用户名: 密码: 验证码:
人食管癌表达下调基因的克隆及其结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Cloning and Structure Analysis of Down-regulated Genes in Human Esophageal Cancer
  • 作者:许智雄
  • 论文级别:博士
  • 学科专业名称:细胞生物学
  • 学位年度:1999
  • 导师:吴旻
  • 学科代码:071009
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:1999-04-01
摘要
食管癌是人类常见恶性肿瘤之一,其发病率位居我国恶性肿瘤发生的第四位。我国是食管癌高发区,世界上一半以上的食管癌发生在我国。食管癌遗传流行学调查显示遗传因素在食管癌发生中起着重要的作用。但是,至今尚未发现食管癌的易感基因,食管上皮的癌变分子机理仍未明确。当前肿瘤分子遗传学的研究重点已逐渐向基因表达研究转变,即从着重质(结构)的改变转向质和量(表达)的改变并重。研究基因表达的外遗传学(epigenetics)亦己成为目前肿瘤分子遗传学研究的一个重要内容。其中,肿瘤表达下调基因分离是筛选侯选肿瘤抑制基因的一个有效途径而倍受重视。目前,国内外对食管癌表达下调基因了解甚少。鉴别和克隆更多的食管癌表达下调基因并了解其在不同个体食管癌组织与正常食管粘膜的基因表达差异状况,不仅可以加强对食管癌发生发展分子机制的阐明,而且有助于食管癌的早期诊断、有针对性的个体治疗以及设计新的抗食管癌药物。
     1.应用改进的uRNA差异显示技术分离食管癌组织表达下调cDNA片段
     本文首次应用三条锚定引物等摩尔混合物(GT_(15)N,N代表A,G和C)进行mRNA差异显示。采用40个10-mer随机引物(OPA-1至OPA-20,OPB-1至OPB-20)与3条锚定引物的等摩尔混和物(GT_(15)N,N为A,G和C)组合,共获得同时在三对人食管癌组织中均不表达或低表达而在同一病人癌旁食管粘膜都高表达的差异表达带30个。经Northern杂交和PCR分析证实,我们已获得在食管癌组织中表达下调的基因9个,其中有4个是新基因片段。本文主要介绍其中的三个即已知基因Ma1和新基因DRC1和DRC2。本文结果显示此方法重复性较好而且可以加快筛选差异表达基因的速度。
     2.两个食管癌表达下调新基因DRC1和DRG2全长cDNA的分离和克隆
     应用Marathon RACE技术,以食管癌旁cDNA为模板,分别经过两次和三次RACE反应扩增出DRC1和DRC2基因的5'cDNA末端,从而拼接得到新基因DRC1和DRC2初步的全长cDNA。最后,应用PCR技术从胎儿食管cDNA扩增而得到新基因DRC1和DRC2的全长cDNA。DRC1基因全长cDNA具有51bp
Esophageal cancer (EC), one of the common human malignancies, is the fourth cause of cancer death in China. Our country has much higher incidence than the other areas and accounts for over half of the total esophageal cancer patients in the world. Previous studies on genetic epidemiology have showed that genetic factors may play an important role in the development of esophageal cancer. However, the susceptibility gene(s) of esophageal cancer has not been identified so far. The molecular mechanisms of the development of esophageal cancer are unclear yet. Molecular genetics of cancer is now shifting from focusing on studying DNA mutations to investigating heredity at both DNA and RNA levels. Cancer epigenetics, an approach to studying heredity of gene expression, comes of age. One focus of cancer research has been on the propensities of tumor suppressors to become loss of expression or down-regulation as a function of tumor initiation and progression. It is important to identify the tumor-associated genes which are down-regulated in tumors. Few down-regulated genes in esophageal cancer have been isolated to date. Cloning of more down-regulated genes and analysis of their expression difference between esophageal cancer tissues and normal esophageal mucosa will be invaluable in furthering our understanding of the molecular events that underlie esophageal cancer development, and in producing more new diagnostic, prognostic and therapeutic targets.
    1. Isolation of down-regulated genes in human esophageal cancer tissues by using a modified mRNA differential display technique
    A modified differential display PCR (DD-PCR) was developed by using a mixture of dT_(15)A, dT_(15)G and dT_(15)C rather than the conventional single anchored primer, to identify down-regulated genes in human esophageal cancer tissues.
引文
1. Cavenee WK. The Genetic Basis of Cancer. Sci Am, 1995, 264: 72-79
    2. Marx J. How cells cycle toward cancer. Science, 1994, 263: 319-321
    3. Haber DA, Fearon ER. The promise of cancer genetics. Lancet, 1998, 351(suppⅢ): 1-8
    4. Weinberg RA. How cancer arises. Sci Am, 1996, 275: 62-70
    5. Patterson H. Approaches to proto-oncogene and tumor suppressor gene identification. Eur J Cancer, 1992, 28: 258-263
    6.陈诗书,癌基因和抗癌基因。见:陈诗书,汤雪明主编,医学细胞分子生物学。上海医科大学出版社,1995,上海.
    7. Heisterkamp N, Stam K, Groffen J, et al. Structural organization of the ber gene and its role in the Ph' translocation. Nature, 1995, 315: 758-761
    8. Kohl Ne, Kanda N, Schreck RR, et al. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell, 1983, 35: 359-367
    9. Lisitsyn NA, Lisitsyn N, and Wigler M. Cloning the differences between two complex genomes. Science, 1993, 259: 946-951
    10. Waston JEV, Gabra H, Taylor KJ, et al. Identification and characterization of a homozygous deletion found in ovarian ascites by representational difference analysis. Genome Res, 1999, 9(3): 226-233
    11. Kibel AS, Schutte M, Kern SE, et al. Identification of 12p as a region of frequent deletion in advanced prostate cancer. Cancer Res, 1998, 58: 5652-5655
    12. Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 1992, 258: 818-821
    13. Rooney PB, Stevenson DA, Marsh S, et al. Comparative genomic hybridization analysis of chromosomal alterations induced by the development of resistance to thymidylate synthesase inhibitors. Cancer Res, 1998, 58: 5042-5045
    14. Schrock E, Thiel G, Lozanova T, et al. Comparative genomic hybridization of human malignant gliomas reveals multiple amplification sites and nonrandom chromosomal gains and losses. Am J Pathl, 1994, 144: 1203-??1218
    15. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, et al. PIK3CA is implicated as an oncogene in ovarian cancer, Nature Oenet, 1999, 21(1): 99-102
    16. Harris H, Miller OJ, Klein G, Worst P, et al. Suppression of malignancy by cell fusion. Nature, 1969, 223: 363-368
    17. Sager R. Tumor suppressor genes: the puzzle and the promise. Science, 1989, 246: 1406-1412
    18. Ott J. Analysis of Human genetic linkage. 2nd ed. The Johns Hopkins University Press, Baltimore, 1992.
    19. Buckler AJ. Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc Natl Acad Sci USA, 1991, 88: 4005-4009
    20. Lovett M, kere J and Hinton LM. Direct selection: a method for the isolation of cDNAs encoded by large genomic regions. Proc Natl Acad Sci USA, 1991, 88: 9628-9632
    21. Cross SH, Charlton JA, Nan X, et al. Purification of CpG islands using a methylated DNA binding column. Nature Genet, 1994, 1994, 6: 236-244
    22. Black DM, Nicolai H, Borrow J, et al. A somatic cell hybrid map of the long arm of human chromosome 17, containing the familial breast cancer locus (BRCA1). Am J Hum Genet, 1993, 52: 702-710
    23. Wooster R, Bigmell G, Lancaster J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature, 1995, 578: 789-792
    24. Chandrasekharrappa SC, guru SC, Manickam P, et al. Positional cloning of the gene for multiple endocrine neoplasia-typel. Science, 1997, 276: 404-407
    25. Smith JR, Freije D, Carpten JD, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science, 1996, 274: 1371-1374
    26. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science, 1995, 268: 1749-1753
    27. Mckeigue PM. Mappinggenes underlying ethnic differences in disease risk by linkage disequilibrium in recently admixed populations. Am J Hum Genet, 1997, 60: 188-196
    28. Allison DB. Transmission-disequilibrium tests for quantitative traits. Am J Hum Genet, 1997, 60: 676-690
    29. Nelson SF, McCusker JH, Sander MA, et al. Genomic mismatch scanning: a new approach to genetic linkage mapping. Nature Genet, 1993, 4: 11-1830. Cheung VG and Nelson SF. Genomic mismatch scanning identifies human genomic DNA shared identical by descent. Genomics, 1998, 47: 1-6
    31. McAllister L, Portland L and Brown PO. Enrichment for loci identicalby-descent between pairs of mouse or human genomes by genomic mismatch scanning. Genomics, 1998, 47: 7-11
    32. Dean M. Cancer as a complex development disorder-Nineteenth Cornelius P. Roads memorial award lecture. Cancer Res, 1998, 58: 5633-5636
    33. Kruglysk L. The use of a genetic map of billelic markers in liukage studies. Nature Genet, 1997, 17: 21-24
    34. Hacia JG. Reseqencing and mutational analysis using oligonuclotide microarrays. Nature Goner, 1999, 21(suppl): 42-47
    35. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA, 1971, 68: 820-823
    36. Hahn SA, Scbutte M, Hoque At, et al. DPC4, a candidate tumor suppressor gone at human chromosome 18q21.1. Science, 1996, 271: 350-353
    37. Schutte M, da Costa LT, Hahn SA, et al. Identification by representational difference analysis of a homozygous deletion in pancreatic carcinoma that lies within the BRCA2 region. Proc Natl Acad Sci USA, 1995, 92: 5950-5954
    38. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase, gene mutated in human brain, breast and prostate cancer. Science, 1997, 275: 1943-1947
    39. Nelen MR, van Staveren WC, Peeters EA, et al. Germline mutations in the PTEN/MMAC1 gone in patients with Cowden disease. Hum Mol Gener, 1997, 6181: 1383-1387
    40. Li L and Cohen SN. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in in mammalian cells. Cell, 1996, 85: 319-329
    41. Li L, Li X, Francke U, et al. The TSG101 tumor susceptibility gene is located in chromosome 11 band p15 and is mutated in human breast cancer. Cell, 1997, 88: 143-154
    42. Wagner KU, Dierisseau P, Rucker EB, et al. Genomic architecture and transcriptional activation of the mouse and human tumor snsceptibility gone TSG101: common types of shorter transcripts are true alternative splice variants. Oncogene, 1998, 17: 2761-2770
    43. Jones PA and Laird PW. Cancer epigenetics comes of age. Nature Genet, 1999, 21: 163-16744. Ushijima T, Morimura K, Hosoya K, et al. Establishment of methlation-sensitive-representational difference analysis and isolation of hypo-and hypermethylated genomic fragments in mouse liver tumors. Proc Natl Acad Sci USA, 1997, 94: 2284-2289
    45. Gonzalgo ML, Liang G, Spruck CH 3rd, et al. Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res, 1997, 57: 594-599
    46. Toyota M. Identification of novel aberrantly metbylated CpG islands in colorectal carcinoma. Proc Am Assoc Cancer Res, 1998, 39: 95
    47. De Souza AT, Hankins GR, Washinton MK, et al. M6P/IGF2R is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nature Gent, 1995, 11(4): 447-449
    48. Yu Y, Xu F, Peng H, et al. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci USA, 1999, 96: 214-219
    49. Zou Z, anissowicz A, Hendrix MJ, et al. Maspin, a serpin with tumorsuppressing activity in human mammary epithelial cells. Science, 1994, 263: 526-529
    50. Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell, 1996, 85: 841-851
    51. Tao W, Zhang S, Turenchalk GS, ea al. Humau homolog of the drosophila melanogaster lats tumor suppressor modulates CDC2 activity, Nature Genet, 1999, 21: 177-181
    52. Berns A. Tumorigenesis in transgenic mice: identification and characterization of synergizing oncogenes. J Cell Biochem, 1991, 42(2): 130-135
    53. Angelis MH and Balling R. Large scale ENU screens in the mouse: geuetics meets genomics. Mut Res, 1998, 400: 25-32
    54. Warrell RP Jr, de The H, Wang ZY, et al. Acute promyelocytic leukemia. New Engl J Med, 1991, 324: 1385-1393
    55.冯骆,王秀琴,傅明,等.从人食管癌细胞系中分离分化相关基因的新方法.中国科学B辑,1991,10:1061-1067
    56. Ligon AH, Pershouse MA, Jasser SA, et al. Identification of a novel gene product, RIG that is down-regulated in human glioblastoma. Oncogene,??1997, 14: 1075-1081
    57. Lee JH, Miele ME, Hicks DJ, et el. KISS-1, a novel malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst, 1996, 88: 1731-1737
    58. Dong JT, Lamb PW, Rinker-Schmeffer CW, et el. KAI1, a metastasis suppressor gene for prostate cancer on chromosome 11p11.2. Science, 1995, 268: 884-886
    59. Hubank M and Schatz DG. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res, 1994, 22 (25): 5640-5648
    60. Gress TM, Wallrapp C, Frohme M, et el. Identification of genes with specific expression in pancreatic cancer by cDNA representational difference analysis, Genes Chromosome Cancer, 1997, 19(2): 97-103
    61. Diatchenko L, Lau YF, Campbell, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc natl Acad Sci USA, 1996, 93: 6025-6030
    62. Von Stein OD, Thies WG and Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res, 1997, 25(13): 2598-2602
    63. Liang P and Pardee AB. Differential display of eukaryotie messager RNA by means of the polymerase chain reaction. Science, 1992, 257(14): 967-971
    64. Ite K, Kite K, Adati N, et al. Fluorecscent differential display: arbitrarily primed TR-PCR fingerprinting on an automated DNA sequencer. FEBS letters, 1994, 351: 231-236
    65. Buess M, Moroni C and hirsch HH. Direct identification of differentially expressed genes by cycle sequencing and cycle labelling using the differential display PCR primer. Nucleic Acids Res, 1997, 25: 2233-2235
    66. Nowak R. Mining treasures from 'junk DNA'. Science, 1994, 263: 608-610
    67. Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequeneing: expressed sequence tags and human genome project. Science, 1991, 252: 1651-1656
    68. Kousaku O, Naohiro H, Ryo M, et al. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nature Genet, 1992, 2: 173-179
    69. Gress TM, Muller-Pillasch F, Geng M, et al. A pancreatic cancer-specificexpression profile. Oncogene, 1996, 13: 1819-1830
    
    70. Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary nonpolyposis colorectal cancer, Nature, 1994, 368:258-261
    
    71. Leach FS, Nicolaides NC, Papadopoulos N, et al. Mutations of a mut S homolog in hereditary nonpolyposis colorectal cancer. Cell, 1993, 75: 1215-1225
    
    72. Myers MP, Pass I, Batty IH, et al. The lipid phosphatse activity of PTEN is critical for its tumor suppressor function. Proc Natl Acad Sci USA, 1998, 95: 13513-13518
    
    73. Hopkin K, A surprising function for the PTEN tumor suppressor. Science, 1998, 282: 1027-1030
    
    74. Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 1994, 266: 66-71
    
    75. Koonin EV, Altschul S and Bork P. BRCA1 protein products: functional motif. Nature Genet, 1996,13:266-268
    
    76. Scully R, Chen J, Ochs RL, et al. Dynamic changes of BRCA1 subnuclear location and phosphoryation state are initiated by DNA damage. Cell, 1997,90: 425-435
    
    77. Zhang F, Basinski MB, Beals JM, et al. Crystal structure of the obese protein leptin-E100 Nature, 1997,387:206-209
    
    78. Cole KA, Krizman DB and Emmert-Buck MR. The genetics of cancer-a 3D model. Nature Genet, 1999,21(suppl): 38-41
    
    79. Chien C, Bartel PL, Sternglanz R, et al. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA, 1991, 88: 9578-9582
    
    80. Brachman RK and Bocke JD. Tag games in yeast: the two-hybrid system and beyond. Curr Opin Biotechnol, 1997,8: 561-568
    
    81. White MA. The yeast two-hybrid system: forward and reverse. Proc Natl Acad Sci USA, 1996, 93: 10001-10003
    
    82. Smith GP. Filamentous fusion phase: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228: 1315-1317
    
    83. Duenas M and Borrebaeck CAK. Clonal selection and amplification of phase displayed antibodies by linking antigen recognition and phase replication. Biotechnol, 1994,12: 999-1002
    84. Malmborg AC, Soderlind E, Frost L, et al. Selective pbase infection mediated by epitope expression on F pilus. J Mol Bio, 1997, 273: 544-551
    85. Borrebaeck CAK. Tapping the potential of molecular libraries in functional genomics. Immunol Today, 1998, 19: 524-527
    86. Palmiter RD and Brinster RL. Germline transformation of mice. Annu Rev Genet, 1986, 20: 465-499
    87. Hanahan D. Transgenic mice as probes into complex systems. Science, 1989, 246: 1265-1275
    88. Thomas KR and Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51: 505-512
    89. Gbebranious N and Donehower. Mouse models in tumor suppression. Oncogene, 1998, 17: 3385-3400
    90. Roberts RA. Transgenic rodent mutation/cancer bioassays: cell cycle control, cell proliferation and apoptosis as modifiers of outcome. Mut Res, 1998, 398: 189-195
    91. Velculescu VE, Zhang L, Vogelstein B, et al. Serial Analysis of geue expression. Science, 1995, 270: 484-487
    92. Zhang L, Zhou W, Velculescu VE, et al. Gene expression profiles in normal and cancer cells, Science, 1997, 276: 1268-1272
    93. Madden SL, Gallella EA, Zhu J, et al. SAGE transcript profiles for p53-dependent growth regulation. Oncogene, 1997, 15: 1079-1085
    94. Schena M, Heller RA, Theriault TP, et al. Microarrays: biotechnology's discovery platform for functional, genomics. Biotech, 1998, 16: 301-306
    95. Duggan DJ, Bittner M, Chen Y, et al. Expression profiling using cDNA microarrays. Nature Genet, 1999, 21(Snppl): 10-14
    96. Lockhart DJ, Dong H, Byrne MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol, 1996, 14: 1675-1680
    97. Sapolsky RJ and Lipshutz RJ. Mapping genomic library clones using oligonucleotide arrays. Genomics, 1996, 33: 445-456
    98. Hacia JG, Woski SA, Fidanza J, et al. Enhanced high density oligonucletide array-based sequence analysis using modified nucleotide triphosphase. Nucleic Acids Res, 1998, 26: 4975-4982
    99.李连弟,鲁凤珠,张思维,等。中国恶性肿瘤死亡率20年变化趋势和近期预测分析。中华肿瘤杂志,1997,19(1):3-9
    100.王瑞林主编,食管癌研究进展。河南医科大学出版社,郑州,1996,第一版。101.扬文献,浦炯,陆士新,等。食管癌高发区居民胃内亚硝胺的暴露水平及其阻断的研究。中华肿瘤杂志,1992,14(6):407-410
    102. Li JY, Tayor PR, Li B, et al. Nutrition intervention trials in Linxian, China; multiple vitamine/mineral supplementation, cancer incidence and disease-specific mortality among adults with esophageal dysplasia. J Natl Cancer Inst, 1993, 85: 1492-1498
    103. Lu SH, Ohshima H, Fu HM, et al. Urinary excretion of N-notrosamino acids and nitrate by inhabitants of the high and low-risk areas for esophageal cancer in Northern China: endogenous formation of nitrosoproline and its inhibition by vitamin C. Cancer Res, 1986, 46: 1485-1491
    104.丁家桓,吴旻,王秀琴,等。林县食管癌的遗传易感性。中华医学杂志,1983,63:213-215
    105.胡楠,贺立绩,韩小友,等。山西阳城622个食管癌阳性家族十年后随访。中华医学杂志,1990,70:679-681
    106. Hu N, Dawsey SM, Wu M, et al. Familial aggregation of esophageal cancer in Yangcheng county, Shanxi province, China. International Epidermilogical Association, 1992, 21(5): 817-822
    107. Carter CL, Hu N, Wu M, et al. Segregation analysis of esophageal cancer in 221 high-risk Chinese families. J Natl Cancer Inst, 84(10): 771-776 (1992)
    108.李卫东,王秀琴,张春林,等。山西省阳泉市部分人口食管癌流行病学调查。中华医学杂志,1998,78(3):203-206
    109. Sager R. Expression genetics in cancer: shifting the focus from DNA to RNA. Proc Natl Acad Sci USA, 1997, 94(3): 952-955
    110. Zhang M, Martin KJ, Sheng S, et al. Expression genetics: a different approach to cancer diagnosis and prognosis. Trends Biotechnol, 1998, 16(2): 66-71
    111.李华川,陆士新。食管癌和贲门癌组织中p53突变的研究。中华肿瘤杂志,1994,16:172-176
    112.陈柏华,王秀琴,林晨,等。中国人食管癌p16基因突变分析。中华医学遗传学杂志,1997,14(3):138-141
    113.郑杰,候萍,周传农,等。CDKN2(p16INK4/MTS1)基因丢失和cycliriD1扩增在食管肿瘤发生中的意义。中华肿瘤杂志,1996,18(6):498-511
    114. Wang L, Zhu D, Zhang C, et al. Mutations of O~6-methylguanine-DNA methyltransferase gene in esophageal cancer tissues from Northern China. Int J Cancer, 1997, 71(5): 719-723115.赫杰,张汝刚,朱丹,等。食管癌c-Myc基因扩增的临床意义,中华医学杂志,1995,75(2):94-96
    116.吴旻,肖枫,王秀琴。人食管癌细胞和分子遗传学研究。中华肿瘤杂志,1996,18(1):73-75
    117. Su Y, Wang XQ, Hu N, et al. G-banded chromosome analysis of mucosal epithelium adjacent to esophageal cancer(EC)—some consistent chromosomal changes, Sci Sin(B), 1988, 31: 710-718
    118.萧广惠,李万波,黄建华,等。食管癌的杂和性丢失。科学通报,1991,36(24):1886-1889
    119.李万波,王秀琴,吴旻,等。食管癌第3和第9号染色体上频发的等位基因缺失。自然科学进展-国家国家重点实验室通讯,1994,4(4):461-465
    120. Wang L, Li WD, Wang XQ, et al. Genetic alterations on chromosomes 3 and 9 of esophageal cancer tissues in China. Oncogene, 1996, 12: 699-703
    121. Li WD, Wang L, Wang XQ, et al. Loss of heterozygosity and microsatellite DNA instability on chromosome 3 and 9 in esophageal cancer tissues. Progress in Nature Science, 1996, 6(5): 591-595
    122. Montesano R, Hollatein M, Hainaut P. Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis: A review. Int J Cancer (Pred Oncol), 1996, 69: 225-235
    123. Gonzalgo ML, Bender CM, You EH, et al. Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors. Cancer Res, 1997, 57(23): 5336-5347
    124. Myohanen SK, Baylin SB and Herman JG. Hypermethylation can selectivcly silence individual p16ink4Aalleles in neoplasia. Cancer Res, 1998, 58(4): 591-593
    125. Flores JF, Pollock PM, Walker GJ, et al. Analysis of the CDKN2A, CDKN2B and CDK4 genes in 48 Australian melanoma kindreds. Oncogene, 1997, 15(24): 2999-3005
    126. Sakai T, Toguchida J, Ohtani N, et al. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet, 1991, 48(5): 880-888
    127. Ohtani-Fujita N, Dryja TP, Rapaport JM, et al. Hypermethylation of the retinoblastoma gene is associated with unilateral, sporadic retinoblastoma. Cancer Denet Cytogenet, 1997, 98(1): 43-49
    128. Uerman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMlH1 promoter hypermethylation in colorectal carcinoma. Proc Natl??Acad Sci USA, 1998, 95(12): 6870-6875
    129. Veigl ML, Kasturi L; Olechnowicz J, et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Nat1 Acad Sci USA, 1998, 95(15): 8698-8702
    130. Prowse AH, Webster AR, Richards FM, et al. Somatic inactivation of the VHL gene in Yon Hippel-Lindan disease tumors. Am J Hum Genet, 1997, 60(4): 765-771
    131. Abraham JM, Wang S, Suzuki H, et al. Esophagin cDNA cloning and characterization: a tissue-specific member of the small proline-rich protein family that is not expressed in esophageal tumors. Cell Growth Differ, 1996, 7(7): 855-860
    132. Xing EP, Nie Y, Wang LD, et al. Aberrant methylation of p16INK4A and deletion of p1SINK4b are frequent events in human esophageal cancer in Lixian, China. Carcinogenesis, 1999, 20(1): 77-84
    133. Tanaka H, Shimada Y, Harada H, et al. Methylation of the 5' CpG island of the FHIT gene is associated with transcriptional inactivation in esophageal squamous cell carcinoma. Cancer Res, 1998, 58(15): 3429-3434
    134.李华川,陆士新,冯骆,等。食管癌Rb基因启动子甲基化状态和甲基苄基亚硝胺对其影响的研究。中华肿瘤杂志,1998,20(6):412-414
    135. Garrigue-Autar L Souza RF, Vellucci VF, et al. Loss of transforming growth factor-beta type Ⅱ receptor gene expression in primary human esophageal cancer. Lab Invest, 1996, 75(2): 263-272
    136.王秀琴,肖枫,王明荣,等。两个人食管癌细胞系的建立及染色体分析.中华肿瘤杂志,1998,20:5-8
    137.朱丹,王亮,吴旻.应用银染技术检测食管癌p53基因点突变.中华医学遗传学杂志,1994,11:354-356
    138. Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Nat1 Acad Sci USA, 1996, 93(18): 9821-9826
    139. Kozak M. The scanning model for translation: J Cell Biol, 1989, 108: 229
    140. Lee SW, Tomasetto C, Swisshelm K, et al. Down-regulation of a member of the S-100 gene family in mammary carcinoma ceils and reexpression by azadeoxycytidine treatment. Proc Natl Acad Sci USA, 1992, 89: 2504-2508
    141. Wicki R, Franz C, Scholl FA, et al. Repression of the candidate tumor suppressor gene S10A2 in breast cancer is mediated by site-specific hypermethylation. Cell Calcium, 1997, 22(4): 243-254
    142. Murao S, Collart FR and Huberman E. A protein containing the cystic fibrosis antigen is an inhibitor of protein kinases. J Biol Chem, 1989, 264(14): 8356-8360
    
    143. Teigelkamp S, Bhardwaj RS, Roth J, et al. Calcium-dependent complex assembly of the myoloic differentiation proteins MRP-8 and MRP-14. J Biol Chem, 1991, 266(20): 13462-13467
    
    144. Ridgwell K, Spurr NK, Laguda, et al. Isolation of cDNA clones for a 50 kDa glycoprotein of the human erythrocyte membrane associated with Rh (Rhesus) blood-group antigen expression. Biochem J, 1992, 287: 223-228
    
    145. Avent ND, Ridgwell K, Tanner MJ, et al. CDNA cloning of a 30Kda erythrocyte membrane protein associated with Rh (Rhesus)-blood- group-antigen expression. Biochem J. 1990, 271, 821-825
    
    146. Le Van Kim C, Mouro I, Cherif-Zahar, et al. Molecular cloning and primary structure of the human blood group RHD polypeptide. Proc Natl Acad Sci USA, 1992, 89: 10925-10929
    
    147. Bloy C, Hermand P, Blanchard D, et al. Surface orientation and antigen properties of Rh and LW polypeptides of the human erythrocyte membrane. J Biol Chem, 1990, 265(35): 21482-21487
    
    148. Avent ND, Butcher SK, Liu W, et al. Localization of the C termini of the Rh (rhesus) polypeptides to the cytoplasmic face of the human erythrocyte membrane. J Biol Chem, 1992, 267: 15134-15139
    
    149. Mattasi G, Cherif-Zahar B, Raynal V, et al. Organization of the human Rh50A gene (RHAG) and evolution of base composition of the RH gene family. Genomics, 1998, 47: 286-293
    
    150. Alonso MA, Weissman SM. cDNA cloning and sequence of mal, a hydrophobic protein associated with human T-cell differentiation. Proc Natl Acad Sci USA, 1987, 84: 1997-2001
    
    151. Rancano C, Rubio T, Alonso MA. Alternative splicing of human T-cell- specific MAL mRNA and its correlation with the exon/intron organization of the gene. Genomics, 1994, 21: 447-450
    
    152. Perez P, Puertollano R, Alonso MA. Structural and biochemical similarities reveal a family of proteins related to the mal proteolipid, a component of detergent-insoluble membrane microdomains. Biochem Biophys Res Commun, 1997, 232: 618-621
    
    153. Magyar JP, Ebensperger C, Schaeren-Wiemers N, et al. Myelin and lymphocyte protein (mal/mvp17/vip17) and plasmolipin are members of anextended gene family. Gene, 1997, 189: 269-275
    154. Millan J, Puertollano R, Li Fan, et al. The mal proteolipid is a component of the detergent-insoluble membrane subdomains of human T-lymphocytes. Biochem J, 1997, 321: 247-252
    155. Liebert M, Hubbel A, Chung M, et al. Expression of MhL is associated with urothelial differentiation in vitro: identification by differential display reverse-transcriptase polymerase chain reaction. Differentiation, 1997, 61: 177-185
    156. Puertollano R, Li S, Lisanti MP, et al. Recombinant expression of the MAL proteolipid, a component of glycolipid-enriched membrane microdomains, induces the formation of vesicular structures in insect cells. J Biol Chem, 1997, 272: 18311-18315
    157. Cuningham JM, et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res, 1998, 58: 3455-3460
    158.吴孔明。食管癌的组织肿瘤相关基因的丢失和表达异常。中国医学科学院中国协和医科大学博士学位论文,1999
    159. Hanahan D and Meselson M. Plasmid screening at high density. Methods Enzymol, 1983, 100: 333-342
    160. Frohman MA, Dush MK and Martin GR. Rapid production of full-leugth cDNhs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA, 1988, 85, 8998-9002
    161. Liu X and Gorovsky MA. Mapping the 5' and 3' ends of Tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Res, 1993, 21(21): 4954-4960
    162. Troutt AB, McHeyzer-Williams MG, Pulendran B, et al. Ligation-anchored PCR: a simple amplification technique with single-sided specificity. Proc Natl Acad Sci USA, 1992, 89: 9823-9825
    163. Chenchik, A., Diatchenko, L., Tarabykin, V. Lukyanov, S. and Siebert, P. D. Fu11-length cDNA cloning and determination of mRNA 5'and 3' ends by amplification of adaptor-ligated cDNA. BioTechnique, 1996, 21, 526-534
    164. Lukyanov, K., Diatchenko, L., Chenchik, A., Nanisetti, A., Siebert, P., Usman, N., Matz, M. and Lukyanov, S. Construction of cDNA libraries from small amounts of total RNA using the suppression PCR effect. Biochem. Biophy. Res. Commun. 1997, 230, 285-288.
    165. Steven AC and Steinert PM. Protein composition of cornified cell envelops??of epidermal keratinocytes. J Cell Sci, 1994, 107(2): 693-700
    166. Daniel H. The small proline-rich proteins constitute a multigene family of differentially regulated cornified cell envelop precursor protein. J Invest Dermatol, 1995, 104(6): 902-909
    167. Simon M and Green H. Enzymatic cress-linking of involucrin and other proteins by keratinocyte particulates in vitro. Cell, 1985, 40: 677-683
    168. Callahan R. Genetic alterations in the primary breast cancer. Breast Cancer Res Treat, 1989, 13(3): 191-202
    169. Bieche I, Champeme MH and Lidereau R. Loss and gain of distinct regions of chromosome 1q in primary breast cancer. Clin Cancer Res, 1995, 1(1): 123-127
    170. Ebralidze A, Tulchinski E, Grigorian M, et al. Isolation and charaterization of a gene specificlly expressed in different metastatic cells and whose deduced gene product has a high degree of homology to a Ca~(2+)-binding protein family. Genes Dev, 1989, 3: 1086-1093
    171. Selinfreund RH, Barger SW, Pledger WJ, et al. Neurotrophic protein S100 beta stimulates glial cell proliferation. Proc Natl Acad Sci USA, 1991, 88: 3554-3558
    172. Lioumi M, Olavesen MG, Nizetic D, et al. High-resolution YAC fragmentation map of 1q21. Genomics, 1998, 49(2): 200-208
    173. Gurlan-Sherman D and Lindow SE. Bacterial ice nucleation significance and molecular basis. FASEB J, 1993, 7(14): 1338-1343
    174. Kozloff LM, Turner MA and Arellano F. Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes. J Bacteriol, 1991, 173(20): 6528-6536
    175. Kajava AV and Lindow SE. A model of the three-dimensional structure of ice nucleation proteins. J Nol Biol, 1993, 232(3): 709-717
    176. Kligman DC and Hilt DC. The S100 protein family. Trends Biochem Sci, 1988, 13: 437-443
    177. Cheung WY. Calmodulin plays a pivotal role in cellular regulation. Science, 1980, 207: 19-27
    178. Lewin B. Gene Ⅵ. Oxford University Press, 1997, New York.
    179. Natassi G, Cherif-Zahar B, Raynal V, et al. Organization of the human Rb50A (RHAG) and evolution of base composition of the RH gene family. Genomics, 1998, 47: 286-293180. Agre P and Cartron JP. Molecular Biology of Rh antigens. Blood, 1991, 78: 551-563
    181.Anstee DJ and Tanner MJA. Biochemical aspects of the blood group Rh (rhesus) antigens. Bailliere's clin Hematol, 1993, 6: 401-422
    182. Cartron JP. Defining the Rh blood group antigens: Biochemistry and molecular genetics. Blood Rev, 1994, 8: 199-212
    183.Cherif-Zahar B, Raynal V, Gane P, et al. Candidate gene acting as a suppressor of the RH locus in most cases of Rh-deficiency. Nat Genet, 1996, 12: 168-173
    184. Huang CH, Chen Y, Reid ME, et al. Rh_(null) disease: The amorph type results from a novel double mutations in RhCe gene on D-negative background. Blood, 1998, 92(2): 664-671
    185.Hyland CA, Cherif-Zahar B, Cowley N, et al. A novel single missonse mutation identified along the Rh50 gene in a composite heterozygous Rh_(null) blood donor of the regulator type. Blood, 1998, 91(4): 1458-1463
    
    186. Kitano T, Sumiyama, Shiroishi T, et al. Conserved evolution of the Rh50 gene compared to its homologous Rh blood group gene. Biochem Biophy Res Commun 1998, 249: 78-85
    
    187. Marini AM, Urrestarazu A, Beauwens R, et al. The Rh (rhesus) blood group polypeptides are related to NH_4~+ transporters. Trends Biochem Sci, 1997, 22: 460-461
    
    188. Schaefer, B.C. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal Biochem, 1995, 227, 255-273
    
    189. Loh EY, Elliot JF, Cwirla S, et al. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain. Science, 1989, 243, 217-220
    
    190. Ohara O, Dorit R, and Gilbert W. One-sided polymerase chain reaction: the amplification of cDNA. Proc Natl Acad Sci USA, 1989, 86, 5673-5677
    
    191. Edwards M, Delort J and Mallet J. Oligodeoxyribonucleotide ligation to single-stranded cDNAs: a new toll for cloning 5' ends of mRNAs and for constructing cDNA libraries by in vitro amplification. Nucleic Acids Res, 1991, 19, 5227-5232.
    
    192. Apte AN and Siebert PD. Anchored-ligated cDNA libraries: a technique for generating a cDNA library for the immediate cloning of the 5' ends of mRNAs. Biotechniques, 1993, 15(5): 890-893
    
    193. Bergamaschi G, Bergamaschi P, Carlevati S, et al. Transferrin receptor expression in the human placenta. Haematologica, 1992, 75: 220-223
    
    194. Bergamaschi G, Bergamaschi P, Carlevati S, et al. Transferrin receptor expression in the human placenta. Haematologica, 1992, 75:220-223
    
    195. Landegren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detection technique. Science, 1988,241:1077-1080
    
    196. Wu DY, and Wallace RB. Specificity of the nick-closing activity of bateriophage T4 DNA ligase. Gene, 1989, 76: 245-254.
    
    197. Nickerson DA, Kaiser R, Lappin S, et al. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc Natl Acad Sci. USA, 1990,87: 8923-8927
    
    198. Wu DY and Wallace RB. The ligation amplification reaction (LAR) — amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics, 1989, 4:560-569
    
    199. Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci USA, 1991, 88:189-193
    
    200. Lee HH, Chernesky MA, Schachter J, et al. Diagnosis of Chlamydia trachomatis genitourinary infection in women by ligase chain reaction assay of urine. Lancet, 1995, 345:213-216
    
    201. Wiedmann M, Wilson J, Czajka J, et al. Ligase chain reaction (LCR) — Overview and application. PCR Methods Appl, 1994,35: 51-64
    
    202. Wiedmann M, Czajka J, Barany F, et al. Discrimination of listeria monocytogenes from other Listeria species by ligase chain reaction. Appl Environ Microbiol, 1992, 58:3443-3447
    
    203. Birkenmeyer L and Armstrong AS. Preliminary evaluation of the ligase chain reaction for specific detection of Neisseria gonorrhoeae. J Clin Microbiol, 1992, 36: 3089-3094
    
    204. Abravaya K, Carrino JJ, Muldoon S, et al. Detection of point mutations with a modified ligase chaion reaction (Gap-LCR). Nucleic Acids Res, 1995,23(4): 675-682.
    
    205. Lambert KN and Williamson VM. cDNA library construction from small amounts of RNA using prramagnatic beads and PCR. Nucleic Acids Res, 1993, 21: 775-776
    
    206. Maleszka R and Stange G. Molecular cloning by a novel approach, of a cDNA encoding a putative olfactory protein in the labial palps of the moth Cactoblastis cactorum. Gene, 1997,202:39-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700