用户名: 密码: 验证码:
银杏内酯B对缺氧缺血新生大鼠脑细胞凋亡及神经发生的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     新生儿缺氧缺血性脑损伤(Hypoxic-ischemic brain damage, HIBD)是指各种围生期疾患导致脑组织不同程度缺氧及血流减少甚至停止,从而导致中枢神经系统损伤,是新生儿死亡及儿童癫痫、智力低下和脑性瘫痪的重要原因。神经发生是指神经干细胞(neural stem cell, NSCs)在特定条件下发生增殖、迁移及进一步分化成有特定表型的神经细胞,并参与神经功能修复的过程。自从证实成体脑组织中存在NSCs以来,研究进展很大。生理情况下NSCs微量增殖,一定条件下如脑缺血、癫痫等可诱导增加,但由于增殖数量较少、迁移过程中发生凋亡及分化为神经元的比例小等原因而不足以修复受损的神经功能。因此,了解脑损伤诱导神经发生机制,寻找促进神经发生增加的措施,将为治疗中枢神经系统疾病带来新的希望。银杏内酯(ginkgolides)是从银杏叶中提取的一类萜内酯类化合物,药理作用广泛,在中枢神经系统,可通过降低损伤后神经细胞凋亡促进新生血管形成等机制保护并修复受损的神经功能。近年研究发现,银杏内酯B(ginkgolides B, GB)可促进体外培养的NSCs增殖、迁移及定向分化。本课题通过制作HIBD新生大鼠模型,应用GB进行干预,观察新生大鼠HIBD后细胞凋亡情况及内源性神经干细胞增殖分化的改变,研究GB对其发生的影响,为NSCs定向诱导分化研究及临床应用提供理论依据。
     方法
     清洁级新生7日龄SD大鼠200只,随机分为假手术组48只、HIBD组52只、GB低剂量组50只及GB高剂量组50只,最终纳入数据分析的大鼠每组均为48只。经典Rice法制作HIBD动物模型,在造模过程中及造模后观察动物行为学改变。GB低剂量组与GB高剂量组分别按5mg/kg、10mg/kg腹腔注射GB,其它两组注射等量生理盐水(10ml/kg体重体积注射量),每天一次共5天。各组随机选取6只分别在造模后3d,7d,14d,28d处死:(1)规定时间点断头取脑处死大鼠,荧光定量PCR法检测各时间点Caspase-3、VEGF、Foxgl mRNA的表达水平,2-△△CT法计算相对表达量,比较各组表达差异;(2)按规定时间点处死前给予腹腔注射溴脱氧尿嘧啶核苷(Bromodeoxyuridine BrdU)标记新生细胞,剂量50mg/kg,1次/12h,共5次,最后一次腹腔注射BrdU4h后处死;分别以巢蛋白(Nestin)神经元烯醇化酶(neuron special enolase, NSE)和胶质纤维酸性蛋白(glial fibrillary acidic portein, GFAP)标记神经干细胞、神经元和星形胶质细胞,免疫组化检测各时间点海马齿状回BrdU阳性细胞数,免疫荧光双标法检测各时间点皮层BrdU+Nestin+、BrdU+/GFAP+、BrdU+/NSE+细胞数,观察各组阳性细胞的定位及半定量结果的差异。定量结果数据以x±s表示,采用SPSS17.0统计软件分析,多组间计量资料比较采用单因素方差分析,差异有统计学意义者进一步以LSD-t法进行两两比较,以a=0.05为检验水准。
     结果
     1.各组大鼠Caspase-3mRNA的表达:Caspase-3在3d时表达最高,此后逐渐下降,28d时接近正常水平,两治疗组较HIBD组基因表达明显降低,GB高剂量组较GB低剂量组降低明显;
     2.各组大鼠VEGF mRNA的表达:在3d明显增加,此后渐降,两治疗组增加较HIBD组显著,其中GB高剂量组表达较GB低剂量组表达增加,差异有统计学意义。
     3.各组大鼠Foxgl mRNA的表达:HIBD后3d表达开始增加,7d达高峰,7d后逐渐下降;两治疗组表达高于HIBD组,其中,GB高剂量组在造模后7d、14d、28d表达均高于GB低剂量组,差异有统计学意义。
     4.海马BrdU+细胞:假手术组海马可见少量BrdU+细胞,HIBD后BrdU+细胞数增加,7d最多,此后逐渐下降;两治疗组在各时间点BrdU+细胞数高于HIBD组,其中,GB高剂量组的BrdU+细胞数在各时间点高于GB低剂量组。
     5.皮层BrdU+/nestin+细胞:HIBD后3d开始增加,7d时细胞数最多,14d、28d逐渐减少;两治疗组阳性细胞数高于HIBD组;此外,GB高剂量组在7d、14d及28d时细胞数较GB低剂量组增多。
     6.皮层BrdU+/NSE+细胞:HIBD后3d开始增加,14d达高峰,28d逐渐下降;3d时,两治疗组和HIBD组细胞数无明显差异,7d后前者较后者显著增多;GB高剂量组在28d时较GB低剂量组增多,差异有统计学意义。
     7.皮层BrdU+/GFAP+细胞:HIBD后3d时细胞数无明显增多,7d开始增加,14d最多,28d时降低;在7d,14d及28d时,两治疗组比HIBD组细胞数增多,其中GB高剂量组又较GB低剂量组细胞数增多,差异有统计学意义。
     结论
     1.HIBD后Caspase-3mRNA表达上调,脑细胞凋亡增加,上调VEGF mRNA表达,促新生血管形成修复损伤,上调Foxgl表达,诱导内源性神经干细胞增殖分化增加;
     2.GB可降低HIBD后神经细胞凋亡,可进一步上调VEGF及Foxgl表达,减轻神经系统损伤,促进神经干细胞增殖并向神经元方向分化,从而减轻神经系统损伤并促进受损神经功能的修复;
     3.GB高剂量组较GB低剂量组治疗作用更显著。
Objective
     Neonatal hypoxic-ischemic brain damage (HIBD) is what all sorts of perinatal asphyxia caused varying degrees of hypoxia, blood flow reduced even stopped in brain, which led to foetus or new borns brain damage. HIBD is always the cause of perinatal death of fetal and newborn an, the childhood epilepsy, low intelligence as well as cerebral palsy. Neurogenesis is a process by which under certain conditions neural stem cells can proliferate,migrate and differentiate into mature neurons with specific phenotype, and be involved in the restoration process of nerve injury. After studies have demonstrated that there are neural stem cells(NSCs)in the adult mammalian brain, and they have the capability of neurogenesis, research of NSCs is progressing rapidly in recent years. Normally Neurogenesis is a small amount and increases in such conditions as ischemia and seizure,but is not enough to repair damaged brain tissue for some reason such as lower multiplied quantity, apoptosis and a smaller proportion of divided into neurons.So,it will be a new hope for treating many diseases of the central nervous system to study the process of neurogenesis after brain damage and to search methods toinduce NSCs proliferation and differentiation. Ginkgolides is a terpene lactones compound extracted from ginkgo biloba, which has wide pharmacological functions and neuroprotective and repair functions by lowing the apoptosis of nerve cells and promoting neovascularization after injuries in central nervous system. It has recently reported that GB can accelerate the proliferation,migration and differentiation directionally of the NSCs cultured in vitro. The present study is proposed to observe apoptosis and changes of neurogenesis following injur by the HIBD model of neonatal rats, to study the the effect of GB on these,and it is hoped to provide a basis for future studies.
     Methods
     A total of200cleaning grade healthy neonatal aged7-day-old SD rats were randomly divided into sham operated group with48rats, HIBD group with52rats, low dose GB group with50rats and high dose GB group with50rats and duplicated a model of HIBD in the neonatal rat by by the classical Rice. The behaviour of rats were observed in and after modeling process, Low dose GB group and high dose GB group were intraperitoneally injected with GB in dose of5mg/kg、10mg/kg respectively while the other groups was given equal normal saline, once daily for5days.6rats were randomly selected each group and sacrificed on3d,7d,14d,28d respectively. Rats were killed on scheduled time and expression of Caspase-3and VEGF were detected at various points by real-time PCR(RT-PCR).1.Relative expression were calculated with the method of2-△△CT then the difference of each group was compared.2. Rats marked with5bromodeoxyuridine (BrdU) before execution in dose of50mg/kg, once12h for5times and the rats were put to death after4hours of last injection. Nestin, neuron special enolase(NSE) glial fibrillary acidic protein(GFAP) were seen as markers of NSCs, neurons and astrocytes. Then the number of BrdU positive cell were measured by immunohistochemistry and the number of BrdU-Nestin positive cells of double staining in SGZ and BrdU-NSE、 BrdU-NSE double positive cells cortex were investigated by immunofluorescent double staining. The difference of positive cells among each group were compared. Quantitative data presented in a form of x±s were analyzed by SPSS17.0.The measurement data of multiple group were compared with single factor analysis of variance, and any two of several groups was performed with LSD-t West. Pearson's correlation was used in analyzing the relation of two parameters. To consider P<0.05as statistically significant.
     Results
     1. The expression of Caspase-3:The expression of Caspase-3reached the peak at3d, then declined gradually, approaches the contrast values at28d. Compared with the model group, the level of the expression was decreased in the two trial groups, but it reduced dramatically in high-dose group.
     2. The expression of VEGF:The expression of VEGF significantly increases at3d after HIBD, then declined gradually.The level of the expression were higher in the two trial groups compared with the model group but it was added dramatically in high-dose group.
     3. The expression of Foxgl:expression were observed at3d after HIBD, peaked at7d, then declined gradually; The level in the two treatment groups are higher than that of the HIBD group; The expression of Foxgl in high-dose group is higher than that in low-dose group, with statistical significance.
     4. The BrdU positive cells in hippocampus:A few histamine positive cells were found in hippocampus; The number of BrdU+cells increased after HIBD, reached the peak at7d then declined; The number of positive cells were higher in the two trial groups compared with it in the model group; It was higher in high-dose group than in low-dose group.
     5. BrdU+/nestin+cells in cortex:BrdU+/nestin+cells appeared at3d peaked on7d, then declined gradually;The number of positive cells were higher in the two trial groups compared with it in the model group; The numbers of BrdU+/nestin+cell in high-dose group were increased than those in low-dose group at7d,14d,28d.
     6. BrdU+/NSE+cell in cortex:There is no significant difference among the four groups at3d; The number of positive cells appeared at3d,peaked on14d, then declined gradually; Those were higher in the two trial groups compared with those in the model group at7d; The numbers of BrdU+/NSE+cell in high-dose group were increased than those in low-dose group at28d, with statistical significance.
     7. BrdU+/GFAP+cell in cortex:Among all the groups, there was no significant difference of positive cells3d; the positive cells increased at7d,peaked on14d, declined at28d after HIBD; The number of positive cells were higher in the two trial groups compared with it in the model group at7d,14d,28d; The numbers of BrdU+/NSE+cell in high-dose group were increased than those in low-dose group at14d and28d, with statistical significance.
     Conclusions
     1. HIBD can induce the apoptosis of cells, promote neovascularization, induce upregulation of Foxgl expression and reduce neurogenesis in brain.
     2. GB can lower the expression of Caspase-3increase VEGF, facilitate the expression of Foxgl, the proliferation of neural stem cells, the differentiate from stem cell into neuron and finally improve the functional recovery of nervous system.
     3. There are more significant efficacy in high-dose group than in low-dose group.
引文
[1]新生儿缺氧缺血性脑病治疗协作组.新生儿缺氧缺血性脑病第二次多中心治疗总结[J].中国实用儿科杂志,2003,18(9):558-560.
    [2]Gage FH. Mammalian neural stem cells[J]. Science,2000,287(5457):1433-1438.
    [3]Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors[J]. Cells, 2002,110(4):429-441.
    [4]Felling RJ, Snyder MJ, Romanko MJ, et al. Neural stem/progenitor cells participate in the regenerative response to perinatal hypoxia/ischemia[J]. J Neurosci,2006,26(16): 4359-369.
    [5]Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders[J]. Nature, 2006,441 (7097):1094-1096.
    [6]Chu K, Jung KH, Kim SJ, et al. Transplantation of human neural stem cells protect against ischemia in a preventivemode via hypoxia-inducible factor-1α stabilization in thehost brain[J]. Brain Res,2008,1 (1207):182-192.
    [7]Wong AM, Hodges H, Horsburgh K. Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia[J]. Brain Res,2005,1063(2): 140—150.
    [8]黄贱英,孙建宁,梅世昌,黄纪明.银杏内酯B对缺血/再灌脑损伤大鼠的保护作用[J].中国药理学通报,2008,24(2):269-72.
    [9]Katoh M, Katoh M. Human FOX gene family (Review)[J]. Int J Oncol,2004,25(5): 1495-1500.
    [10]Shen L, Nam H, Song P, et al. FoxGl haploinsufficiency results in impaired neurogenesis in the postnatal hippocampus and contextual memory deficits[J]. Hippocampus,2006,16 (10):875-890.
    [11]Enari M, Sakahira H, Yokoyama H, et al. Acaspase-activated DNase that degrades DNA during apoptosis and its inhibitor ICAD[J]. Nature,1998,391 (6662):43—50
    [12]Adamczyk A, Kazmierczak A, Czapski GA, et. al. Alpha-synuclein induced cell death in mouse hippocampal (HT22) cells is mediated by nitric oxide-dependent activation of Caspase-3 [J]. FEBS Lett,2010,584(15):3504-3508.
    [13]Rice JE, Vannucci RC, Brierley JB, et al. The influence of immaturity on hypoxic-ischemic brain damage in the rat[J]. Ann Neurol,1981,9 (2):131-141.
    [14]吴婉芳,徐放生,张莉莉,等.建立新生儿缺氧缺血性脑病动物模型[J].新生儿科杂志,1992,7(6)-265-267.
    [15]Vannucci RC, Vannucci SJ. Amodel of perinatal hypoxic-ischemic brain damage[J]. Ann N Y Acad Sci,1997,835:234-249.
    [16]刘丽旭,杨于嘉.高压氧治疗新生大鼠缺氧缺血性脑损伤量效及时效关系[J].中 国当代儿科杂志,2001,3(4):355-358.
    [17]Andine P, Thordstein M, Kjellmer I, et al. Evaluation of brain damage in a rat model of neonatal hypoxic-ischemia[J]. J Neurosci Methods,1990,35 (3):253-260.
    [18]Lawrence MS, McLaughlin JR, Sun GH, et al. Herpes simplex viral vectors expressing Bcl-2 are neuroprotective when delivered after a stroke [J]. J Cereb Blood Flow Metab, 1997;17(7):740-744.
    [19]Cryns V, Yuan J. Protease to die for [J]. Genes Dev,1998,12(11):1551-1570
    [20]Maclennan KM, Darlington CL, Smith PF. The CNS effects of Ginkgo biloba extracts and ginkgolide B[J]. Prog Neurobiol,2002,67(3):235-57-
    [21]Davoli MA, Fourtounis J, Tam J, et al. Immunohistochemical and biochemical assessment of Caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat[J]. Neuroscience,2002,115 (1):125-136.
    [22]Cheng Y, Deshmukh M, D'Costa A, et al. Caspase inhibitor affords neuroproteetion with
    [23]delayed administration in a rat model of neonatal hypoxic-ischemic brain injury[J]. J Clin
    [24]Invest,1998,101(9):1992-1999.
    [25]Endres M, Namura S, Shimizu-Sasamata M, et al. Attenuation of delayed neuronal death
    [26]after mild focal ischemia in mice by inhibition of the caspase family[J]. J Cereb Blood Flow Metab,1998,18(3):238-247
    [27]Le LA, Wu YQ, Huang ZH, et al. Caspase activation and neuroprotection in Caspase-3
    [28]deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation[J]. Proc Natl Acad Sci USA,2002,99 (23):15188-15193.
    [29]Nakajima W, Ishida A, Lange MS, et al. Apoptosis has aprolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat[J]. J Neurosci,2000,20(2 1):7994-8004.
    [30]Wang X, Karlsson JO, Zhu C, et al. Caspase-3 activation after neonatal rat cerebral hypoxia-ischemia[J]. Biol Neonate,2001,79(3-4):172-179.
    [31]Clevers H. Stem cells, asymmetric division and cancer[J]. Nat Genet,2005,37(10): 1027-1028.
    [32]Aizawa K, Ageyama N, Terao K, et al. Primate-specific alterations in neural stem/progenitor cells in the aged hippocampus[J]. Neurobiol Aging,2011,32(1):140-50.
    [33]Nakayama D, Matsuyama T, Ishibashi-Ueda H, et al. Injury-induced neural stem/ progenitor cells in poststroke human cerebral cortex[J]. Eur J Neurosci,2010,31(1): 90-98.
    [34]Kernie SG, Parent JM. Forebrain neurogenesis after ischemic and traumtic brain injury[J]. Neurobiol Dis,2010,37(2):267-274.
    [35]Parent JM, Murphy GG. Mechanisms and functional significance of aberrant seizure-induced hippocampal neurogenesis[J]. Epilepsia,2008,49(Suppl5):19-25.
    [36]Yagita Y, Kitagawa K, Ohtsuki T, et al. Neurogenesis by progenitor cells in the ischemic adult rat hippocampus [J]. Stroke,2001,32(8):1890-1896.
    [37]Nakayama D, Matsuyama T, Ishibashi-Ueda H, et al. Injury induced neural stem/ progenitor cells in post-stroke human cerebral cortex[J]. Eur J Neurosci,2010.31 (1): 90-98.
    [38]Zhang RL, Zhang ZG, Roberts C, et al. Lengthening the G(1) phase of neural progenitor cells is concurrent with an increase of symmetric neuron generating division after stroke[J]. Cereb Blood Flow Metab,2008,28(3):602-611.
    [39]张波,王任直,刘建勇,等.鼠脑梗死后自体神经干细胞的原位增殖、分化及其可塑性[J].中华神经外科杂志,2004,20(5):400-404.
    [40]Jin K, Minami M, Lan JQ, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat[J]. Proc Natl Acad Sci USA, 2001,98(8):4710-4715.
    [41]Yang Z. Levison SW. Hypoxia/ischemia expands the regenerative capacity of progenitors in the perinatal subventricular zone[J]. Neuroscience,2006,139(2):555-564.
    [42]Komitova M, Mattsson B, Johansson BB, et al. Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats[J]. Stroke 2005,36(6):1278-1282.
    [43]Hockfield S, McKay RD. Identification of major cell classes in the developing mammalian nervous system[J]. J Neurosci,1985,5(12):3310-3328.
    [44]Lendahl U, Zimmerman LB, Mckay RD. CNS stem cell express a new class of intermediate filament protein[J]. Cell,1990 60(4):585-595.
    [45]Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system [J]. Seience,1992,255(5052):1707-1710.
    [46]Pratt T, Tian NM, Simpson TI, et al. The winged helix traNSCsription factor Foxglfacilitates retinal ganglion cell axon crossing of the ventral midline in the mouse[J]. Development.2004,131(15):3773-3784.
    [47]Hanashima C, Shen LS, Li C, et al. Brain factor-1 controls the proliferation and differentiation of neocortical progenitor cells through independent mechanisms [J]. Neurosci,2002,22(15):6526-6536.
    [48]FasanoCA, Phoenix TN, Kokovay E, et al. Bmi-1 cooperates with Foxgl to maintain neural stem cell self-renewal in the forebrain[J].2009,23(5):561-574.
    [49]Siegenthaler JA, Tremper-Wells BA, Miller MW. Foxgl haploinsufficiency reduces the population of cortical intermediate progenitorcells:Effect of increased p21 expression[J]. Cereb Cortex,2008,18(8):1865-1875.
    [50]Kennea NL, Mehmet H. Perinatal applications of neural stem cells[J]. Best Pract Res Clin Obstet Gynaecol.2004,18(6):977-994.
    [51]Brancaccio M, Pivetta C, Granzotto M, et al. Emx2 and Foxgl inhibit gliogenesis and promote neuronogenesis[J]. Stem Cells.2010,28(7):1206-1218.
    [52]郑毅,余加林,李禄全,等.缺氧缺血性脑损伤新生鼠Foxgl基因与脑皮质特定基因的表达变化及意义[J].第三军医大学学报,2008,30(19):1818-1820.
    [53]Regad T, Roth M, Bredenkamp N, et al. The neural progenitor-specifying activity of Foxgl is antagonistically regulated by CKI and FGF[J]. Nat Cell Biol.2007,9(5): 531-40.
    [54]王军,侯艳艳,朱登纳,等.缺氧缺血性脑损伤新生大鼠脑室管膜下区Foxgl与p21基因的表达及其关系[J].实用儿科临床杂志,2011,26(8):606-608.
    [55]Holmes DJ, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease [J]. Genome Biol,2005,6(2):209.
    [56]Tiyyagura SR, Pinney SP. Left ventricular remodeling after myocardial infarction:past, present and future [J]. Mt Sinai J Med,2006,73(6):840-851.
    [57]Obrenovitch TP. Molecular physiology of preconditioning-induced brain tolerance to ischemia[J]. Physiol Rev,2008,88(1):211-247.
    [58]Storkebam E, Larnbrechts D, Carmeliet P. VEGF:once regarded as a specific angiogenic
    [59]factor, now implicated in neuropfotection[J]. Bioessays.2004,26(9):943-954.
    [60]Namiecinska M, Marciniak K, Nowak JZ. VEGF as an angiogenic, neurotrophic, and neuroprotective factor[J]. Postepy Hig Med Dosw.2005,59:573-583.
    [61]Jin K, Zhu Y, Sun Y, et al. Vascular endothelial growth factor(VEGF)stimulates neurogenesis in vitro and in vivo[J]. Proc Nat I Acad Sci USA.2002,99(18): 11946-11950.
    [62]Rosenstein JM, Mani N, Khaibulina A, et al. Neurotrophic effects of vascular endothelial growth factor on organo typic cortical explants and primary cortical neuron[J]. Neurosci, 2003,23(25):11036-11044.
    [63][戴睿,曾秋棠,吴辉文.法舒地尔对急性心肌梗死大鼠心肌的保护作用[J].临床心血管病杂志,2008,24(7):537-539
    [64]Sun Y, Jin K, Me L, et al. VEGF-induced neuroprotection, neurogenesis and angiogenesis after focal cerebral ischemia[J]. J Clin Invest,2003,111(12):1843—1851.
    [65]Cao L, Jiao X, Zuzga DS, et al. VEGF links hippocam pal activity with neurogenesis learning and memory [J]. Nat Genet,2004,36(8):827-835
    [66]Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia[J]. J Clin Invest,2003,111(12) 1843-1851.
    [67]Smith W, Luo Y. Studies on molecular mechanisms of Ginkgo biloba extract[J]. Appl Microbiol Biotechnol,2004,64 (4): 465-472.
    [68]黎青,王嫒,周盛年.银杏叶提取物对神经系统疾病的影响及其作用机制[J].中华中医药学刊,2008,26(1):87-89.
    [69]Hostettler ME, Knapp PE, Carlson SL. Platelet-activating factor induces cell death in cultured astrocytes and oligodendrocytes:involvement of Caspase-3[J]. Glia,2002,38(3): 228-239.
    [70]赵文杰,陈霁,唐民科等.银杏内酯B对大鼠大脑中动脉阻断再灌注后神经发生的影响[J].中国药理学通报,2009,25(7):979-980.
    [71]徐倩,张艳军,刘洋等.银杏内酯B作用于星形胶质细胞对神经干细胞趋化影响的体外研究[J].天津中医药,2010,27(5):(421-422)
    [72]王永红,刘宏亮,石永江,等.银杏内酯B促进体外分化的神经干细胞神经突起生长的研究[J].国际脑血管病杂志,2007,15(10):739-743.
    [73]Huang J Y, Sun J N, Mei S C, et al. Protective effects of ginkgolide B on cerebral ischemia reperfusion injury in rats [J]. Chin Pharm acol Bull,2008,24 (2):269-272.
    [74]Huang Z, Jin GH, Zhang XH, et al. The inducing effects of Ginkgolid B on neural stem cells differentiating into neurons[J]. Acta Anatomica Sinica,2003,34(4):367-371.
    [75]王永红,罗雪,石永江等.银杏内酯B对神经于细胞分化的影响及其机制研究[J].中国康复理论与安践,2007,13(8):701-703.
    [76]丁英,曾园山,张伟等.不同浓度的银杏内酯B对培养的神经干细胞分化的影响[J].解剖学报,2004,35(5):484-488.
    [77]田美玲,金国华,张新化等.银杏内酯对胚基地前脑NOS、AChE阳性神经元发育的影响[J].中国组织化学与细胞化学杂志.2002,11(3):301-305.
    [1]Thompson WG. Successful brain grafting[J]. Science,1890,16(392):78-79.
    [2]Dunnett SB. Neural transplantation[J]. Handb Clin Neurol,2010.95:885-912.
    [3]Altman J, Das G D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats[J]. J Comp Neurol,1965,124(3):319-335.
    [4]Luskin M B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone[J]. Neuron,1993,11(1):173-189.
    [5]Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain[J]. Science,1994,264(5162):1145-1148.
    [6]Chen X H, Iwata A, Nonaka M, et al. Neurogenesis and glial proliferation persist for at least one year in the subventricular zone following brain traumainrats[J]. J Neurotrauma, 2003,20(7):623-631.
    [7]Banasr M, Hery M, Printemps R. et al. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone[J]. Neuropsychopharmacology, 2004,29(3):450-460.
    [8]Busto R, Dietrich WD, Globus MY, et al. Extracellular release of serotonin following fluid-percussion brain injury in rats[J]. J Neurotrauma,1997,14(1):35-42.
    [9]Romanko MJ, Rola R, Fike JR, et al. Roles of the mammalian subventricular zone in cell replacement after brain injury [J]. Prog Neurobiol,2004,74(2):77-99.
    [10]Sundholm-Peters N L, Yang H K, Goings GE, et al. Subventricular zone neuroblasts emigrate toward cortical lesions[J]. J Neuropathol Exp Neurol,2005,64(12): 1089-1100.
    [11]Koketsu D, Mikami A, MiyamotoY, et al. Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys[J]. J Neurosci,2003,23(3):937-942.
    [12]Bhardwaj RD, Curtis MA, Spalding KL, et al. Neocortical neurogenesis in humans is restricted to development[J]. Proc Natl Acad Sci USA,2006,103(33):12564-12568.
    [13]Vessal M, Darian-Smith C. Adult neurogenesis occurs in primate sensorimotor cortex following cervical dorsal rhizotomy[J]. J Neurosci,2010,30(25):8613-8623.
    [14]Ziv Y, Finkelstein A, Geffen Y, et al. A novel immune-based therapy for stroke induces neuroprotection and supports neurogenesis[J]. Stroke,2007,38(2Suppl):774-782.
    [15]Magavi SS, Leavitt BR, Macklis J D. Induction of neurogenesis in the neocortex of adult mice[J]. Nature,2000,405(6789):951-955.
    [16]Leker R R, Soldner F, Velascol, et al. Long-lasting regeneration after ischemia in the cerebral cortex[J]. Stroke,2007,38(1):153-161.
    [17]Sirko S, Neitz A, Mittmann T, et al. Focal laser-lesions activate an endogenous population of neural stem/progenitor cells in the adult visual cortex[J]. Brain, 2009, 132(Pt8):2252-2264.
    [18]Kreuzberg M, Kanov E, Timofeev O, et al. Increased subventricular zone-derived cortical neurogenesis after ischemic lesion[J]. Exp Neurol,2010,226(1):90-99.
    [19]Blizzard CA, Chuckowree J A, King AE, et al. Focal damage to the adult rat neocor-tex induces wound healing accompanied by axonal sprouting and dendritic structural plasticity[J]. Cereb Cortex,2011,21(2):281-291.
    [20]Coronas V. Bantubungi K, Fombonne J, et al. Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the post-natal subventricular zone[J]. J Neurochem,2004,91(6):1292-1301.
    [21]Decressac M, Prestoz L, Veran J, et al. Neuropeptide Y stimulates proliferation, migration and differentiation of neural precursors from the subventricularzone in adult mice[J]. Neurobiol Dis,2009,34(3):441-449.
    [22]Nicoleau C, Benzakour O, Agasse F, et al. Endogenous hepatocyte growth factor is a niche signal for subventricular zone neural stem cell amplification and self-renewal[J]. Stem Cells,2009,27(2):408-419.
    [23]Xiao MJ, Han Z, Shao B, et al. Notch signaling and neurogenesis in normal and stroke brain[J]. Int J Physiol Pathophysiol Pharmacol,2009,1(2):192-202.
    [24]Mu Y, Lee SW, Gage FH. Signaling in adult neurogenesis [J]. Curr Opin Neurobiol,2010,20(4):416-423.
    [25]Gomez-Pinilla F, Cotman CW. Transient lesion-induced increase of basic fibroblast growth factor and its receptor in layer VIb (subplate cells) of the adult rat cerebral cortex[J]. Neuroscience,1992,49(4):771-780.
    [26]Alagappan D, Lazzarino D A, Felling RJ, et al. Brain injury expands the numbers of neural stem cells and progenitors in the SVZ by enhancing their responsiveness to EGF[J]. ASN Neuro,2009,1(2),:95-111.
    [27]Watanabe T, Okuda Y, Nonoguchi N, et al. Postischemic intraventricular administration of FGF-2 expressing adenoviral vectors improves neurologic outcome and reduces inf arct volume after transient focal cerebral ischemia in rats[J]. J Cereb Blood Flow Metab, 2004,24(11):1205-1213.
    [28]Schabitz W R, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances post-stroke sensorimotor recovery and stimulates neurogenesis[J]. Stroke,2007,38(7):2165-2172.
    [29]Dempsey RJ, Kalluri HS. Ischemia-induced neurogenesis:role of growth factors[J]. Neurosurg Clin N Am,2007,18(1):183-190.
    [30]Amankulor N M, Hambardzumyan D, Pyonteck SM,et al. Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation[J]. J Neurosci,2009,29(33):10299-10308.
    [31]Wang X, Mao X, Xie L, et al. Involvement of Notchl signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo[J]. J Cereb Blood Flow Metab,2009,29(10):1644-1654.
    [32]Fancy S P, Harrington E P, Yuen T J, et al. Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination[J]. Nat Neurosci,2011.14(8):1009-1016.
    [33]Young C C, Brooks K J, Buchan AM, et al. Cellular and molecular determinants of stroke-induced changes in subventricular zone cell migration[J]. Antioxid Redox Signal, 2011,14(10):1877-1888.
    [34]Tattersfield A S, Croon RJ, Liu Y W, et al. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease[J]. Neuroscience,2004,127(2):319-332.
    [35]Goings G E, Sahni V, Szele FG. Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury[J]. Brain Res,2004,996(2):213-226.
    [36]Winner B, Couillard-Despres S, Geyer M, et al. Dopaminergic lesion enhances growth factor-induced striatal neuroblast migration[J]. J Neuropathol Exp Neurol,2008,67(2): 105-116.
    [37]Honda S, Toda K, Tozuka Y, et al. Migration and differentiation of neural cell lines transplanted into mouse brains[J]. Neurosci Res,2007,59(2):124-135.
    [38]Le Magueresse C, Alfonso J, Bark C, et al. Subventricular zone-derived neuroblasts use vasculature as a scaffold to migrate radially to the cortex in neonatal mice[J]. Cereb Cortex,2012,22(10):2285-2296.
    [39]Courtes S, Vernerey J, Pujadas L, et al. Reelin controls progenitor cell migration in the healthy and pathological adult mouse brain[J]. PLoS One,2011,6(5):e20430.
    [40]Angot E, Loulier K, Nguyen-Ba-Charvet K T, et al. Chemoattractive activity of sonic hedgehog in the adult subventricular zone modulates the number of neural precursors reaching the olfactory bulb[J]. Stem Cells,2008,26(9):2311-2320.
    [41]Ohtani Y, Minami M, Kawaguchi N, et al. Expression of stromal cell-derived factor-1 and CXCR4 chemokine receptor mRNAs in cultured rat glial and neuronal cells[J]. Neurosci Lett,1998,249(2-3):163-166.
    [42]Kokovay E, Goderie S, Wang Y, et al. Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling[J]. Cell Stem Cell, 2010,7(2):163-173.
    [43]Zhu Y, Matsumoto T, Mikami S, et al. SDF1/CXCR4 signaling regulates two distinct processes of precerebellar neuronal migration and its depletion leads to abnormal pontine nuclei formation[J]. Development,2009,136(11):1919-1928.
    [44]Robin A M, Zhang Z G, Wang L, et al. Stromal cell-derived factor 1 alpha mediates neural progenitor cell motility after focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2006,26(1):125-134.
    [45]Hartman N W, Carpentino J E, LaMonica K, et al. CXCL12-mediated guidance of migrating embryonic stem cell-derived neural progenitors transplanted into the hippocampus[J]. PLoS One,2010,5(12):e15856.
    [46]Klein RS, Rubin J B, Gibson H D, et al. SDF-la induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellargranule cells[J]. Developmen,2001, 128(11):1971-1981.
    [47]Marshall CA, Suzuki SO. Goldman J E. Gliogenic and neurogenic progenitors of the subventricular zone:who are they, where did they come from and where are they going[J]? Glia,2003,43(1):52-61.
    [48]Salman H, Ghosh P, Kernie S G. Subventricular zone neural stem cells remodel the brain following traumatic injury in adult mice[J]. J Neurotrauma,2004,21(3):283-292.
    [49]Shear D A, Tate M C, Archer D R, et al. Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury[J]. Brain Res,2004,1026(1): 11-22.
    [50]Seidenfaden S, Desoeuvre A, Bosio A, et al. Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain[J]. Mol Cell Neurosci, 2006,32(1-2):187-198.
    [51]Buffo A, Vosko M R, Erturk D, et al. Expression pattern of the traNSCsription factor Olig2 in response to brain injuries:implications for neuronal repair[J]. Proc Natl Acad Sci USA,2005,102(50):18183-18188.
    [52]Fabel K, Kempermann G. Physical activity and the regulation of neurogenesis in the adult and aging brain[J]. Neuromolecular Med,2008,10(2):59-66.
    [53]Shors TJ, Miesegaes G, Beylin A, et al. Neurogenesis in the adult is involved in the formation of trace memories[J]. Nature,2001,410(6826):372-376.
    [54]Zhao C, Teng EM, Summers RG, et al. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus[J]. J Neurosci,2006,26(1):3-11.
    [55]Markwardt SJ, Wadiche JI, Overstreet-Wadiche LS. Input-specific GABAergic signaling to newborn neurons in adult dentate gyrus[J]. J Neurosci,2009,29(48):15063-15072.
    [56]Toni N, Laplagne D A, Zhao C, et al. Neurons born in the adult dentate gyrus form functional synapses with target cells[J]. Nat Neurosci,2008,11(8):901-907.
    [57]Snyder J S, Choe J S, Clifford M A, et al. Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice[J]. J Neurosci,2009,29(46):14484-14495.
    [58]Mathews E, Morgenstern NA, Piatti V C, et al. Distinctive layering pattern of mouse dentate granule cells generated by developmental and adult neurogenesis[J]. J Comp Neurol,2010,518(22):4479-4490.
    [59]Laplagne DA., Kamienkowski JE, Esposito MS,et al. Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis[J]. Eur J Neurosci, 2007,25(10),2973-2981.
    [60]Kim D, Ko I, Kim B, et al. Treadmill exercise inhibits traumatic brain injury-induced hippocampal apoptosis[J]. Physiol Behav,2010,101(5):660-665.
    [61]Brown J, Cooper-Kuhn C M, Kempermann G, et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis[J]. Eur J Neurosci, 2003,17(10):2042-2046.
    [62]Van Praag H, Kempermann G, Gage F H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus[J]. Nat Neurosci,1999,2(3):266-270.
    [63]Matsuda F, Sakakima H, Yoshida Y. The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats[J]. Acta Physiol,2011,201(2):275-287.
    [64]Widenfalk J, Olson L, Thoren P. Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain[J]. Neurosci Res,1999,34(3):125-132.
    [65]Fiore M, Triaca V, Amendola T, et al. Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice[J]. Physiol Behav,2002,77(2):437-443.
    [66]Chiaretti A, Barone G, Riccardi R, et al. NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children[J]. Neurology,2009,72(7): 609-616.
    [67]Myer D J, Gurkoff G G, Lee S M, et al. Essential protective roles of reactive astrocytes in traumatic brain injury [J]. Brain,2006,129(Pt10):2761-2772.
    [68]Jones L L, Margolis R U, Tuszynski M H. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury [J]. Exp Neurol,2003,182(2):399-411.
    [69]Yiu G, He Z. Glial inhibition of CNS axon regeneration[J]. Nat Rev Neurosci,2006, 7(8):617-627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700