用户名: 密码: 验证码:
电沉积制备聚噻吩有序微结构及有机太阳能电池
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题是当今社会面临的重要问题之一。随着化石型资源的逐渐枯竭,寻找一种新型的能量来源成为科学研究的热点问题。目前,太阳能电池,特别是有机太阳能电池由于其潜在的应用价值已经获得了广泛的关注。本论文中,我们以电化学沉积技术为切入点,首先研究了电化学沉积制膜技术,通过控制实验条件实现了导电聚合物聚噻吩表面形貌的控制,研究了表面形貌对其亲疏水性质的影响。然后利用聚苯乙烯胶体晶体模板的物理限域作用制备了聚噻吩/聚苯乙烯复合微球、聚噻吩多孔微球和聚噻吩反相大孔膜,为下一步在微纳米加工、高效光电器件的制备等方面奠定了基础。然后,我们利用电化学沉积技术和旋涂技术相结合的两步法制备了具有双层异质结结构的聚合物太阳能电池,并对器件结构和性能进行了优化,从而发展了一条制备聚合物太阳能电池的新方法。最后,采用具有类似“蛾眼”有序微结构的石英玻璃为基底,我们制备了具有较高光电转换效率的聚合物太阳能电池。通过研究证实表面带有有序微结构的石英玻璃能够有效提高入射光的透过率、太阳能电池的光生电流密度和光电转换效率。该研究提供了一种优化器件结构,提高器件吸光效率和光电转换效率的简便方法。
As the storage of fossil type energy sources (i.e. coal, oil and natural gas) decreases and the global energy demand continues to increase, it’s urgent to develop new energy supply for replacement. Exploiting and developing the solar energy as a substitute is a promoting route. Comparing with the traditional silica solar cells, organic solar cell is low-cost, highly flexible and green, so the research in this field has caused widely attention. Within the past three decades there has been a tremendous effort to develop organic solar cells, starting with the application of small organic molecules (pigments), and later with semiconducting polymers, remarkable improvements have been reported within the last decade. From device structure point of view, the first generation of organic photovoltaic solar cells was based on single organic layers sandwiched between two metal electrodes of different work functions. The rectifying behavior of single-layer devices was attributed to the asymmetry in the electron and hole injection into the molecular orbitals and to the formation of a Schottky-barrier between the p-type organic layer and the metal with the lower work function. In this case, the organic layer was sandwiched between a metal–metal oxide and a metal electrode, thus enhancing the Schottky-barrier effect. The second generation of organic solar cells was based on a stacked bilayer of two organic materials (p-type and n-type semiconductor respectively) sandwiched between a transparent conducting oxide anode and a metal cathode. This charges was achieved at the interface of two layers. The most efficient organic solar cells were base on bulk heterojunction which was prepared by mixing the p-type and n-type materials together. From device processing point of view, the vacuum deposition method and spin-coating method were most wildely applied.
     This thesis is mainly discussing how to prepare efficient organic solar cells via electrochemical method and how to ameliorate the light absorption for efficient organic solar cell processing with the focus on electrodepostion and organic solar cell. To achieve the fist goal, a series of electrochemical experiments were conducted to investigate the film-processing technique and property of resulted films. Some polythiophene with special nano-micro structures was prepared. After that, the electrodeposition technique was applied to fabricate organic solar cells. The relative experimental situations and affecting parameters were investigate to optimize performance of the orgaic solar cells. Then we used highly conductive PEDOT:PSS as anode and fused silica as substrate to optimize organic solar cell prepared by spin-coating method. The impact of transmission enhanced texture on was investigated. More details are now listed below,
     1. Utilizing polystyrene colloidal crystal as scacrifice template, we fabricated polythiophene inverse opal film, polythiophene inverse opal grating, polythiophene/polystyrene compound microspheres and porous polythiophene microspheres by electrodepositing method. The proper experimental condition was found and the morphology and structure of various products was investigated. The polythiophene inverse opal film and grating have ideal structure which makes them suitable for photonic crystals. The polythiophene/polystyrene microspheres is a novel type colloidal particles which has high conductivities and is sure to have wide application fields such as photoelectronic devices, sensor and catalysis. We analyzed its morphology and composition, after comparison the difference between polythiophene/polystyrene microspheres and hemisphers, we proposed the mechanism of polythiophene/polystyrene microspheres. We found that the growth process is closely connected with the scatted active sites of ITO glass, the kinetics of electrodeposition, the defects in colloidal crystal template and the negative charge on PS colloidal particles.
     2. We constructed a bilayer solar cell by a two-step process which combined electrodepositing polythiophene in acetonitrile solution and spin coating PCBM from chloroform together. The influence of polythiophene thickness on solar cell performance was investigated. The performance of the solar cell was greatly enhanced compared with the electrodeposited polythiophene single layer device. The power conversion efficiency of 0.1% under AM1.5 (100 mW cm-2) was acquired when the thickness of polythiophene and PCBM were 15 nm and 30 nm, respectively. This bilayer heterojunction solar cell fabricated by electrodeposition and spin coating techniques provides a new approach for the processing of large scale organic solar cells.
     3. Surface with transmission enhanced texture (TET) composed of hexagonal packed“moth eye”shaped protuberances on fused silica was prepared and its effect on transmittance was investigated. The TET structure can effectively improve the performance of organic solar cells on fused silica substrates using highly conductive PH500 as anode. The increased short-circuit current density and power conversion efficiency confirms that TET structure can effectively improve the transmittance of the substrate and the anode, which further enhanced the light absorbance of the active layer. This experiment offers a solution to improve the efficiency of organic solar cells by optimizing the optical design of substrate materials.
引文
[1] World Energy Outlook 2007-China and India Insights, International Energy Agency (IEA). http://www.unep.org/geo/yearbook/yb2009/references/index. asp
    [2] Zoski C G. Handbook of Electrochemistry [M]. Elesvier, Oxford OX5 1GB, UK 2007
    [3] Perlin J. From Space to Earth: The Story of Solar Electricity [M. Harvard University Press: Cambridge, MA, 2002.
    [4] Green M A, Emery K, Hishikawa Y, et al. Solar Cell Efficiency Tables (Version 34). [J]. Prog Photovoltaics 2009, 17: 320.
    [5] Konarka Company. http://www.konarka.com/index.php/power-plastic/power- plastic- products/
    [6] Tang C W. Two-layer organic photovoltaic cell. [J]. Appl Phys Lett 1986, 48: 183.
    [7] Sariciftci N S, Smilowitz l, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. [J]. Science 1992, 258: 1474.
    [8] Peumans P, Uchida S, Forrest S R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. [J]. Nature 2003, 425: 158.
    [9] Yang F, Shtein M, Forrest S R. Controlled growth of a molecular bulk heterojunction photovoltaic cell. [J]. Nat Mater 2005, 4: 37.
    [10] Park S H, Roy A, Beaupre S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. [J]. Nat Photonics 2009, 3: 297.
    [11] Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells. [J]. Chem Mater 2004, 16: 4533.
    [12] Xue J G, Rand B P, Uchida S, et al. A hybrid planar-mixed molecular heterojunction photovoltaic cell. [J]. Adv Mater 2005, 17: 66.
    [13] Djurisic A B, Kwong C Y, Chui P C, et al. Indium-tin-oxide surface treatments: Influence on the performance of CuPc/C-60 solar cells. [J]. J Appl Phys 2003, 93: 5472.
    [14] Peumans P, Forrest S R. Very-high-efficiency double-heterostructure copper phthalocyanine/C-60 photovoltaic cells. [J]. Appl Phys Lett 2001, 79: 126.
    [15] Pandey A K, Dabos-Seignon S, Nunzi J M. Pentacene: PTCDI-C13H27 molecular blends efficiently harvest light for solar cell applications. [J]. Appl Phys Lett 2006, 89: 113506.
    [16] Yoo S, Domercq B, Kippelen B. Efficient thin-film organic solar cells basedon pentacene/C-60 heterojunctions. [J]. Appl Phys Lett 2004, 85: 5427.
    [17] Pandey A K, Nunzi J-M. Efficient flexible and thermally stable pentacene/C[sub 60] small molecule based organic solar cells. [J]. Appl Phys Lett 2006, 89: 213506.
    [18] Mayer A C, Lloyd M T, Herman D J, et al. Postfabrication annealing of pentacene-based photovoltaic cells. [J]. Appl Phys Lett 2004, 85: 6272.
    [19] Ackermann J, Videlot C, El Kassmi A, et al. Highly efficient hybrid solar cells based on an octithiophene-GaAs heterojunction. [J]. Adv Funct Mater 2005, 15: 810.
    [20] Liu P, Li Q, Huang M S, et al. High open circuit voltage organic photovoltaic cells based on oligothiophene derivatives. [J]. Appl Phys Lett 2006, 89: 213501.
    [21] Holzhey A, Uhrich C, Brier E, et al. Exciton diffusion and energy transfer in organic solar cells based on dicyanovinyl-terthiophene. [J]. J Appl Phys 2008, 104: 064510.
    [22] Schulze K, Uhrich C, Schuppel R, et al. Efficient vacuum-deposited organic solar cells based on a new low-bandgap oligothiophene and fullerene C-60. [J]. Adv Mater 2006, 18: 2872.
    [23] Woo C H, Thompson B C, Kim B J, et al. The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance. [J]. J Am Chem Soc 2008, 130: 16324.
    [24] Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. [J]. Science 1995, 270: 1789.
    [25] Halls J J M, Walsh C A, Greenham N C, et al. Efficient photodiodes from interpenetrating polymer networks. [J]. Nature 1995, 376: 498.
    [26] Melzer C, Koop E J, Mihailetchi V D, et al. Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells. [J]. Adv Funct Mater 2004, 14: 865.
    [27] Ago H, Petritsch K, Shaffer M S P, et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. [J]. Adv Mater 1999, 11: 1281.
    [28] Xia Y, Wang L, Deng X, et al. Photocurrent response wavelength up to 1.1 mu m from photovoltaic cells based on narrow-band-gap conjugated polymer and fullerene derivative. [J]. Appl Phys Lett 2006, 89: 081106.
    [29] Liang Y Y, Wu Y, Feng D Q, et al. Development of New Semiconducting Polymers for High Performance Solar Cells. [J]. J Am Chem Soc 2009, 131: 56.
    [30] Liang V Y, Feng D Q, Guo J C, et al. Regioregular Oligomer and Polymer Containing Thieno[3,4-b]thiophene Moiety for Efficient Organic Solar Cells.[J]. Macromolecules 2009, 42: 1091.
    [31] Choulis S A, Nelson J, Kim Y, et al. Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements. [J]. Appl Phys Lett 2003, 83: 3812.
    [32] Hoppe H, Niggemann M, Winder C, et al. Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. [J]. Adv Funct Mater 2004, 14: 1005.
    [33] Pfuetzner S, Meiss J, Petrich A, et al. Improved bulk heterojunction organic solar cells employing C70 fullerenes. [J]. Appl Phys Lett 2009, 94: 223307.
    [34] Brabec C J, Cravino A, Meissner D, et al. Origin of the Open Circuit Voltage of Plastic Solar Cells. [J]. Adv Funct Mater 2001, 11: 374.
    [35] Wang X, Perzon E, Oswald F, et al. Enhanced Photocurrent Spectral Response in Low-Bandgap Polyfluorene and C70-Derivative-Based Solar Cells. [J]. Adv Funct Mater 2005, 15: 1665.
    [36] Kooistra F B, Mihailetchi V D, Popescu L M, et al. New C-84 derivative and its application in a bulk heterojunction solar cell. [J]. Chem Mater 2006, 18: 3068.
    [37] Berson S, de Bettignies R, Bailly S, et al. Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. [J]. Adv Funct Mater 2007, 17: 3363.
    [38] Khatri I, Adhikari S, Aryal H R, et al. Improving photovoltaic properties by incorporating both single walled carbon nanotubes and functionalized multiwalled carbon nanotubes. [J]. Appl Phys Lett 2009, 94: 093509.
    [39] Lee W, Lee J, Lee H, et al. Enhanced charge-collection efficiency of In2S3/In2O3 photoelectrochemical cells in the presence of single-walled carbon nanotubes. [J]. Appl Phys Lett 2007, 91: 043515.
    [40] Miller A J, Hatton R A, Silva S R P. Interpenetrating multiwall carbon nanotube electrodes for organic solar cells. [J]. Appl Phys Lett 2006, 89: 133117.
    [41] Hong W J, Xu Y X, Lu G W, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. [J]. Electrochem Commun 2008, 10: 1555.
    [42] Tung V C, Chen L M, Allen M J, et al. Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. [J]. Nano Lett 2009, 9: 1949.
    [43] Liu Q, Liu Z, Zhang X, et al. Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT. [J]. Adv Funct Mater 2009, 19: 894.
    [44] Singh V P, Singh R S, Parthasarathy B, et al. Copper-phthalocyanine-basedorganic solar cells with high open-circuit voltage. [J]. Appl Phys Lett 2005, 86: 082106.
    [45] Yakimov A, Forrest S R. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. [J]. Appl Phys Lett 2002, 80: 1667.
    [46] Tan L, Curtis M D, Francis A H. Charge transfer in ferrocene-bearing poly(thiophene)s and application in organic bilayer photocells. [J]. Macromolecules 2002, 35: 4628.
    [47] Gosztola D, Niemczyk M P, Svec W, et al. Excited doublet states of electrochemically generated aromatic imide and diimide radical anions. [J]. J Phys Chem A 2000, 104: 6545.
    [48] Bereznev S, Kois J, Golovtsov I, et al. Electrodeposited (Cu-In-Se)/ polypyrrole PV structures. [J]. Thin Solid Films 2006, 511: 425.
    [49] Winkler K, Balch A L, Kutner W. Electrochemically formed fullerene-based polymeric films. [J]. J Solid State Electr 2006, 10: 761.
    [50] Fan B, Wang P, Wang L D, et al. Polythiophene/fullerene bulk heterojunction solar cell fabricated via electrochemical co-deposition. [J]. Sol Energ Mat Sol C 2006, 90: 3547.
    [51] Thompson B C, Fréhet J M J. Polymer-Fullerene Composite Solar Cells. [J]. Angewandte Chemie International Edition 2008, 47: 58.
    [52] Gregg B A, Hanna M C. Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. [J]. J Appl Phys 2003, 93: 3605.
    [53] Semenikhin O A, Hossain M M D, Workentin M S. Photoelectrochemistry of conducting polymers modified with electron-acceptor moieties. [J]. J Phys Chem B 2006, 110: 20189.
    [54] Mattheis J, Werner J H, Rau U. Finite mobility effects on the radiative efficiency limit of pn-junction solar cells. [J]. Phys Rev B 2008, 77: 085203.
    [55] Salafsky J S. Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO2 nanocrystal intermixed composites. [J]. Phys Rev B 1999, 59: 10885.
    [56] Brendel R, Dreissigacker S, Harder N P, et al. Theory of analyzing free energy losses in solar cells. [J]. Appl Phys Lett 2008, 93: 173503.
    [57] Street R A. Carrier mobility, structural order, and solar cell efficiency of organic heterojunction devices. [J]. Appl Phys Lett 2008, 93: 133308.
    [58] Lemaur V, Steel M, Beljonne D, et al. Photoinduced Charge Generation and Recombination Dynamics in Model Donor/Acceptor Pairs for Organic Solar Cell Applications: A Full Quantum-Chemical Treatment. [J]. J Am Chem Soc 2005, 127: 6077.
    [59] Gunes S, Neugebauer H, Sariciftci N S. Conjugated Polymer-Based OrganicSolar Cells. [J]. Chem. Rev. 2007, 107: 1324.
    [60] Shrotriya V, Li G, Yao Y, et al. Accurate measurement and characterization of organic solar cells. [J]. Adv Funct Mater 2006, 16: 2016.
    [61] Scharber M C, Wuhlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency. [J]. Adv Mater 2006, 18: 789.
    [62] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing. [J]. Science 2007, 317: 222.
    [63] Shaheen S E, Brabec C J, Saricftci N S, et al. 2.5% efficient organic plastic solar cells. [J]. Appl Phys Lett 2001, 78: 841.
    [64] Padinger F, Rittberger R S, Sariciftci N S. [J]. Adv. Funct. Mater. 2003, 13: 85.
    [65] Ma W L, Yang C Y, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. [J]. Adv Funct Mater 2005, 15: 1617.
    [66] Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. [J]. Nat Mater 2005, 4: 864.
    [67] Hiramoto M, Fujiwara H, Yokoyama M. Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. [J]. Appl Phys Lett 1991, 58: 1062.
    [68] Hadipour A, de Boer B, Blom P W M. Organic tandem and multi-junction solar cells. [J]. Adv Funct Mater 2008, 18: 169.
    [69] Hadipour A, de Boer B, Wildeman J, et al. Solution-processed organic tandem solar cells. [J]. Adv Funct Mater 2006, 16: 1897.
    [70] Kawano K, Ito N, Nishimori T, et al. Open circuit voltage of stacked bulk heterojunction organic solar cells. [J]. Appl Phys Lett 2006, 88: 073514.
    [71] Dobrovolsky V, Pavljuk S, Rossokhaty V, et al. Silicon-on-insulator control impact-ionization-avalanche transistor. [J]. Appl Phys Lett 2006, 88: 073502.
    [72] Shrotriya V, Wu E H-E, Li G, et al. Efficient light harvesting in multiple-device stacked structure for polymer solar cells. [J]. Appl Phys Lett 2006, 88: 064104.
    [73] Colsmann A, Junge J, Kayser C, et al. Organic tandem solar cells comprising polymer and small-molecule subcells. [J]. Appl Phys Lett 2006, 89: 203506.
    [74] Zoski, C G. Handbook of Electrochemistry, Elsevier: Amsterdam, The Netherlands, 2007.
    [75] Bockris J O' M, Drazic D M. Electro-Chemical Science, Taylor & Francis Ltd., London,1972.
    [76] Chiang C K, Fincher C R, Park Y W, et al. Electrical Conductivity in Doped Polyacetylene. [J]. Phys Rev Lett 1977, 39: 1098.
    [77] Shirakawa H, Louis E J, MacDiarmid A G, et al. Electrical conductivity in doped polyacetylene. [J]. J Chem Soc Chem Commun 1977, 16:578.
    [78] Lund H, Baizer M M. Organic Electrochemistry: An Introduction and a Guide, 4 Edition, Revised and Expanded [M]. New York: Marcel Dekker, 1991.
    [79] Diaz A F, Castillo J I, Logan J A, et al. Electrochemistry of Conducting Polypyrrole Films [J]. J Electroanal Chem 1981, 129: 115.
    [80] Skothenn T, Elsenbauinei R L, Reynolds J R. Handbook of Conducting Polymers, Second Edition, Revised mid Expanded [M]. New York: Marcel Dekker, 1998.
    [81] Skotheim T A, Reynolds J R. Handbook of Conjugated polymers : theory, synthesis, properties, and characterization [M]. New York: Boca Raton, 2007
    [82] Waltman R J, Bargon J, Diaz A F. Electrochemical Studies of Some Conducting Polythiophene Film. [J]. Journal of Physical Chemistry 1983, 87: 1459.
    [83] Li M, Tang S, Shen F, et al. Electrochemically Deposited Organic Luminescent Films: The Effects of Deposition Parameters on Morphologies and Luminescent Efficiency of Films. [J]. The Journal of Physical Chemistry B 2006, 110: 17784.
    [84] Lapkowski M, Plewa S, Stolarczyk A, et al. Electrochemical synthesis of polymers with alternate phenothiazine and bithiophene units. [J]. Electrochimica Acta 2008, 53: 2545.
    [85] Zhu Y Y, Gu C, Tang S, et al. A new kind of peripheral carbazole substituted ruthenium(II) complexes for electrochemical deposition organic light-emitting diodes. [J]. J Mater Chem 2009, 19: 3941.
    [86] Tang S, Liu M R, Gu C, et al. Synthesis and electrochemical properties of peripheral carbazole functional ter(9,9-spirobifluorene)s. [J]. J Org Chem 2008, 73: 4212.
    [87] Rashidnadimi S, Hung T H, Wong K T, et al. Electrochemistry and electrogenerated chemiluminescence of 3,6-Di(spirobifluorene)-N- phenylcarbazole. [J]. J Am Chem Soc 2008, 130: 634.
    [88] Li M, Tang S, Shen F Z, et al. The counter anionic size effects on electrochemical, morphological, and luminescence properties of electrochemically deposited luminescent films. [J]. J Electrochem Soc 2008, 155: H287.
    [89] Li M, Tang S, Lu D, et al. Electrochemical deposition of patterning and highly luminescent organic films for light emitting diodes. [J]. Semiconductor Science and Technology 2007, 22: 855.
    [90] Valaski R, Roman L S, Micaroni L, et al. Electrochemically deposited poly(3-methylthiophene) performance in single layer photovoltaic devices. [J].Eur Phys J E 2003, 12: 507.
    [91] Hümmelgen I A, Valaski R, Roman L S, et al. Photovoltaics based on thin electrodeposited bilayers of poly(3-methylthiophene) and polypyrrole. [J]. Physica Status Solidi (a) 2004, 201: 842.
    [92] Leguenza E L, L. P R, Mello R M Q, et al. High open-circuit voltage single-layer polythiophene-based photovoltaic devices. [J]. J Solid State Electrochem 2007, 11: 577.
    [93] Valaski R, Canestraro C D, Micaroni L, et al. Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates. [J]. Sol Energ Mat Sol Cells 2007, 91: 684.
    [94] Valaski R, Muchenski F, Mello R M Q, et al. Sulfonated polyaniline/poly(3-methylthiophene)-based photovoltaic devices. [J]. J Solid State Electrochem 2006, 10: 24.
    [95] Zhao L, Chen Q, Li C, et al. Electrochemical fabrication of p-poly (3-methylthiophene)/n- silicon solar cells. [J]. Sol Energ Mat Sol Cells 2007, 91: 1811.
    [96] Ratcliff E L, Jenkins J L, Nebesny K, et al. Electrodeposited, "Textured' Poly(3-hexyl-thiophene) (e-P3HT) Films for Photovoltaic Applications. [J]. Chem Mater 2008, 20: 5796.
    [97] Wurfel P. Physics of Solar Cells - From Principles to New Concepts. Wiley-VCH Verlag GubH & Co. kGaA, Weiham, 2005.
    [98] Llopis F, Tobias I. The role of rear surface in thin silicon solar cells. [J]. Sol Energ Mat Sol Cells 2005, 87: 481.
    [99] Zeng L, Yi Y, Hong C, et al. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector. [J]. Appl Phys Lett 2006, 89: 111111.
    [100] O'Brien P G, Kherani N P, Chutinan A, et al. Silicon photovoltaics using conducting photonic crystal back-reflectors. [J]. Adv Mater 2008, 20: 1577.
    [101] Eisele C, Nebel C E, Stutzmann M. Periodic light coupler gratings in amorphous thin film solar cells. [J]. J Appl Phys 2001, 89: 7722.
    [102] Haase C, Stiebig H. Thin-film silicon solar cells with efficient periodic light trapping texture. [J]. Appl Phys Lett 2007, 91: 061116.
    [103] Campbell P, Green M A. Light trapping properties of pyramidally textured surfaces. [J]. J Appl Phys 1987, 62: 243.
    [104] Chutinan A, Kherani N P, Zukotynski S. High-efficiency photonic crystal solar cell architecture. [J]. Optics Express 2009, 17: 8871.
    [105] Beck F J, Polman A, Catchpole K R. Tunable light trapping for solar cells using localized surface plasmons. [J]. J Appl Phys 2009, 105: 114310.
    [106] Franken R H, Stolk R L, Li H, et al. Understanding light trapping by light scattering textured back electrodes in thin film n-i-p type silicon solar cells. [J].Journal of Applied Physics 2007, 102: 014503.
    [107] Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells. [J]. Journal of Applied Physics 2007, 101: 093105.
    [108] Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. [J]. Appl Phys Lett 2008, 93: 193113.
    [109] Akimov Y A, Koh W S, Ostrikov K. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. [J]. Optics Express 2009, 17: 10195.
    [110] Dienerowitz M, Mazilu M, Reece P J, et al. Optical vortex trap for resonant confinement of metal nanoparticles. [J]. Optics Express 2008, 16: 4991.
    [111] Garcia-Vidal F J, Martin-Moreno L. Transmission and focusing of light in one-dimensional periodically nanostructured metals. [J]. Phys Rev B 2002, 66: 155412.
    [112] Na S I, Kim S S, Jo J, et al. Efficient Polymer Solar Cells with Surface Relief Gratings Fabricated by Simple Soft Lithography. [J]. Adv Funct Mater 2008, 18: 3956.
    [113] Kim C, Shtein M, Forrest S R. Nanolithography based on patterned metal transfer and its application to organic electronic devices. [J]. Appl Phys Lett 2002, 80: 4051.
    [114] Kim M-S, Kim J-S, Cho J C, et al. Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography. [J]. Appl Phys Lett 2007, 90: 123113.
    [115] Kim J, Khang D Y, Kim J H, et al. The surface engineering of top electrode in inverted polymer bulk-heterojunction solar cells. [J]. Appl Phys Lett 2008, 92: 133307.
    [116] Kim J Y, Kim S H, Lee H H, et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. [J]. Adv Mater 2006, 18: 572.
    [117] Yoon S J, Park J H, Lee H K, et al. Low vacuum process for polymer solar cells: Effect of TiOx interlayer. [J]. Appl Phys Lett 2008, 92: 143504.
    [118] Lin C J, Yu W Y, Chien S H. Effect of anodic TiO2 powder as additive on electron transport properties in nanocrystalline TiO2 dye-sensitized solar cells. [J]. Appl Phys Lett 2007, 91: 233120.
    [119] Tvingstedt K, Andersson V, Zhang F, et al. Folded reflective tandem polymer solar cell doubles efficiency. [J]. Appl Phys Lett 2007, 91: 123514.
    [120] Zhou Y H, Zhang F L, Tvingstedt K, et al. Multifolded polymer solar cells on flexible substrates. [J]. Appl Phys Lett 2008, 93: 033302.
    [121] Rim S B, Zhao S, Scully S R, et al. An effective light trapping configuration for thin-film solar cells. [J]. Appl Phys Lett 2007, 91: 243501.
    [122] Tvingstedt K, Dal Zilio S, Inganas O, et al. Trapping light with micro lenses in thin film organic photovoltaic cells. [J]. Opt Express 2008, 16: 21608.
    [123] Pala R A, White J, Barnard E, et al. Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements. [J]. Adv Mater 2009, 21: 3504.
    [124] Hagglund C, Zach M, Kasemo B. Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. [J]. Appl Phys Lett 2008, 92: 013113.
    [125] Mendes M J, Luque A, Tobias I, et al. Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells. [J]. Appl Phys Lett 2009, 95: 071105.
    [126] Haug F J, Soderstrom T, Cubero O, et al. Plasmonic absorption in textured silver back reflectors of thin film solar cells. [J]. J Appl Phys 2008, 104: 064509.
    [127] Springer J, Poruba A, Mullerova L, et al. Absorption loss at nanorough silver back reflector of thin-film silicon solar cells. [J]. J Appl Phys 2004, 95: 1427-1429.
    [128] Feng J, Okamoto T, Naraoka R, et al. Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices. [J]. Appl Phys Lett 2008, 93: 051106.
    [129] Niggemann M, Graf W, Gombert A. Realization of Ultrahigh Photovoltages with Organic Photovoltaic Nanomodules. [J]. Adv Mater 2008, 20: 4055.
    [130] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. [J]. Nature 2003, 424: 824.
    [131] Min B K, Ostby E, Sorger V, et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. [J]. Nature 2009, 457: 455.
    [132] Okamoto K, Niki I, Shvartser A, et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. [J]. Nat Mater 2004, 3: 601.
    [133] Williams C R, Andrews S R, Maier S A, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. [J]. Nat Photonics 2008, 2: 175.
    [134] Andrew P, Barnes W L. Energy transfer across a metal film mediated by surface plasmon polaritons. [J]. Science 2004, 306: 1002.
    [1] Ito T, Shirakawa H, Ikeda S. Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler-type catalyst solution. [J]. Journal of Polymer Science: Polymer Chemistry Edition 1974, 12: 11.
    [2] Roncali J. Linear pi-conjugated systems derivatized with C-60-fullerene as molecular heterojunctions for organic photovoltaics. [J]. Chemical Society Reviews 2005, 34: 483.
    [3] Roncali J. Synthetic principles for bandgap control in linearπ-conjugated systems. [J]. Chem Rev 1997, 97: 173.
    [4] Roncali J. Conjugated poly(thiophenes): synthesis, functionalization, and application. [J]. Chem Rev 1992, 92: 711.
    [5] Patil A O, Heeger A J, Wudl F. Optical properties of conducting polymers. [J]. Chem Rev 2002, 88: 183.
    [6] McCullough R. The chemistry of conductiong polythiophenes. [J]. Adv Mater 1998, 10: 93.
    [7] Kovacic P, Jones M B. Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene). [J]. Chem Rev 2002, 87: 357.
    [8] Baughman R H, Bredas J L, Chance R R, et al. Structural basis for semiconducting and metallic polymer dopant systems. [J]. Chem Rev 2002, 82: 209.
    [9] Alkan S, Cutler C A, Reynolds J R. High quality electrochromic polythiophenes via BF3 center dot Et2O electropolymerization. [J]. Adv Func Mater 2003, 13: 331.
    [10] Ocafrain M, Tran T K, Blanchard P, et al. Electropolymerized self-assembled monolayers of a 3,4-ethylenedioxythiophene-thiophene hybrid system. [J]. Adv Func Mater 2008, 18: 2163.
    [11] Shi G Q, Jin S, Xue G, et al. A conducting polymer film stronger than aluminum. [J]. Science 1995, 267: 994.
    [12] Si P C, Chi Q J, Li Z S, et al. Functional polythiophene nanoparticles: Size-controlled electropolymerization and ion selective response. [J]. J Amer Chem Soc 2007, 129: 3888.
    [13] Zotti G, Vercelli B, Berlin A. Monolayers and multilayers of conjugated polymers as nanosized electronic components. [J]. Acc Chem Res 2008, 41: 1098.
    [14] Ong B S, Wu Y L, Liu P, et al. Structurally ordered polythiophene nanoparticles for high-performance organic thin-film transistors. [J]. Adv Mater 2005, 17: 1141.
    [15] Goodman M D, Xu J, Wang J, et al. Semiconductor Conjugated Polymer-Quantum Dot Nanocomposites at the Air/Water Interface and Their Photovoltaic Performance. [J]. Chem Mater 2009, 21: 934.
    [16] Shallcross R C, D'Ambruoso G D, Korth B D, et al. Poly(3,4-ethylenedioxythiophene) - Semiconductor nanoparticle composite thin films tethered to indium tin oxide substrates via electropolymerization. [J]. J Am Chem Soc 2007, 129: 11310.
    [17] Fu M X, Zhu Y F, Tan R Q, et al. Aligned polythiophene micro- and nanotubules. [J]. Adv Mater 2001, 13: 1874.
    [18] Cassagneau T, Caruso F. Semiconducting Polymer Inverse Opals Prepared by Electropolymerization. [J]. Adv Mater 2002, 14: 34.
    [19] Yan Q F, Wang L K, Zhao X S. Artificial defect engineering in three-dimensional colloidal photonic crystals. [J]. Adv Func Mater 2007, 17: 3695.
    [20] Knez M, Niesch K, Niinisto L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. [J]. Adv Mater 2007, 19: 3425.
    [21] Texter J. Templating hydrogels. [J]. Colloid and Polymer Science 2009, 287: 313.
    [22] Stein A, Schroden R C. Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. [J]. Current Opinion in Solid State & Materials Science 2001, 5: 553.
    [23] Aprile C, Corma A, Garcia H. Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control: from subnanometric to submillimetric length scale. [J]. Physical Chemistry Chemical Physics 2008, 10: 769.
    [24] Wang J Y, Cao Y, Feng Y, et al. Multiresponsive Inverse-Opal Hydrogels. [J]. Adv Mater 2007, 19: 3865.
    [25] Haberkorn N, Lechmann M C, Sohn B H, et al. Templated Organic and Hybrid Materials for Optoelectronic Applications. [J]. Macromolecular Rapid Communications 2009, 30: 1146.
    [26] Lu L, Eychmüller A. Ordered Macroporous Bimetallic Nanostructures: Design, Characterization, and Applications. [J]. Accounts of Chemical Research 2008, 41: 244.
    [27] Li Y, Cai W, Duan G. Ordered micro/nanostructured arrays based on the monolayer colloidal crystals. [J]. Chem Mater 2008, 20: 615.
    [28] Ma H, Jen A K Y, Dalton L R. Polymer-based optical waveguides: Materials, processing, and devices. [J]. Adv Mater 2002, 14: 1339.
    [29] Baba T. Slow light in photonic crystals. [J]. Nature Photonics 2008, 2: 465.
    [30] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. [J]. Science 2004, 305: 788.
    [31] Sato O, Kubo S, Gu Z Z. Structural Color Films with Lotus Effects, Superhydrophilicity, and Tunable Stop-Bands. [J]. Accounts of Chemical Research 2009, 42: 1.
    [32] Galloro J, Ginzburg M, Miguez H, et al. Replicating the structure of a crosslinked polyferrocenylsilane inverse opal in the form of a magneticceramic. [J]. Adv Func Mater 2002, 12: 382.
    [33] Graugnard E, King J S, Gaillot D P, et al. Sacrificial-layer atomic layer deposition for fabrication of non-close-packed inverse-opal photonic crystals. [J]. Adv Func Mater 2006, 16: 1187.
    [34] Hong J C, Park J H, Chun C, et al. Photoinduced tuning of optical stop bands in azopolymer based inverse opal photonic crystals. [J]. Adv Func Mater 2007, 17: 2462.
    [35] Ruhl T, Spahn P, Hermann C, et al. Double-inverse-opal photonic crystals: The route to photonic bandgap switching. [J]. Adv Func Mater 2006, 16: 885.
    [36] Chen J I L, von Freymann G, Choi S Y, et al. Amplified photochemistry with slow photons. [J]. Adv Mater 2006, 18: 1915.
    [37] Ergang N S, Lytle J C, Lee K T, et al. Photonic crystal structures as a basis for a three-dimensionally interpenetrating electrochemical-cell system. [J]. Adv Mater 2006, 18: 1750.
    [38] Honda M, Seki T, Takeoka Y. Dual Tuning of the Photonic Band-Gap Structure in Soft Photonic Crystals. [J]. Adv Mater 2009, 21: 1801.
    [39] King J S, Gaillot D P, Graugnard E, et al. Conformally back-filled, non-close-packed inverse-opal photonic crystals. [J]. Adv Mater 2006, 18: 1063.
    [40] King J S, Graugnard E, Summers C J. TiO2 inverse opals fabricated using low-temperature atomic layer deposition. [J]. Adv Mater 2005, 17: 1010.
    [41] Lee Y J, Braun P V. Tunable inverse opal hydrogel pH sensors. [J]. Adv Mater 2003, 15: 563.
    [42] Li Z Y, Zhang Z Q. Photonic bandgaps in disordered inverse-opal photonic crystals. [J]. Adv Mater 2001, 13: 433.
    [43] Miguez H, Tetreault N, Yang S M, et al. A new synthetic approach to silicon colloidal photonic crystals with a novel topology and an omni-directional photonic bandgap: Micromolding in inverse silica opal (MISO). [J]. Adv Mater 2003, 15: 597.
    [44] Ozaki M, Shimoda Y, Kasano M, et al. Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal. [J]. Adv Mater 2002, 14: 514.
    [45] Tetreault N, Miguez H, Ozin G A. Silicon inverse opal - A platform for photonic bandgap research. [J]. Adv Mater 2004, 16: 1471.
    [46] Vekris E, Ozin G A, Kitaev V. Curling colloidal photonic crystals. [J]. Adv Mater 2006, 18: 2481.
    [47] Wang J Y, Cao Y, Feng Y, et al. Multiresponsive inverse-opal hydrogels. [J]. Adv Mater 2007, 19: 3865.
    [48] Xia J Q, Ying Y R, Foulger S H. Electric-field-induced rejection wavelength tuning of photonic bandgap composites. [J]. Adv Mater 2005, 17: 2463.
    [49] Xie Z Y, Sun L G, Han G Z, et al. Optical Switching of a Birefringent Photonic Crystal. [J]. Adv Mater 2008, 20: 3601.
    [50] Xu L B, Tung L D, Spinu L, et al. Synthesis and magnetic behavior of periodicnickel sphere arrays. [J]. Adv Mater 2003, 15: 1562.
    [51] Yu X D, Lee Y J, Furstenberg R, et al. Filling fraction dependent properties of inverse opal metallic photonic crystals. [J]. Adv Mater 2007, 19: 1689.
    [52] Aryal D P, Tsakmakidis K L, Jamois C, et al. Complete and robust bandgap switching in double-inverse-opal photonic crystals. [J]. Appl Phys Lett 2008, 92: 011109.
    [53] Asoh H, Ono S. Design of two-dimensional/three-dimensional composite porous alumina by colloidal crystal templating and subsequent anodization. [J]. Appl Phys Lett 2005, 87: 10310..
    [54] Garcia-Santamaria F, Lopez C, Meseguer F, et al. Opal-like photonic crystal with diamond lattice. [J]. Appl Phys Lett 2001, 79: 2309.
    [55] Han G Z, Xie Z Y, Zheng D, et al. Phototunable photonic crystals with reversible wavelength choice. [J]. Appl Phys Lett 2007, 91: 141114.
    [56] Hwang D K, Noh H, Cao H, et al. Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts. [J]. Appl Phys Lett 2009, 95: 091101.
    [57] Li B, Zhou J, Li L T, et al. Ferroelectric inverse opals with electrically tunable photonic band gap. [J]. Appl Phys Lett 2003, 83: 4704.
    [58] McPhail D, Straub M, Gu M. Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals. [J]. Appl Phys Lett 2005, 86: 051103.
    [59] Moritsugu M, Kim S N, Ogata T, et al. Photochemical switching behavior of azofunctionalized polymer liquid crystal/SiO2 composite photonic crystal. [J]. Appl Phys Lett 2006, 89: 153131.
    [60] Ni P G, Cheng B Y, Zhang D Z. Inverse opal with an ultraviolet photonic gap. [J]. Appl Phys Lett 2002, 80: 1879.
    [61] Dong W T, Bongard H J, Marlow F. New type of inverse opals: Titania with skeleton structure. [J]. Chem Mater 2003, 15: 568.
    [62] Galusha J W, Tsung C K, Stucky G D, et al. Optimizing sol-gel infiltration and processing methods for the fabrication of high-quality planar Titania inverse opals. [J]. Chem Mater 2008, 20: 4925.
    [63] Liu Y F, Wang S P, Lee J W, et al. A floating self-assembly route to colloidal crystal templates for 3D cell scaffolds. [J]. Chem Mater 2005, 17: 4918.
    [64] Schroden R C, Al-Daous M, Blanford C F, et al. Optical properties of inverse opal photonic crystals. [J]. Chem Mater 2002, 14: 3305.
    [65] Schroden R C, Al-Daous M, Stein A. Self-modification of spontaneous emission by inverse opal silica photonic crystals. [J]. Chem Mater 2001, 13: 2945.
    [66] Wang Z Y, Ergang N S, Al-Daous M A, et al. Synthesis and characterization of three-dimensionally ordered macroporous carbon/titania nanoparticle composites. [J]. Chem Mater 2005, 17: 6805.
    [67] Waterhouse G I N, Metson J B, Idriss H, et al. Physical and optical propertiesof inverse opal CeO2 photonic crystals. [J]. Chem Mater 2008, 20: 1183.
    [68] Wijnhoven J E G J, Bechger L, Vos W L. Fabrication and characterization of large macroporous photonic crystals in titania. [J]. Chem Mater 2001, 13: 4486.
    [69] Xu Y, Zhu X, Dan Y, et al. Electrodeposition of three-dimensional titania photonic crystals from holographically patterned microporous polymer templates. [J]. Chem Mater 2008, 20: 1816.
    [70] Bartlett P N, Ghanem M A, El Hallag I S, et al. Electrochemical deposition of macroporous magnetic networks using colloidal templates. [J]. Journal of Materials Chemistry 2003, 13: 2596.
    [71] Chen X, Wang L H, Wen Y Q, et al. Fabrication of closed-cell polyimide inverse opal photonic crystals with excellent mechanical properties and thermal stability. [J]. Journal of Materials Chemistry 2008, 18: 2262.
    [72] Cui L Y, Li Y F, Wang J X, et al. Fabrication of large-area patterned photonic crystals by ink-jet printing. [J]. Journal of Materials Chemistry 2009, 19: 5499.
    [73] Li H L, Chang L X, Wang J X, et al. A colorful oil-sensitive carbon inverse opal. [J]. Journal of Materials Chemistry 2008, 18: 5098.
    [74] Lu Y J, Xia H W, Zhang G Z, et al. Electrically tunable block copolymer photonic crystals with a full color display. [J]. Journal of Materials Chemistry 2009, 19: 5952.
    [75] McComb D W, Treble B M, Smith C J, et al. Synthesis and characterisation of photonic crystals. [J]. Journal of Materials Chemistry 2001, 11: 142.
    [76] Wang J, Ahl S, Li Q, et al. Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition. [J]. Journal of Materials Chemistry 2008, 18: 981.
    [77] Wang L K, Yan Q F, Zhao X S. Fabrication of free-standing non-close-packed opal films. [J]. Journal of Materials Chemistry 2006, 16: 4598.
    [78] Barry R A, Wiltzius P. Humidity-sensing inverse opal hydrogels. [J]. Langmuir 2006, 22: 1369.
    [79] Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. [J]. Nature 2000, 405: 437.
    [80] Lodahl P, van Driel A F, Nikolaev I S, et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. [J]. Nature 2004, 430: 654.
    [81] Rinne S A, Garcia-Santamaria F, Braun P V. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. [J]. Nature Photonics 2008, 2: 52.
    [82] Sun C H, Jiang P. Acclaimed defects. [J]. Nature Photonics 2008, 2: 9.
    [83] Chen X, Chen Z M, Yang B, et al. Regular patterns generated by self-organisation of ammonium-modified polymer nanospheres. [J]. Journal ofColloid and Interface Science 2004, 269: 79.
    [84] Chen X, Cui Z C, Chen Z M, et al. The synthesis and characterizations of monodisperse cross-linked polymer microspheres with carboxyl on the surface. [J]. Polymer 2002, 43: 4147.
    [85] Teh L K, Wong C C, Yang H Y, et al. Lasing in electrodeposited ZnO inverse opal. [J]. Appl Phys Lett 2007, 91: 161116.
    [86] Jiang P, Bertone J F, Hwang K S, et al. Single-crystal colloidal multilayers of controlled thickness. [J]. Chem Mater 1999, 11: 2132.
    [87] Subramanian G, Manoharan V N, Thorne J D, et al. Ordered Macroporous Materials by Colloidal Assembly: A Possible Route to Photonic Bandgap Materials. [J]. Adv Mater 1999, 11: 1261.
    [88] Kelly T L, Yamada Y, Che S P Y, et al. Monodisperse Poly(3,4- ethylenedioxythiophene)-Silica Microspheres: Synthesis and Assembly into Crystalline Colloidal Arrays. [J]. Adv Mater 2008, 20: 2616.
    [89] Garcia P D, Blanco A, Shavel A, et al. Quantum dot thin layers templated on ZnO inverse opals. [J]. Adv Mater 2006, 18: 2768.
    [90] Urbas A, Tondiglia V, Natarajan L, et al. Optically Switchable Liquid Crystal Photonic Structures. [J]. J Amer Chem Soc 2004, 126: 13580.
    [91] Bermel P, Luo C, Zeng L, et al. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. [J]. Optics Express 2007, 15: 16986.
    [92] Xia Y N, Gates B, Yin Y D, et al. Monodispersed colloidal spheres: Old materials with new applications. [J]. Adv Mater 2000, 12: 693.
    [93] Jiang P, Bertone J F, Colvin V L. A lost-wax approach to monodisperse colloids and their crystals. [J]. Science 2001, 291: 453.
    [94] Gunawardena G, Hills G, Montenegro I, et al. Electrochemical nucleation: Part I. General considerations. [J]. Journal of Electroanalytical Chemistry 1982, 138: 225.
    [95] Brumbach M, Veneman P A, Marrikar F S, et al. Surface composition and electrical and electrochemical properties of freshly deposited and acid-etched indium tin oxide electrodes. [J]. Langmuir 2007, 23: 11089.
    [96] Johnson S A, Ollivier P J, Mallouk T E. Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates. [J]. Science 1999, 283: 963.
    [97] Yin Y D, Rioux R M, Erdonmez C K, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. [J]. Science 2004, 304: 711.
    [98] Stein A. Advances in microporous and mesoporous solids - Highlights of recent progress. [J]. Adv Mater 2003, 15: 763.
    [99] Velev O D, Tessier P M, Lenhoff A M, et al. Materials - A class of porous metallic nanostructures. [J]. Nature 1999, 401: 548.
    [100] Velev O D, Kaler E W. Structured porous materials via colloidal crystal templating: From inorganic oxides to metals. [J]. Adv Mater 2000, 12: 531.
    [101] Jiang P, Cizeron J, Bertone J F, et al. Preparation of macroporous metal filmsfrom colloidal crystals. [J]. J Amer Chem Soc 1999, 121: 7957.
    [102] Jiang P, Hwang K S, Mittleman D M, et al. Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids. [J]. J Amer Chem Soc 1999, 121: 11630.
    [103] Jiang P, McFarland M J. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. [J]. J Amer Chem Soc 2004, 126: 13778.
    [104] Gates B, Yin Y D, Xia Y N. Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures. [J]. Chem Mater 1999, 11: 2827.
    [105] Zalusky A S, Olayo-Valles R, Taylor C J, et al. Mesoporous polystyrene monoliths. [J]. J Amer Chem Soc 2001, 123: 1519.
    [106] Deutsch M, Vlasov Y A, Norris D J. Conjugated-polymer photonic crystals. [J]. Adv Mater 2000, 12: 1176.
    [107] Wang D Y, Caruso F. Fabrication of polyaniline inverse opals via templating ordered colloidal assemblies. [J]. Adv Mater 2001, 13: 350.
    [108] Dziomkina N V, Vancso G J. Colloidal crystal assembly on topologically patterned templates. [J]. Soft Matter 2005, 1: 265.
    [109] Wenzel R N. Resistance of solid surface to wetting by water. [J]. Ind. Eng. Chem. 1936, 28: 988.
    [110] Cassie A B D, Baxter S. Wettability of porous surfaces. [J]. Trans. Faraday Soc. 1944, 40: 546.
    [111] Onda T, Shibuichi S, Satoh N, et al. Super-Water-Repellent Fractal Surfaces. [J]. Langmuir 1996, 12: 2125.
    [112] Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials. [J]. Adv Mater 2008, 20: 2842.
    [113] Ma M, Hill R M. Superhydrophobic surfaces. [J]. Current Opinion in Colloid & Interface Science 2006, 11: 193.
    [114] Liu Y, Mu L, Liu B, et al. Controlled Switchable Surface. [J]. Chemistry - A European Journal 2005, 11: 2622.
    [115] Feng X J, Jiang L. Design and creation of superwetting/antiwetting surfaces. [J]. Adv Mater 2006, 18: 3063.
    [116] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. [J]. Planta 1997, 202: 1.
    [117] Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: From natural to artificial. [J]. Adv Mater 2002, 14: 1857.
    [118] Gao X, Jiang L. Biophysics: Water-repellent legs of water striders. [J]. Nature 2004, 432: 36.
    [119] Han J T, Xu, Cho K. Diverse Access to Artificial Superhydrophobic Surfaces Using Block Copolymers. [J]. Langmuir 2005, 21: 6662.
    [120] Lomova E M, Turygin D S, Ezhov A A, et al. Lateral 2D-3D Phase Segregation in Fatty Acid/Fatty Amine Monolayers Induced byLangmuir-Blodgett Deposition. [J]. Journal of Physical Chemistry B 2009, 113: 8581.
    [121] Ho W K, Yu J C, Yu J G. Photocatalytic TiO2/glass nanoflake array films. [J]. Langmuir 2005, 21: 3486.
    [122] Makal U, Fujiwara T, Cooke R S, et al. Polyurethanes containing oxetane-derived poly(2,2-substituted-1,3-propylene oxide) soft blocks: Copolymer effect on wetting behavior. [J]. Langmuir 2005, 21: 10749.
    [123] Shirtcliffe N J, McHale G, Newton M I, et al. Intrinsically superhydrophobic organosilica sol-gel foams. [J]. Langmuir 2003, 19: 5626.
    [124] Tsai I Y, Kimura M, Russell T P. Fabrication of a gradient heterogeneous surface using homopolymers and diblock copolymers. [J]. Langmuir 2004, 20: 5952.
    [125] Zhang G, Fu N, Zhang H, et al. Controlling pore size and wettability of a unique microheterogeneous copolymer film with porous structure. [J]. Langmuir 2003, 19: 2434.
    [126] Biver C, de Crevoisier G, Girault S, et al. Microphase separation and wetting properties of palmitate-graft-poly(vinyl alcohol) films. [J]. Macromolecules 2002, 35: 2552.
    [127] Balu B, Breedveld V, Hess D W. Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing. [J]. Langmuir 2008, 24: 4785.
    [128] Borras A, Barranco A, Gonzalez-Elipe A R. Reversible superhydrophobic to superhydrophilic conversion of Ag@TiO2 composite nanofiber surfaces. [J]. Langmuir 2008, 24: 8021.
    [129] Ling X Y, Phang I Y, Vancso G J, et al. Stable and Transparent Superhydrophobic Nanoparticle Films. [J]. Langmuir 2009, 25: 3260.
    [130] Liu H, Feng L, Zhai J, et al. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. [J]. Langmuir 2004, 20: 5659.
    [131] Mattia D, Ban H H, Gogotsi Y. Wetting of CVD carbon films by polar and nonpolar liquids and implications for carbon nanopipes. [J]. Langmuir 2006, 22: 1789.
    [132] Min W L, Jiang B, Jiang P. Bioinspired Self-Cleaning Antireflection Coatings. [J]. Adv Mater 2008, 20: 3914.
    [133] Wilhelm E J, Jacobson J M. Direct printing of nanoparticles and spin-on-glasses by offset liquid embossing. [J]. Appl Phys Lett 2004, 84: 3507.
    [134] Shiu J Y, Kuo C W, Chen P L, et al. Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. [J]. Chem Mater 2004, 16: 561.
    [135] Zhang G, Wang D Y, Gu Z Z, et al. Two-dimensional non-close-packing arrays derived from self-assembly of biomineralized hydrogel spheres and their patterning applications. [J]. Chem Mater 2005, 17: 5268.
    [136] Iqbal P, Critchley K, Bowen J, et al. Fabrication of a nanoparticle gradientsubstrate by thermochemical manipulation of an ester functionalized SAM. [J]. Journal of Materials Chemistry 2007, 17: 5097.
    [137] Grilli S, Vespini V, Ferraro P. Surface-Charge Lithography for Direct PDMS Micro-Patterning. [J]. Langmuir 2008, 24: 13262.
    [138] Baek J H, Ahn H, Yoon J, et al. Micro-patterning of polydiacetylene supramolecules using micromolding in capillaries (MIMIC). [J]. Macromolecular Rapid Communications 2008, 29: 117.
    [139] Jung H, Dalal C K, Kuntz S, et al. Surfactant activated dip-pen nanolithography. [J]. Nano Letters 2004, 4: 2171.
    [140] Shiu J Y, Kuo C W, Chen P L. Fabrication of tunable superhydrophobic surfaces. [J]. Smart Materials III 2005, 5648: 325.
    [141] Caputo G, Cortese B, Nobile C, et al. Reversibly Light-Switchable Wettability of Hybrid Organic/Inorganic Surfaces With Dual Micro-/Nanoscale Roughness. [J]. Adv Func Mater 2009, 19: 1149.
    [142] Cho W K, Choi I S. Fabrication of hairy polymeric films inspired by geckos: Wetting and high adhesion properties. [J]. Adv Func Mater 2008, 18: 1089.
    [143] Li H L, Wang J X, Yang L M, et al. Superoleophilic and Superhydrophobic Inverse Opals for Oil Sensors. [J]. Adv Func Mater 2008, 18: 3258.
    [144] Chabinyc M L, Wong W S, Salleo A, et al. Organic polymeric thin-film transistors fabricated by selective dewetting. [J]. Appl Phys Lett 2002, 81: 4260.
    [145] Fukuzawa K, Deguchi T, Kawamura J, et al. Nanoscale patterning of thin liquid films on solid surfaces. [J]. Appl Phys Lett 2005, 87: 203108.
    [146] Ahmad S N, Shaheen S A, Rao S G, et al. Effect of polarity of self-assembled monolayers on morphology and magnetic properties of a deposited magnetic material. [J]. Journal of Applied Physics 2008, 103: 07B507.
    [147] Takahashi K, Tadanaga K, Hayashi A, et al. Micropatterning of transparent poly(benzylsilsesquioxane) thick films prepared by the electrophoretic sol-gel deposition process using a hydrophobic-hydrophilic-patterned surface. [J]. J Amer Ceram Soc 2006, 89: 3832.
    [148] Jayaraman K, Okamoto K, Son S J, et al. Observing capillarity in hydrophobic silica nanotubes. [J]. J Amer Chem Soc 2005, 127: 17385.
    [149] Li Y, Sasaki T, Shimizu Y, et al. Hexagonal-Close-Packed, Hierarchical Amorphous TiO2 Nanocolumn Arrays: Transferability, Enhanced Photocatalytic Activity, and Superamphiphilicity without UV Irradiation. [J]. J Amer Chem Soc 2008, 130: 14755.
    [150] Jia X Q, McCarthy T J. Controlled growth of silicon dioxide from "nanoholes" in silicon-supported tris(trimethylsiloxy)silyl monolayers: Rational control of surface roughness at the nanometer length scale. [J]. Langmuir 2003, 19: 2449.
    [151] Lee K J, Pan F, Carroll G T, et al. Photolithographic technique for direct photochemical modification and chemical micropatterning of surfaces. [J]. Langmuir 2004, 20: 1812.
    [152] Srinivasan S, Praveen V K, Philip R, et al. Bioinspired superhydrophobic coatings of carbon nanotubes and linear pi systems based on the "bottom-up" self-assembly approach. [J]. Angewandte Chemie-International Edition 2008, 47: 5750.
    [153] Wu J, Yi T, Shu T, et al. Ultrasound switch and thermal self-repair of morphology and surface wettability in a cholesterol-based self-assembly system. [J]. Angewandte Chemie-International Edition 2008, 47: 1063.
    [154] Vaccaro L, Bernal M P, Marquis-Weible F, et al. Shear force surface contrast on self-assembly monolayers. [J]. Appl Phys Lett 2000, 77: 3110.
    [155] Jarn M, Brieler F J, Kuemmel M, et al. Wetting of heterogeneous nanopatterned inorganic surfaces. [J]. Chem Mater 2008, 20: 1476.
    [156] Zhou Y F, Yi T, Li T C, et al. Morphology and Wettability tunable two- dimensional superstructure assembled by hydrogen bonds and hydrophobic interactions. [J]. Chem Mater 2006, 18: 2974.
    [157] Song X Y, Zhai J, Wang Y L, et al. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties. [J]. Journal of Physical Chemistry B 2005, 109: 4048.
    [158] Yan X B, Tay B K, Yang Y, et al. Fabrication of three-dimensional ZnO-Carbon nanotube (CNT) hybrids using self-assembled CNT micropatterns as framework. [J]. Journal of Physical Chemistry C 2007, 111: 17254.
    [159] Checco A, Schollmeyer H, Daillant J, et al. Nanoscale wettability of self-assembled monolayers investigated by noncontact atomic force microscopy. [J]. Langmuir 2006, 22: 116.
    [160] Cho J, Char K. Effect of layer integrity of spin self-assembled multilayer films on surface Wettability. [J]. Langmuir 2004, 20: 4011.
    [161] Hederos M, Konradsson P, Liedberg B. Synthesis and self-assembly of galactose-terminated alkanethiols and their ability to resist proteins. [J]. Langmuir 2005, 21: 2971.
    [162] Kropman B L, Blank D H A, Rogalla H. Binary mixtures of self-assembled monolayers on SrTiO3: Experimental evidence for phase segregation. [J]. Langmuir 2000, 16: 1469.
    [163] Liao K S, Wan A, Batteas J D, et al. Superhydrophobic surfaces formed using layer-by-layer self-assembly with aminated multiwall carbon nanotubes. [J]. Langmuir 2008, 24: 4245.
    [164] Nishimoto S, Sekine H, Zhang X T, et al. Assembly of Self-Assembled Monolayer-Coated Al2O3 on TiO2 Thin Films for the Fabrication of Renewable Superhydrophobic-Superhydrophilic Structures. [J]. Langmuir 2009, 25: 7226.
    [165] Valiokas R, Svedhem S, Svensson S C T, et al. Self-assembled monolayers of oligo(ethylene glycol)-terminated and amide group containing alkanethiolates on gold. [J]. Langmuir 1999, 15: 3390.
    [166] van der Boom M E, Evmenenko G, Yu C J, et al. Interrupted-growth studies of the self-assembly of intrinsically acentric siloxane-derived monolayers. [J]. Langmuir 2003, 19: 10531.
    [167] Zhao Y, Li M, Lu Q H. Tunable wettability of polyimide films based on electrostatic self-assembly of ionic liquids. [J]. Langmuir 2008, 24: 3937.
    [168] Xu L B, Chen W, Mulchandani A, et al. Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. [J]. Angewandte Chemie-International Edition 2005, 44: 6009.
    [169] Balaur E, Macak J M, Taveira L, et al. Tailoring the wettability of TiO2 nanotube layers. [J]. Electrochemistry Communications 2005, 7: 1066.
    [170] Jang I Y, Muramatsu H, Park K C, et al. Capacitance response of double-walled carbon nanotubes depending on surface modification. [J]. Electrochemistry Communications 2009, 11: 719.
    [171] Wang L, Guo S J, Dong S J. Facile electrochemical route to directly fabricate hierarchical spherical cupreous micro structures: Toward superhydrophobic surface. [J]. Electrochemistry Communications 2008, 10: 655.
    [172] Bai H, Li C, Shi G Q. Electrochemical Fabrication of Superhydrophobic Surfaces on Metal and Semiconductor Substrates. [J]. Journal of Adhesion Science and Technology 2008, 22: 1819.
    [173] Zhang S S, Xu K, Jow T R. Alkaline composite film as a separator for rechargeable lithium batteries. [J]. Journal of Solid State Electrochemistry 2003, 7: 492.
    [174] Friggeri A, Schonherr H, van Manen H J, et al. Insertion of individual dendrimer molecules into self-assembled monolayers on gold: A mechanistic study. [J]. Langmuir 2000, 16: 7757.
    [175] Weinstein R D, Richards J, Thai S D, et al. Characterization of self-assembled monolayers from lithium dialkyldithiocarbamate salts. [J]. Langmuir 2007, 23: 2887.
    [176] Zhang X, Shi F, Yu X, et al. Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface. [J]. J Amer Chem Soc 2004, 126: 3064.
    [177] Li M, Zhai J, Liu H, et al. Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films. [J]. The Journal of Physical Chemistry B 2003, 107: 9954.
    [178] Yao T J, Wang C X, Lin Q, et al. Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles. [J]. Nanotechnology 2009, 20: 065304..
    [1] Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. [J]. Science 1995, 270: 1789.
    [2] Sariciftci N S, Smilowitz l, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. [J]. Science 1992, 258: 1474.
    [3] Tang C W. Two-layer organic photovoltaic cell. [J]. Appl Phys Lett 1986, 48: 183.
    [4] Peumans P, Uchida S, Forrest S R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. [J]. Nature 2003, 425: 158.
    [5] Yang F, Shtein M, Forrest S R. Controlled growth of a molecular bulk heterojunction photovoltaic cell. [J]. Nat Mater 2005, 4: 37.
    [6] Benten H, Ogawa M, Ohkita H, et al. Design of multilayered nanostructures and donor-acceptor interfaces in solution-processed thin-film organic solar cells. [J]. Adv Funct Mater 2008, 18: 1563.
    [7] Brabec C J, Winder C, Sariciftci N S, et al. A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. [J]. Adv Funct Mater 2002, 12: 709.
    [8] Gupta D, Kabra D, Kolishetti N, et al. An efficient bulk-heterojunction photovoltaic cell based on energy transfer in graded-bandgap polymers. [J]. Adv Funct Mater 2007, 17: 226.
    [9] Hoppe H, Niggemann M, Winder C, et al. Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. [J]. Adv Funct Mater 2004, 14: 1005.
    [10] Leclerc N, Michaud A, Sirois K, et al. Synthesis of 2,7-carbazolenevinylene -based copolymers and characterization of their photovoltaic properties. [J]. Adv Funct Mater 2006, 16: 1694.
    [11] Melzer C, Koop E J, Mihailetchi V D, et al. Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells. [J]. Adv Funct Mater 2004, 14: 865.
    [12] Pacios R, Chatten A J, Kawano K, et al. Effects of photo-oxidation on the performance of poly[2-methoxy-5-(3 ',7 '-dimethyloctyloxy)-1,4-phenylene vinylene]:[6,6]-phenyl C-61-butyric acid methyl ester solar cells. [J]. Adv Funct Mater 2006, 16: 2117.
    [13] Riedel I, Parisi J, Dyakonov V, et al. Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk-heterojunction solar cells. [J]. Adv Funct Mater 2004, 14: 38.
    [14] Van Duren J K J, Yang X N, Loos J, et al. Relating the morphology ofpoly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. [J]. Adv Funct Mater 2004, 14: 425.
    [15] Vandewal K, Gadisa A, Oosterbaan W D, et al. The Relation Between Open-Circuit Voltage and the Onset of Photocurrent Generation by Charge-Transfer Absorption in Polymer? Fullerene Bulk Heterojunction Solar Cells. [J]. Adv Funct Mater 2008, 18: 2064.
    [16] Xiao S, Nguyen M, Gong X, et al. Stabilization of semiconducting polymers with silsesquioxane. [J]. Adv Funct Mater 2003, 13: 25.
    [17] Yamamoto S, Guo J, Ohkita H, et al. Formation of Methanofullerene Cation in Bulk Heterojunction Polymer Solar Cells Studied by Transient Absorption Spectroscopy. [J]. Adv Funct Mater 2008, 18: 2555.
    [18] Ago H, Petritsch K, Shaffer M S P, et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. [J]. Adv Mater 1999, 11: 1281.
    [19] van Hal P A, Wienk M M, Kroon J M, et al. Photoinduced electron transfer and photovoltaic response of a MDMO-PPV : TiO2 bulk-heterojunction. [J]. Adv Mater 2003, 15: 118.
    [20] Ishikawa T, Nakamura M, Fujita K, et al. Preparation of organic bulk heterojunction photovoltaic cells by evaporative spray deposition from ultradilute solution. [J]. Appl Phys Lett 2004, 84: 2424.
    [21] Kawano K, Ito N, Nishimori T, et al. Open circuit voltage of stacked bulk heterojunction organic solar cells. [J]. Appl Phys Lett 2006, 88: 073514.
    [22] Sun S S, Zhang C, Ledbetter A, et al. Photovoltaic enhancement of organic solar cells by a bridged donor-acceptor block copolymer approach. [J]. Appl Phys Lett 2007, 90: 3.
    [23] Dittmer J J, Petritsch K, Marseglia E A, et al. Photovoltaic properties of MEH-PPV/PPEI blend devices. [J]. Synthetic Met 1999, 102: 879.
    [24] Zhang F L, Johansson M, Andersson M R, et al. Polymer solar cells based on MEH-PPV and PCBM. [J]. Synthetic Met 2003, 137: 1401.
    [25] Onoda M, Tada K. Photovoltaic effects of MDOPPV/PPy layer. [J]. Thin Solid Films 2001, 393: 284.
    [26] Chang Y T, Hsu S L, Chen G Y, et al. Intramolecular donor-acceptor regioregular poly(3-hexylthiophene)s presenting octylphenanthrenyl-imidazole moieties exhibit enhanced charge transfer for heterojunction solar cell applications. [J]. Adv Funct Mater 2008, 18: 2356.
    [27] Chang Y T, Hsu S L, Su M H, et al. Soluble phenanthrenyl-imidazole -presenting regioregular poly (3-octylthiophene) copolymers having tunable bandgaps for solar cell applications. [J]. Adv Funct Mater 2007, 17: 3326.
    [28] Chang Y T, Hsu S L, Su M H, et al. Intramolecular Donor-Acceptor Regioregular Poly(hexylphenanthrenyl-imidazole thiophene) Exhibits Enhanced Hole Mobility for Heterojunction Solar Cell Applications. [J]. Adv Mater 2009, 21: 2093.
    [29] Ma W L, Yang C Y, Heeger A J. Spatial Fourier-transform analysis of themorphology of bulk heterojunction materials used in "plastic" solar cells. [J]. Adv Mater 2007, 19: 1387.
    [30] Monson T C, Lloyd M T, Olson D C, et al. Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells. [J]. Adv Mater 2008, 20: 4755.
    [31] Scharber M C, Koppe M, Gao J, et al. Influence of the Bridging Atom on the Performance of a Low-Bandgap Bulk Heterojunction Solar Cell. [J]. Adv Mater 2009, online, DOI:10.10021/adma.200900529.
    [32] Zhang F L, Svensson M, Andersson M R, et al. Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes. [J]. Adv Mater 2001, 13: 1871.
    [33] Dennler G, Lungenschmied C, Sariciftci N S, et al. Unusual electromechanical effects in organic semiconductor Schottky contacts: Between piezoelectricity and electrostriction. [J]. Appl Phys Lett 2005, 87: 3.
    [34] Gadisa A, Svensson M, Andersson M R, et al. Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. [J]. Appl Phys Lett 2004, 84: 1609.
    [35] Hayakawa A, Yoshikawa O, Fujieda T, et al. High performance polythiophene /fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer. [J]. Appl Phys Lett 2007, 90: 163517.
    [36] Miller A J, Hatton R A, Silva S R P. Water-soluble multiwall-carbon- nanotube-polythiophene composite for bilayer photovoltaics. [J]. Appl Phys Lett 2006, 89: 123115.
    [37] Nakamura J, Murata K, Takahashi K. Relation between carrier mobility and cell performance in bulk heterojunction solar cells consisting of soluble polythiophene and fullerene derivatives. [J]. Appl Phys Lett 2005, 87: 132105.
    [38] Senadeera G K R, Nakamura K, Kitamura T, et al. Fabrication of highly efficient polythiophene-sensitized metal oxide photovoltaic cells. [J]. Appl Phys Lett 2003, 83: 5470.
    [39] Shuttle C G, Maurano A, Hamilton R, et al. Charge extraction analysis of charge carrier densities in a polythiophene/fullerene solar cell: Analysis of the origin of the device dark current. [J]. Appl Phys Lett 2008, 93: 183501.
    [40] Wang W L, Wu H B, Yang C Y, et al. High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl -C-61-butyric acid methyl ester processed with oleic acid surfactant. [J]. Appl Phys Lett 2007, 90: 183512.
    [41] Yun J J, Jung H S, Kim S H, et al. Chlorophyll-layer-inserted poly(3-hexyl-thiophene) solar cell having a high light-to-current conversion efficiency up to 1.48%. [J]. Appl Phys Lett 2005, 87: 123102.
    [42] Camaioni N, Garlaschelli L, Geri A, et al. Solar cells based on poly(3-alkyl)thiophenes and [60]fullerene: a comparative study. [J]. J Mater Chem 2002, 12: 2065.
    [43] Lohwasser R H, Bandara J, Thelakkat M. Tailor-made synthesis of poly(3-hexylthiophene) with carboxylic end groups and its application as a polymer sensitizer in solid-state dye-sensitized solar cells. [J]. J Mater Chem 2009, 19: 4126.
    [44] Woo C H, Thompson B C, Kim B J, et al. The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance. [J]. J Am Chem Soc 2008, 130: 16324.
    [45] Campoy-Quiles M, Ferenczi T, Agostinelli T, et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. [J]. Nat Mater 2008, 7: 158.
    [46] Kim Y, Cook S, Tuladhar S M, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. [J]. Nat Mater 2006, 5: 197.
    [47] Fulop G, Doty M, Meyers P, et al. High-efficiency electrodeposited cadmium telluride solar cells. [J]. Appl Phys Lett 1982, 40: 327.
    [48] Ratcliff E L, Jenkins J L, Nebesny K, et al. Electrodeposited, "Textured' Poly(3-hexyl-thiophene) (e-P3HT) Films for Photovoltaic Applications. [J]. Chem Mater 2008, 20: 5796.
    [49] Georgieva V, Ristov M. Electrodeposited cuprous oxide on indium tin oxide for solar applications. [J]. Sol Energ Mat Sol C 2002, 73: 67.
    [50] Harris C J, Belcher W J, Dastoor P C. Effect of film thickness and morphology on the performance of photoelectrochemical cells based on poly(terthiophene). [J]. Sol Energ Mat Sol C 2007, 91: 1127.
    [51] Valaski R, Canestraro C D, Micaroni L, et al. Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates. [J]. Sol Energ Mat Sol C 2007, 91: 684.
    [52] Wijesundara R P, Perera L D R D, Jayasuriya K D, et al. Sulphidation of electrodeposited cuprous oxide thin films for photovoltaic applications. [J]. Sol Energ Mat Sol C 2000, 61: 277.
    [53] Lin Y J, Wang L, Chiu W Y. Novel poly(3-methylthiophene)-TiO2 hybrid materials for photovoltaic cells. [J]. Thin Solid Films 2006, 511: 199.
    [54] Hümmelgen I A, Valaski R, Roman L S, et al. Photovoltaics based on thin electrodeposited bilayers of poly(3-methylthiophene) and polypyrrole. [J]. Physica Status Solidi (a) 2004, 201: 842.
    [55] Valaski R, Muchenski F, Mello R M Q, et al. Sulfonated polyaniline/poly(3-methylthiophene)-based photovoltaic devices. [J]. J Solid State Electrochem 2006, 10: 24.
    [56] Leguenza E L, L. P R, Mello R M Q, et al. High open-circuit voltage single-layer polythiophene-based photovoltaic devices. [J]. J Solid State Electrochem 2007, 11: 577.
    [57] Valaski R, Roman L S, Micaroni L, et al. Electrochemically deposited poly(3-methylthiophene) performance in single layer photovoltaic devices. [J].Eur Phys J E 2003, 12: 507.
    [58] Zhao L, Chen Q, Li C, et al. Electrochemical fabrication of p-poly (3-methylthiophene)/n- silicon solar cells. [J]. Solar Energy Materials and Solar Cells 2007, 91: 1811.
    [59] Fan B, Wang P, Wang L D, et al. Polythiophene/fullerene bulk heterojunction solar cell fabricated via electrochemical co-deposition. [J]. Solar Energy Materials and Solar Cells 2006, 90: 3547.
    [60] Armstrong N R, Carter C, Donley C, et al. Interface modification of ITO thin films: organic photovoltaic cells. [J]. Thin Solid Films 2003, 445: 342.
    [61] Doherty W J, Wysocki R J, Armstrong N R, et al. Electrochemical copolymerization and spectroelectrochemical characterization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene-methanol copolymers on indium-tin oxide. [J]. Macromolecules 2006, 39: 4418.
    [62] Marrikar F S, Brumbach M, Evans D H, et al. Modification of indium-tin oxide electrodes with thiophene copolymer thin films: Optimizing electron transfer to solution probe molecules. [J]. Langmuir 2007, 23: 1530.
    [63] Placencia D, Wang W N, Shallcross R C, et al. Organic Photovoltaic Cells Based On Solvent-Annealed, Textured Titanyl Phthalocyanine/C-60 Heterojunctions. [J]. Adv Func Mater 2009, 19: 1913.
    [64] Donley C, Dunphy D, Paine D, et al. Characterization of indium-tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: Effect of surface pretreatment conditions. [J]. Langmuir 2002, 18: 450.
    [65] Brumbach M, Veneman P A, Marrikar F S, et al. Surface composition and electrical and electrochemical properties of freshly deposited and acid-etched indium tin oxide electrodes. [J]. Langmuir 2007, 23: 11089.
    [66] Paniagua S A, Hotchkiss P J, Jones S C, et al. Phosphonic acid modification of indium-tin oxide electrodes: Combined XPS/UPS/contact angle studies. [J]. Journal of Physical Chemistry C 2008, 112: 7809.
    [67] Carter C, Brumbach M, Donley C, et al. Small molecule chemisorption on indium-tin oxide surfaces: enhancing probe molecule electron-transfer rates and the performance of organic light-emitting diodes. [J]. Journal of Physical Chemistry B 2006, 110: 25191.
    [68] Marrikar F S, Brumbach M, Evans D H, et al. Modification of Indiumtin Oxide Electrodes with Thiophene Copolymer Thin Films: Optimizing Electron Transfer to Solution Probe Molecules. [J]. Langmuir 2006, 23: 1530.
    [69] Huang Q L, Evmenenko G A, Dutta P, et al. Covalently bound hole-injecting nanostructures. Systematics of molecular architecture, thickness, saturation, and electron-blocking characteristics on organic light-emitting diode luminance, turn-on voltage, and quantum efficiency. [J]. J Amer Chem Soc 2005, 127: 10227.
    [70] Yan H, Lee P, Armstrong N R, et al. High-performance hole-transport layersfor polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. [J]. J Amer Chem Soc 2005, 127: 3172.
    [71] Gardner T J, Frisbie C D, Wrighton M S. Systems for orthogonal self-assembly of electroactive monolayers on Au and ITO: an approach to molecular electronics. [J]. J Amer Chem Soc 2002, 117: 6927.
    [72] Kondo T, Takechi M, Sato Y, et al. Adsorption behavior of functionalized ferrocenylalkane thiols and disulfide onto Au and ITO and electrochemical properties of modified electrodes: Effects of acyl and alkyl groups attached to the ferrocene ring. [J]. J Electroanal Chem 1995, 381: 203.
    [73] Leclerc M, Diaz F M, Wegner G. Structural analysis of poly(3-alkylthiophene)s. [J]. Die Makromolekulare Chemie 1989, 190: 3105.
    [74] Gunawardena G, Hills G, Montenegro I, et al. Electrochemical nucleation: Part I. General considerations. [J]. J Electroanal Chem 1982, 138: 225.
    [75] Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells. [J]. Adv Funct Mater 2001, 11: 15.
    [76] Li G, Yao Y, Yang H, et al. "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. [J]. Adv Funct Mater 2007, 17: 1636.
    [77] Kim J Y, Kim S H, Lee H H, et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. [J]. Adv Mater 2006, 18: 572.
    [78] Gunes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells. [J]. Chem Rev 2007, 107: 1324.
    [79] Brabec C J, Cravino A, Meissner D, et al. Origin of the Open Circuit Voltage of Plastic Solar Cells. [J]. Adv Funct Mater 2001, 11: 374.
    [80] Duren J K J v, Loos J, Morrissey F, et al. In-Situ Compositional and Structural Analysis of Plastic Solar Cells. [J]. Adv Funct Mater 2002, 12: 665.
    [81] Schroder DK. Semiconductor Material and Device Characterization. John Wiley & Sons Inc, New Jersey, 2006.
    [82] Ma W L, Yang C Y, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. [J]. Adv Funct Mater 2005, 15: 1617.
    [83] Lee K, Park S W, Ko M J, et al. Selective positioning of organic dyes in a mesoporous inorganic oxide film. [J]. Nat Mater 2009, 8: 665.
    [1] Thompson B C, Fréhet J M J. Polymer-Fullerene Composite Solar Cells. [J]. Angewandte Chemie International Edition 2008, 47: 58.
    [2] Singh T B, Sariciftci N S. Progress in plastic electronics devices. [J]. Ann Rev Mater Res 2006, 36: 199.
    [3] Forrest S R, Thompson M E. Introduction: Organic electronics and optoelectronics. [J]. Chem Rev 2007, 107: 923.
    [4] Gunes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells. [J]. Chem Rev 2007, 107: 1324.
    [5] Shirota Y, Kageyama H. Charge carrier transporting molecular materials and their applications in devices. [J]. Chem Rev 2007, 107: 953.
    [6] Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells. [J]. Chem Mater 2004, 16: 4533.
    [7] Li L G, Lu G H, Yang X N, et al. Progress in polymer solar cell. [J]. Chinese Sci Bull 2007, 52: 145.
    [8] Sariciftci N S. Polymeric photovoltaic materials. [J]. Curr Opin Solid St M 1999, 4: 373.
    [9] Li G, Shrotriya V, Yao Y, et al. Manipulating regioregular poly(3-hexylthiophene): [6,6]-phenyl-C-61-butyric acid methyl ester blends - route towards high efficiency polymer solar cells. [J]. J Mater Chem 2007, 17: 3126.
    [10] Hoppe H, Sariciftci N S. Organic solar cells: An overview. [J]. J Mater Res 2004, 19: 1924.
    [11] Bernede J C. Organic photovoltaic cells: History, principle and techniques. [J]. J Chil Chem Soc 2008, 53: 1549.
    [12] Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook. [J]. Mat Sci Eng R 2003, 40: 1.
    [13] Immerstrand C, Holmgren-Peterson K, Magnusson K E, et al. Conjugated-polymer micro- and milliactuators for biological applications. [J]. Mrs Bull 2002, 27: 461.
    [14] Goetzberger A, Hebling C. Photovoltaic materials, past, present, future. [J]. Sol Energ Mat Sol C 2000, 62: 1.
    [15] Ma W L, Yang C Y, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. [J]. Adv Funct Mater 2005, 15: 1617.
    [16] Ma W L, Gopinathan A, Heeger A J. Nanostructure of the interpenetrating networks in poly(3-hexylthiophene)/fullerene bulk heterojunction materials: Implications for charge transport. [J]. Adv Mater 2007, 19: 3656.
    [17] Kim Y, Cook S, Tuladhar S M, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. [J]. Nat Mater 2006, 5: 197.
    [18] Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. [J]. Nat Mater 2005, 4: 864.
    [19] Peumans P, Uchida S, Forrest S R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. [J]. Nature 2003, 425: 158.
    [20] Yang F, Shtein M, Forrest S R. Controlled growth of a molecular bulk heterojunction photovoltaic cell. [J]. Nat Mater 2005, 4: 37.
    [21] Buehlmann P, Bailat J, Domine D, et al. In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells. [J]. Appl Phys Lett 2007, 91: 143505.
    [22] Maruyama T, Bandai J, Osako S. Reflection at transparent V-grooved surface. [J]. Sol Energ Mat Sol C 2000, 64: 261.
    [23] Maruyama T, Minami H. Light trapping in spherical silicon solar cell module. [J]. Sol Energ Mat Sol C 2003, 79: 113.
    [24] Minemoto T, Mizuta T, Takakura H, et al. Antireflective coating fabricated by chemical deposition of ZnO for spherical Si solar cells. [J]. Sol Energ Mat Sol C 2007, 91: 191.
    [25] Hammond P T. Form and function in multilayer assembly: New applications at the nanoscale. [J]. Adv Mater 2004, 16: 1271.
    [26] Roman L S, Inganas O, Granlund T, et al. Trapping light in polymer photodiodes with soft embossed gratings. [J]. Adv Mater 2000, 12: 189.
    [27] Shtein M, Peumans P, Benziger J B, et al. Direct, mask- and solvent-free printing of molecular organic semiconductors. [J]. Adv Mater 2004, 16: 1615.
    [28] Cocoyer C, Rocha L, Sicot L, et al. Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances. [J]. Appl Phys Lett 2006, 88: 133108.
    [29] Sai H, Fujiwara H, Kondo M, et al. Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern. [J]. Appl Phys Lett 2008, 93: 143501.
    [30] Sun Y R, Shtein M, Forrest S R. Direct patterning of organic light-emitting devices by organic-vapor jet printing. [J]. Appl Phys Lett 2005, 86.113504
    [31] Zhang F L, Nyberg T, Inganas O. Conducting polymer nanowires and nanodots made with soft lithography. [J]. Nano Lett 2002, 2: 1373.
    [32] Gizon L, Duvall T L, Schou J. Wave-like properties of solar supergranulation. [J]. Nature 2003, 421: 43.
    [33] Ahn B Y, Duoss E B, Motala M J, et al. Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. [J]. Science 2009, 323: 1590.
    [34] Kim C, Burrows P E, Forrest S R. Micropatterning of organic electronic devices by cold-welding. [J]. Science 2000, 288: 831.
    [35] Viktorov E A, Cataluna M A, O'Faolain L, et al. Dynamics of a two-state quantum dot laser with saturable absorber. [J]. Appl Phys Lett 2007, 90: 121113.
    [36] Kim J Y, Kim S H, Lee H H, et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. [J]. Adv Mater 2006, 18: 572.
    [37] Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. [J]. Appl Phys Lett 2008, 93: 193113.
    [38] Derkacs D, Lim S H, Matheu P, et al. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. [J]. Appl Phys Lett 2006, 89: 093103.
    [39] Durr M, Menges B, Knoll W, et al. Direct measurement of increased light intensity in optical waveguides coupled to a surface plasmon spectroscopy setup. [J]. Appl Phys Lett 2007, 91: 021113.
    [40] Hagglund C, Zach M, Kasemo B. Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. [J]. Appl Phys Lett 2008, 92: 013113.
    [41] Hagglund C, Zach M, Petersson G, et al. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. [J]. Appl Phys Lett 2008, 92: 053110.
    [42] Kim S S, Na S I, Jo J, et al. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. [J]. Appl Phys Lett 2008, 93: 073307.
    [43] Konda R B, Mundle R, Mustafa H, et al. Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes. [J]. Appl Phys Lett 2007, 91: 191111.
    [44] Lu Y L, Chen X B. Plasmon-enhanced luminescence in Yb3+:Y2O3 thin film and the potential for solar cell photon harvesting. [J]. Appl Phys Lett 2009, 94: 193110.
    [45] Mapel J K, Singh M, Baldo M A, et al. Plasmonic excitation of organic double heterostructure solar cells. [J]. Appl Phys Lett 2007, 90: 121102.
    [46] Mendes M J, Luque A, Tobias I, et al. Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells. [J]. Appl Phys Lett 2009, 95: 071105.
    [47] Morfa A J, Rowlen K L, Reilly T H, et al. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. [J]. Appl Phys Lett 2008, 92: 013504.
    [48] Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. [J]. Appl Phys Lett 2008, 93: 121904.
    [49] Reilly T H, van de Lagemaat J, Tenent R C, et al. Surface-plasmon enhanced transparent electrodes in organic photovoltaics. [J]. Appl Phys Lett 2008, 92: 243304.
    [50] Rockstuhl C, Lederer F. Photon management by metallic nanodiscs in thin film solar cells. [J]. Appl Phys Lett 2009, 94: 213102.
    [51] Su Y H, Lai W H, Chen W Y, et al. Surface plasmon resonance of gold nano-sea-urchin. [J]. Appl Phys Lett 2007, 90: 181905.
    [52] Tvingstedt K, Persson N K, Inganas O, et al. Surface plasmon increase absorption in polymer photovoltaic cells. [J]. Appl Phys Lett 2007, 91.113514
    [53] Campbell P, Green M A. Light trapping properties of pyramidally textured surfaces. [J]. J Appl Phys 1987, 62: 243.
    [54] Chhajed S, Schubert M F, Kim J K, et al. Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics. [J]. Appl Phys Lett 2008, 93: 251108.
    [55] Kim C, Shtein M, Forrest S R. Nanolithography based on patterned metal transfer and its application to organic electronic devices. [J]. Appl Phys Lett 2002, 80: 4051.
    [56] Kim J, Khang D Y, Kim J H, et al. The surface engineering of top electrode in inverted polymer bulk-heterojunction solar cells. [J]. Appl Phys Lett 2008, 92: 133307.
    [57] Kim M S, Kang M G, Guo L J, et al. Choice of electrode geometry for accurate measurement of organic photovoltaic cell performance. [J]. Appl Phys Lett 2008, 92: 133301.
    [58] Kim M-S, Kim J-S, Cho J C, et al. Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography. [J]. Appl Phys Lett 2007, 90: 123113.
    [59] Li Y F, Zhang J H, Zhu S J, et al. Biomimetic surfaces for high-performance optics. [J]. Adv Mater 2009, online, DOI: 10.1002/adma.200901335.
    [60] Li Y F, Zhang J H, Zhu S J, et al. Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings. [J]. Journal of Materials Chemistry 2009, 19: 1806.
    [61] Zhou Y H, Zhang F L, Tvingstedt K, et al. Investigation on polymer anode design for flexible polymer solar cells. [J]. Appl Phys Lett 2008, 92:233308.
    [62] Zhou Y H, Zhang F L, Tvingstedt K, et al. Multifolded polymer solar cells on flexible substrates. [J]. Appl Phys Lett 2008, 93: 033302.
    [63] Zhang J, Chen Z, Wang Z, et al. Preparation of monodisperse polystyrene spheres in aqueous alcohol system. [J]. Materials Letters 2003, 57: 4466-4470.
    [64] Bernhard C G. Structural and functional adaptation in a visual system. [J]. Endeavour 1967, 26: 79.
    [65] Stavenga D G, Foletti S, Palasantzas G, et al. Light on the moth-eye corneal nipple array of butterflies. [J].Proc. R. Soc. B 2006, 273: 661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700