. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity[J]. Langmuir,2004,20 (7):2900-2907.
    [43]Fujishima A, Honda K. Electrochemical Photocatalysis of water at a semiconductor elect-rode[J]. Nature,1972,238:37-38.
    [44]Jung S C, Kim S J, Imaishi N, et al. Effect of TiO2 thin film thickness and specific surface area by low-pressure metal-organic chemical vapor deposition on photocatalytic activities[J].Appl Catalysis,2005,55:253-257.
    [45]Asahi R, Ohwaki T, Aokii K, et al. Visibk-light photoca talysis in nitrogen doped titanium oxide[J]. Science,2001,293:269-271.
    [46]潘金生,田民波,仝健民.材料科学基础[M].北京,清华大学出版社,1998.
    [47]曾谨言.量子力学[M].北京,科学出版社,1997.
    [48]W Kohn, Nobel Lecture. Electronic structure of matter-wave functions and density functionals 48.Reviews of Modern Physics,1999,71(5),1253-1266.
    [49]黄昆.固体物理[M].北京,高等教育出版社,1988.
    [50]Keiichi Tanaka. Effect of crystallinity of TiO2 on its photocatalytication[J]. Chemical Physics Letters,1999,187(1-2):73-76.
    [51]Cohen R E, Gulseren O, Hemley R J. Accuracy of equation-of-state formulations [J]. Am. Mineral,2000,85:338-344.
    [52.]Orlov A, Tikhov M S, Lambert R M. Application of surface science techniques in the study of environmental photoca-talysis:nitrogen-doped TiO2[J].J Comptes Rendus Chimie, 2006,9(5-6):794-799.
    [53]M H suhail, Mohan T G, Mohan S D C, etal. Reactive magnetron sputtering of titanium—structural and optical characterization of TiO2 films[J]. J Appl Phys,1992,71: 1421-1424.
    [54]Hagfeldt A, Gratzel M. Light—Induced Redox Reactions in Nanocrystalline Systems[J]. J Chem Rev,1995,95:49-68.
    [55]Mills A, Hunte S L. An overview of semiconductor photocatalysis[J]. J Phot A,1997, 108:1-35.
    [56]Nderson C, Bard A. Quenching of Tris(2,2'-bipyridine)ruthenium(II) Luminescence by Cobalt(Ⅲ)Polypyridyl Complexes in Different Sites in and on Clays[J]. J Phys Chem, 1995,99:9882-9885.
    [57]Yamashita H, Ichihashi Y, Takeuchi M, et al. Character-ization of metal ino-implanted titanium oxide DhotOcatalysts operating under visible light irradiation[J]. J Synchrotron Rad,1999,6:451-452.
    [58]Herrmann J M, Disdier J, Pichat P. Effect of chromium doping on the electrical and catalytic properties of powder titania under uv and visible illumination [J]. Chem Phys Lett,1984,108:618-622.
    [59]Borgarello E, Kiwi J, Grantzel M, et al. Visible lible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles[J]. J Am Chem Soc, 1982,104:2996-3002.
    [60]Chang H, Kong K, Choi Y S, et al. Effect of chromium doping on the electrical and catalytic properties of powder titania under Uv and visible illumination[J]. Chem Phys Lett,2004,398:449-452.
    [61]Sato K, Akai H, Maruyama Y, et al. Calculations of electronic friend gradients detected by impurities in TiO2, Al2O3 and CaCO3[J]. Hyperfine Interact,1999,56: 145-149.
    [62]Kiriakidou F, Kondarides D I, Verykios X E. Theef fectofopera tionalp arameters and Ti02-doping on the photo-catalytic degradation ofazo—dyes[J], Catal Today,1999,54: 119-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700