用户名: 密码: 验证码:
非线性系统最优控制的改进逐次逼近法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,非线性系统的最优控制问题成为系统与控制领域研究的热点问题。对于非线性系统,其最优控制问题将不可避免的导致求解Hamilton-Jacobi- Bellman (HJB)方程或非线性两点边值问题。鉴于非线性HJB方程和非线性两点边值问题通常情况下无法求得解析解,众多的近似求解方法被引入以谋求近似的求解非线性HJB方程或非线性两点边值问题。逐次逼近法通过构造非线性两点边值问题的线性两点边值问题序列,使难于求解的非线性两点边值问题得到了近似的迭代求解。所设计的近似最优控制律具有线性状态反馈加开环近似补偿器的形式。逐次逼近法与其它非线性系统最优控制的近似方法相比,具有较好的收敛性,且所需的计算量较小,有着很好的实际应用前景。本文提出了一种非线性系统最优控制的改进逐次逼近法,主要对逐次逼近法作了两方面的改进。首先,根据仿射非线性系统的特殊结构特征,改进了线性两点边值问题序列的构造,以使得所设计的次优控制律对于仿射非线性具有闭环线性反馈的近似最优补偿器形式,具有较好的鲁棒性。其次,构造了闭环系统序列,使得所构造的线性两点边值问题序列的状态序列在每次迭代中都更接近于非线性系统关于二次型性能指标的最优轨迹,从而提高了迭代算法的收敛性。
     本文首先综述了非线性系统最优控制的研究现状,着重介绍了逐次逼近法的数学来源及其在非线性系统最优控制领域的应用成果。在此基础上,经过研究分析,提出了一种具有更好鲁棒性和收敛性的改进逐次逼近算法,以解决非线性系统的最优控制问题。本文的研究内容概括如下:
     1.基于改进逐次逼近法研究一类仿射非线性系统的最优控制问题。通过使用改进方法,将非线性两点边值问题转化为线性两点边值问题序列,从而使难于求解的非线性两点边值问题可以迭代的得到近似求解。通过截取有限的迭代结果,得到原非线性系统最优控制问题的一种近似解,并得到具有完全闭环线性反馈形式的近似最优控制律。同时,证明了所构造的迭代序列的收敛性,并通过实例仿真验证了方法的有效性。
     2.基于改进逐次逼近法研究一类Lipschitz连续的非线性系统的最优控制问题。首先将系统动态方程中的非线性项中的仿射非线性部分分离出来,即将满足Lipschitz条件的非线性函数分离成仿射和非仿射两部分。然后结合使用原方法和改进方法来解决这类非线性系统的最优控制问题。通过构造线性非齐次两点边值问题序列,近似的求解了非线性两点边值问题。截取有限的迭代求解结果,得到的近似最优控制律包含线性反馈项和开环的非线性近似补偿项。并证明了所构造的迭代序列的收敛性。仿真实例验证了方法的有效性。
     3.研究非线性相似组合系统的最优控制问题。首先使用一种相似组合系统的简化方法,将非线性相似组合系统的最优控制问题转化为一类仿射非线性大系统的最优控制问题。然后,应用改进逐次逼近法设计其闭环线性反馈的近似最优控制律,并证明了所提出的迭代算法的收敛性。仿真实例验证了方法的有效性和时效性。
     4.研究非线性互联大系统的最优控制问题。基于改进逐次逼近法,将大规模非线性互联两点边值问题转化为一组线性两点边值问题序列。通过迭代求解,得到包含线性反馈项和开环的非线性近似补偿项的近似最优控制律,并证明了迭代算法的收敛性。仿真实例验证了方法的有效性和时效性。
     5.研究一类仿射非线性系统的最优跟踪问题。根据系统关于参考信号的误差性能指标,最优跟踪问题归结于非线性两点边值问题的求解问题。引入改进逐次逼近法,最优跟踪问题得到解决,设计了包含线性反馈项和关于参考信号外系统状态的线性前馈项的近似最优跟踪控制律。并通过设计关于外系统的降维状态观测器,解决了所设计的次优控制律的物理可实现问题。仿真实例验证了方法的有效性。
     6.研究一类仿射非线性系统的最优滑模的设计问题。通过引入改进逐次逼近法,对非线性系统设计了虚拟的闭环线性反馈的近似最优控制律,然后根据线性滑模的设计方法,设计了非线性系统的最优切换面,并得到了基于最优滑模的变结构控制律。仿真实例验证了方法的有效性。
     7.总结本文的主要工作,展望今后的研究研究方向。
In recent years, the optimal control problem of nonlinear systems has been one of the most challenging problems in system and control. For nonlinear systems, its optimal control problem always gives rise to nonlinear Hamilton-Jacobi-Bellman equation or nonlinear two-point boundary value problem, both of which are hard to solve in general. Therefore many approximation approaches was introduced to solve this problem. The successive approximation approach is a familiar one. By transforming the nonlinear two-point boundary value problem into a sequence of linear two-point boundary value problem, the nonlinear two-point boundary value problem is solved iteratively by using this approach. And an approximate optimal control law consisting of a linear state feedback term and an open-loop approximate compensator term is designed. Comparing with the other approximate approaches, the successive approximation approach takes lower computational loads, and still with a good convergence. Therefore it has a good prospect of application. This dissertation presents an improved successive approximation approach by improving on the successive approximation approach in two aspects. Firstly, for affine nonlinear systems, the transformation from nonlinear two-point boundary value problem to the linear sequence of it is rebuilt to design the approximate optimal control law purely in close-loop linear state feedback form. As a result, the close-loop system under this control law becomes more robust. Secondly, the state sequence of the linear two-point boundary value problem sequence approaches the optimal state trajectory more rapidly during the iteration procedure by introducing a close-loop system sequence. Thus the astringency of the iteration procedure is increased.
     In this dissertation, the history of the development in the optimal control of nonlinear systems is firstly reviewed. And the latest research tendency and the main methods are summarized. By working on the mathematic origin of the successive approximation approach and its application to the nonlinear optimal control problem, a more robust and convergent approach named improved successive approximation approach is proposed. The major results of this dissertation are summarized as follows.
     1. Based on the improved successive approximation approach, the optimal control for a class of affine nonlinear systems is studied. By using the improved approach, the nonlinear two-point boundary value problem, which is the necessary condition of the optimal control problem, is transformed into a linear two-point boundary value problem sequence that is easy to solve. An approximate solution is obtained by truncating the sequence to a finite iteration, and then an approximate optimal control law with purely close-loop linear state feedback form is designed. Meanwhile, the convergence of the iteration is ensured by proving that the constructed sequence is uniformly convergent to the nonlinear two-point boundary value problem. Also a simulation example is employed to test the validity of the iteration algorithm proposed and its superiority upon the original approach.
     2. Based on the improved successive approximation approach, the optimal control for a class of Lipschitz-continues nonlinear systems is studied. By separating the affine nonlinear part with the other non-affine nonlinear part, the improved approach together with the original approach is employed to solve this problem. An approximate optimal control law with both a linear state feedback term and an open-loop nonlinear compensator is designed. And the convergence is also proved. Its superiority upon using the original approach alone is shown by a simulation example.
     3. The optimal control of the nonlinear similar composite system is studied. By using some decoupling methodology, the nonlinear similar composite system is transformed into an affine nonlinear system. Then optimal control of the affine nonlinear system, which is equivalent to the nonlinear similar composite system, is familiar with the problem studied in chapter 1. A close-loop state feedback optimal control is designed, and the convergence also is proved. A simulation example is employed to test the validity and efficiency of the algorithm proposed.
     4. The optimal control of the nonlinear interconnected large-scale system is studied. By using the improved successive approximation approach, the problem is solved iteratively. An approximate optimal control law with both a linear state feedback term and a nonlinear compensator is designed, and the convergence is also proved. A simulation example is employed to test the validity and efficiency of the algorithm proposed.
     5. The optimal tracking control of a class of affine nonlinear systems is studied. With respect to the error-based quadratic performance index, the optimal control problem is still come down to a nonlinear two-point boundary value problem. By introducing the improved approach, the problem is solved iteratively, and an approximate control law with both a linear state feedback term and a reference model state feedforward term is designed.
     6. The optimal sliding mode control of a class of affine nonlinear systems is studied. By introducing the improved approach, a virtual approximate optimal control of the nonlinear system is designed. Then, according to the theory of linear switching manifold design methodology, a linear optimal switching manifold is designed. And a sliding mode control law is obtained based on the designed linear optimal switching manifold.
     7. The conclusions are made. And the direction for the future study is indicated.
引文
[1]解学书.最优控制理论与应用.北京:清华大学出版社, 1987.
    [2] R. W. H. Sargent. Optimal control. Journal of Computational and Applied Mathematics, 2000, 124(1-2): pp. 361-371.
    [3] N. Arada, J. P. Raymond. Optimal control problems with mixed control-state constraints. SIAM Journal on Control and Optimization, 2001, 39(5): pp. 1391-1407.
    [4] A. Weinreb, A. E. Bryson. Optimal control of systems with hard control bounds. IEEE Transactions on Automatic Control, 1985, AC-30(11): pp. 1135-1138.
    [5] R. Castelein, A. Johnson. Constrained optimal control. IEEE Transactions on Automatic Control, 1989, 34(1): pp. 122-126.
    [6] M. Motta. On nonlinear optimal control problems with state constraints. SIAM Journal on Control and Optimization, 1995, 33(5): pp. 1411-1424.
    [7]胡寿松.最优控制理论与系统.北京:科学出版社, 1994.
    [8] I. Ioslovich, P.-O. Gutman. On smooth optimal control determination. Automatica, 2004, 40(12): pp. 2175-2180.
    [9] S. C. Bengea, R. A. DeCarlo. Optimal control of switching systems. Automatica, 2005, 41(1): pp. 11-27.
    [10] C. Wu, K. L. Teo, R. Li, Y. Zhao. Optimal control of switched systems with time delay. Applied Mathematics Letters, 2006, 19(10): pp. 1062-1067.
    [11] T.-S. Tung, X. Liu, X.-M. Zhang. Time delay compensation of the optimal computer control and its application to reactive power regulation systems. Zhongguo Dianji Gongcheng Xuebao, 1988, 8(6): pp. 66-72.
    [12] Y. Pang, M. P. Spathopoulos. Time-optimal control for discrete-time hybrid automata. International Journal of Control, 2005, 78(11): pp. 847-863.
    [13] T. R. Mehta, M. Egerstedt. An optimal control approach to mode generation in hybrid systems. Nonlinear Analysis, Theory, Methods and Applications, 2006, 65(5): pp. 963-983.
    [14] B. M. Miller, J. Bentsman. Optimal control problems in hybrid systems with active singularities. Nonlinear Analysis, Theory, Methods and Applications, 2006, 65(5): pp. 999-1017.
    [15] A. V. Savkin. Analysis and synthesis of networked control systems: Topological entropy, observability, robustness and optimal control. Automatica, 2006, 42(1): pp. 51-62.
    [16] M. Basin, J. Rodriguez-Gonzalez. Optimal control for linear systems with multiple time delays in control input. IEEE Transactions on Automatic Control, 2006, 51(1): pp. 91-97.
    [17] W. M. Haddad, N. A. Kablar, V. Chellaboina, S. G. Nersesov. Optimal disturbance rejection control for nonlinear impulsive dynamical systems. Nonlinear Analysis, Theory, Methods and Applications, 2005, 62(8): pp. 1466-1489.
    [18] O. A. Kuzenkov. An optimal control for a Volterra distributed system. Automation and Remote Control, 2006, 67(7): pp. 1028-1038.
    [19] M. Gunzburger, C. Trenchea. Optimal control of the time-periodic MHD equations. Nonlinear Analysis, Theory, Methods and Applications, 2005, 63(5-7): pp. 1687-1699.
    [20] S. Lenhart, V. Protopopescu, E. Jung, C. Babbs. Optimal control for a standard CPR model. Nonlinear Analysis, Theory, Methods and Applications, 2005, 63(5-7): pp. 1391-1397.
    [21] V. N. Mizernyi, L. Toscano. On optimal control of singular mixed systems. Journal of Automation and Information Sciences, 2005, 37(9): pp. 1-11.
    [22] O. C. Imer, S. Yuksel, T. Basar. Optimal control of LTI systems over unreliable communication links. Automatica, 2006, 42(9): pp. 1429-1439.
    [23] Y.-C. Ho. On centralized optimal control. IEEE Transactions on Automatic Control, 2005, 50(4): pp. 537-538.
    [24] C. Meyer, A. Rosch. Superconvergence properties of optimal control problems. SIAM Journal on Control and Optimization, 2005, 43(3): pp. 970-985.
    [25] R. Gabasov, F. M. Kirillova. Real-time optimal control and observation. Journal of Computer and Systems Sciences International, 2006, 45(3): pp. 421-441.
    [26] Y. Xiao, D. Cheng, H. Qin. Optimal impulsive control in periodic ecosystem. Systems and Control Letters, 2006, 55(7): pp. 558-565.
    [27] A. L. Amadori, C. D'Apice, R. Manzo, B. Piccoli. Hybridization of optimal control problems. International Journal of Control, 2007, 80(2): pp. 268-280.
    [28] G. Mengali, A. A. Quarta. Optimal control laws for axially symmetric solar sails. Journal of Spacecraft and Rockets, 2005, 42(6): pp. 1130-1133.
    [29] M. Vasak, M. Baotic, M. Morari, I. Petrovic, N. Peric. Constrained optimal control of an electronic throttle. International Journal of Control, 2006, 79(5): pp. 465-478.
    [30] R. W. Beard, T. W. McLain. Successive Galerkin approximation algorithms for nonlinear optimal and robust control. International Journal of Control, 1998, 71(5): pp. 717-743.
    [31] L.-C. Fu, T.-L. Liao. Globally stable robust tracking of nonlinear systems using variable structure control and with an application to a robotic manipulator. IEEE Transactions on Automatic Control, 1990, 35(12): pp. 1345-1350.
    [32] G.-P. Cai, J.-Z. Huang. Optimal control method for linear vibration systems with time delay in control. Shanghai Jiaotong Daxue Xuebao, 2002, 36(11): pp. 1596-1599.
    [33] J. X. Lee, G. Vukovich. Dynamic fuzzy logic system: Nonlinear system identification and application to robotic manipulators. Journal of Robotic Systems, 1997, 14(6): pp. 391-405.
    [34] Y. Toyoda, K. Wada. Application of a nonlinear system identification method to thermal power plants. Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), 2001, 137(2): pp. 26-35.
    [35] H. Maurer, N. P. Osmolovskii. Second order sufficient conditions for time-optimal bang-bang control. SIAM Journal on Control and Optimization, 2004, 42(6): pp. 2239-2263.
    [36]郑大钟.线性系统理论.北京:清华大学出版社, 1990.
    [37] M. Nikolaou, V. Manousiouthakis. Hybrid approach to nonlinear system stability and performance. AIChE Journal, 1989, 35(4): pp. 559-572.
    [38] R. D. DeGroat, L. R. Hunt, D. A. Linebarger, M. Verma. Discrete-time nonlinear systemstability. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1992, 39(10): pp. 834-840.
    [39] V. Parameswaran, J. R. Raol. Estimation of model error for nonlinear system identification. IEE Proceedings: Control Theory and Applications, 1994, 141(6): pp. 403-408.
    [40] H. K. Khailil.非线性系统.北京:电子工业出版社, 2005.
    [41] A. R. Pankov, A. V. Bosov. Conditionally minimax algorithm for nonlinear system state estimation. IEEE Transactions on Automatic Control, 1994, 39(8): pp. 1617-1620.
    [42] G. Lightbody, G. W. Irwin. Nonlinear control structures based on embedded neural system models. IEEE Transactions on Neural Networks, 1997, 8(3): pp. 553-567.
    [43] N. Sureshbabu, J. A. Farrell. Wavelet-based system identification for nonlinear control. IEEE Transactions on Automatic Control, 1999, 44(2): pp. 412-417.
    [44] A. Isidori, W. Kang. H∞via measurement feedback for general nonlinear systems. IEEE Transactions on Automatic Control, 1995, 40(3): pp. 466-472.
    [45] J.-I. Imura. Optimal control of sampled-data piecewise affine systems. Automatica, 2004, 40(4): pp. 661-669.
    [46] G. M. Sklyar, S. Y. Ignatovich. Approximation of time-optimal control problems via nonlinear power moment problems. SIAM Journal on Control and Optimization, 2004, 42(4): pp. 1325-1346.
    [47] G.-P. Cai, J.-Z. Huang, Simon X. Yang. An optimal control method for linear systems with time delay. Computers & Structures, 2003, 81: pp. 1539–1546.
    [48] C. Seatzu, D. Corona, A. Giua, A. Bemporad. Optimal control of continuous-time switched affine systems. IEEE Transactions on Automatic Control, 2006, 51(5): pp. 726-741.
    [49] B. Bonnard. Feedback equivalence for nonlinear systems and the time optimal control problem. SIAM Journal on Control and Optimization, 1991, 29(6): pp. 1300-1321.
    [50] J. Stefanovski. Feedback affinization of nonlinear control systems. Systems and Control Letters, 2002, 46(3): pp. 207-217.
    [51] W. F. Shadwick, W. M. Sluis. Dynamic feedback linearization. Honolulu, HI, USA: Publ by IEEE, Piscataway, NJ, USA, 1990. 4: pp. 2085-2087.
    [52] E. Aranda-Bricaire, C. H. Moog, J. B. Pomet. Linear algebraic framework for dynamic feedback linearization. IEEE Transactions on Automatic Control, 1995, 40(1): pp. 127-132.
    [53] L. A. Marquez-Martinez, C. H. Moog. Input-output feedback linearization of time-delay systems. IEEE Transactions on Automatic Control, 2004, 49(5): pp. 781-786.
    [54] S. Battilotti, C. Califano. A constructive condition for dynamic feedback linearization. Systems and Control Letters, 2004, 52(5): pp. 329-338.
    [55] X.-S. Cai, Z.-Z. Han, X.-D. Wang. Construction of control lyapunov functions for a class of nonlinear systems. Zidonghua Xuebao/Acta Automatica Sinica, 2006, 32(5): pp. 796-799.
    [56] F. Mazenc, P.-A. Bliman. Backstepping design for time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(1): pp. 149-154.
    [57] L. B. Freidovich, H. K. Khalil. Lyapunov-based switching control of nonlinear systems using high-gain observers. Automatica, 2007, 43(1): pp. 150-157.
    [58] W.-Y. Wang, M.-L. Chan, T.-T. Lee, C.-H. Liu. Recursive back-stepping design of an adaptive fuzzy controller for strict output feedback nonlinear systems. Asian Journal of Control, 2002, 4(3): pp. 255-264.
    [59] J. Fu, J. Zhao. Robust nonlinear excitation control based on a novel adaptive back-stepping design for power systems. Portland, OR, United States: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2005. 4: pp. 2715-2720.
    [60] G. Bartolini, T. Zolezzi. Variable structure systems nonlinear in the control law. IEEE Transactions on Automatic Control, 1985, AC-30(7): pp. 681-684.
    [61] Y. Dong, X. Shifan, L. Yongqing. Output tracking variable structure control for nonlinear systems. Advances in Modeling & Analysis C, 1998, 51(1): pp. 15-21.
    [62] Y.-W. Liang, S.-D. Xu. Reliable control of nonlinear systems via variable structure scheme. IEEE Transactions on Automatic Control, 2006, 51(10): pp. 1721-1726.
    [63] N. B. Nedeljkovic. New algorithms for unconstrained nonlinear optimal control problems. IEEE Transactions on Automatic Control, 1981, AC-26(4): pp. 868-884.
    [64] S. wang, F. Gao, K. L. Teo. Upwind finite-difference method for the approximation of viscosity solutions to Hamilton-Jacobi-Bellman equations. IMA Journal of Mathematical Control and Information, 2000, 17(2): pp. 167-178.
    [65] J. A. Frueh, M. Q. Phan. Linear quadratic optimal learning control (LQL). International Journal of Control, 2000, 73(10): pp. 832-839.
    [66] R. B. Vinter. Minimax optimal control. SIAM Journal on Control and Optimization, 2006, 44(3): pp. 939-968.
    [67] J. L. Leeper, R. J. Mulholland. Optimal control of nonlinear single-input systems. IEEE Transactions on Automatic Control, 1972, AC-17(3): pp. 401-402.
    [68] A. Boyarsky. On the existence of optimal controls for nonlinear systems. Journal of Optimization Theory and Applications, 1976, 20(2): pp. 205-213.
    [69] N. S. Papageorgiou. Existence of optimal controls for nonlinear systems in banach spaces. Journal of Optimization Theory and Applications, 1987, 53(3): pp. 451-459.
    [70] H. Tan, W. J. Rugh. Pseudolinearization and nonlinear optimal control. IEEE Transactions on Automatic Control, 1998, 43(3): pp. 386-391.
    [71] S. Ito. Numerical methods of nonlinear optimal control based on mathematical programming. Nonlinear Analysis, Theory, Methods and Applications, 1997, 30(6): pp. 3843-3854.
    [72] M. Abu-Khalaf, F. L. Lewis. Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica, 2005, 41(5): pp. 779-791.
    [73] M. Diehl, H. G. Bock, J. P. Schloder. A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM Journal on Control and Optimization, 2005, 43(5): pp. 1714-1736.
    [74] T. Itami. Nonlinear optimal control as quantum mechanical eigenvalue problems. Automatica, 2005, 41(9): pp. 1617-1622.
    [75] B. S. Mordukhovich, I. Shvartsman. The approximate maximum principle in constrained optimal control. SIAM Journal on Control and Optimization, 2005, 43(3): pp. 1037-1062.
    [76] A. Sideris, J. E. Bobrow. An efficient sequential linear quadratic algorithm for solving nonlinear optimal control problems. IEEE Transactions on Automatic Control, 2005, 50(12): pp. 2043-2047.
    [77] T. Cheng, F. L. Lewis, M. Abu-Khalaf. A neural network solution for fixed-final time optimal control of nonlinear systems. Automatica, 2007, 43(3): pp. 482-490.
    [78] A. Astolfi, P. Colaneri. Trading robustness with optimality in nonlinear control. Automatica, 2001, 37(12): pp. 1961-1969.
    [79] Y. Nishikawa, N. Sannomiya, H. Itakura. A Method for Suboptimal Design of Nonlinear Feedback Systems. Automatica, 1967, 7: pp. 703-712.
    [80] W. A. Cebuhar, V. Costanza. Approximation procedures for the optimal control of bilinear and nonlinear systems. Journal of Optimization Theory and Applications, 1984, 43(4): pp. 615-627.
    [81] J. Lawton, R. W. Beard, T. McLain. Successive Galerkin approximation of nonlinear optimal attitude control. San Diego, CA, USA: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA, 1999. 6: pp. 4373-4377.
    [82] Y. J. Kim, B. S. Kim, M. T. Lim. Composite control for singularly perturbed bilinear systems via successive Galerkin approximation. IEE Proceedings: Control Theory and Applications, 2003, 150(5): pp. 483-488.
    [83] Y. J. Kim, B. S. Kim, M. T. Lim. Finite-time composite control for a class of singularly perturbed nonlinear systems via successive Galerkin approximation. IEE Proceedings: Control Theory and Applications, 2005, 152(5): pp. 507-512.
    [84] R. P. Hamalainen, A. Halme. Solution of nonlinear TPBVP's occuring in optimal control. Automatica, 1976, 12(5): pp. 403-415.
    [85] S. Prajna, P. A. Parrilo, A. Rantzer. Nonlinear Control Synthesis by Convex Optimization. IEEE Transactions on Automatic Control, 2004, 49(2): pp. 310-314.
    [86] G. Tessitore. Some remarks on the Riccati equation arising in an optimal control problem with state- and control-dependent noise. SIAM Journal on Control and Optimization, 1992, 30(3): pp. 717-744.
    [87] J. Pittner, M. A. Simaan. State-dependent Riccati equation approach for optimal control of a tandem cold metal rolling process. IEEE Transactions on Industry Applications, 2006, 42(3): pp. 836-843.
    [88] Z. Aganovic, Z. Gajic. Successive approximation procedure for finite-time optimal control of bilinear systems. IEEE Transactions on Automatic Control, 1994, 39(9): pp. 1932-1935.
    [89] S. P. Banks. On the optimal control of nonlinear systems. Systems & Control Letters, 1986, 6(5): pp. 337-343.
    [90] T. Cimen, S. P. Banks. Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria. Systems and Control Letters, 2004, 53: pp. 327-346.
    [91] G.-Y. Tang. Suboptimal control for nonlinear systems: A successive approximation approach. Systems and Control Letters, 2005, 54(5): pp. 429-434.
    [92] G.-Y. Tang, H.-H. Wang. Successive approximation approach of optimal control for nonlinear discrete-time systems. International Journal of Systems Science, 2005, 36: pp. 153-161.
    [93] G.-Y. Tang, L. Sun. Optimal control for nonlinear interconnected large-scale systems: A successive approximation approach. Zidonghua Xuebao/Acta Automatica Sinica, 2005, 31(2): pp. 248-254.
    [94] G.-Y. Tang, L. Sun. Successive approximation procedure of optimal control for nonlinear similar composite systems. Kongzhi yu Juece/Control and Decision, 2005, 20(1): pp. 82-86.
    [95] G.-Y. Tang, D.-X. Gao. Approximation design of optimal controllers for nonlinear systems with sinusoidal disturbances. nonlinear analysis-theory methods & applications, 2005, (in press).
    [96] D. McLean, S. Mahmoud. Optimal tracking problem applied to jet engine control. Aeronautical Journal, 1991, 95(942): pp. 48.
    [97] W. Luo, Y.-C. Chu, K.-V. Ling. Inverse optimal adaptive control for attitude tracking of spacecraft. IEEE Transactions on Automatic Control, 2005, 50(11): pp. 1639-1654.
    [98] G.-Y. Tang, Y.-D. Zhao, H. Ma. Optimal output tracking control for bilinear systems. Transactions of the Institute of Measurement and Control, 2006, 28(4): pp. 387-397.
    [99] G.-Y. Tang, Y.-D. Zhao, B.-L. Zhang. Optimal output tracking control for nonlinear systems via successive approximation approach. Nonlinear Analysis, Theory, Methods and Applications, 2007, 66(6): pp. 1365-1377.
    [100] O. M. E. El-Ghezawi, A. S. I. Zinober, D. H. Owens, S. A. Billings. Computation of the zeros and zero directions of linear multivariable systems. International Journal of Control, 1982, 36(5): pp. 833-843.
    [101] O. M. E. El-Ghezawi, A. S. I. Zinober, S. A. Billings. Analysis and design of variable structure systems using a geometric approach. International Journal of Control, 1983, 38(3): pp. 657-671.
    [102] C. M. Dorling, A. S. I. Zinober. Two approaches to hyperplane design in multivariable variable structure control systems. International Journal of Control, 1986, 44(1): pp. 65-82.
    [103] J. J. Slotine, S. S. Sastry. Tracking control of nonlinear system using sliding surfaces with application to robot manipulators. 1983 Proceedings of the International Conference on Systems, Man and Cybernetics, 1983, 38(2): pp. 465-492.
    [104] J.-J. E. Slotine. Sliding controller design for nonlinear systems. International Journal of Control, 1984, 40(2): pp. 421-434.
    [105] R. A. DeCarlo, S. H. Zak, G. P. Matthews. Variable structure control of nonlinear multivariable systems: a tutorial. Proceedings of the IEEE, 1988, 76(3): pp. 212-232.
    [106] Y. Itkis. Control Systems of Variable Structure. New York: Wiley, 1976.
    [107]高为炳.变结构控制的理论及设计方法.北京:科学出版社, 1996.
    [108] A. Davari, Z. Zhang. Application of the three-segment variable structure systems. Boston, MA, USA: Publ by American Automatic Control Council, Green Valley, AZ, USA, 1991. 1: pp. 62-63.
    [109] A. Davari, Z. Zhang. Three-segment variable structure systems. International Journal of Robust and Nonlinear Control, 1996, 6(3): pp. 249-255.
    [110] M. Zhihong, M. Palaniswami. Robust decentralized three-segment non-linear sliding mode control for rigid robotic manipulators. International Journal of Adaptive Control and Signal Processing, 1995, 9(5): pp. 443-457.
    [111] H.-R. Lin, W.-J. Wang. Fuzzy control design for the pre-specified trajectory tracking with sliding mode. Archorage, AK, USA: IEEE, Piscataway, NJ, USA, 1998. 1: pp. 292-295.
    [112] T.-T. Lee, C.-L. Shih. Discrete-time optimal control for linear time-delay systems with deterministic disturbances. IEE Proceedings on Control Theory and Applications, 1991, 138(6): pp. 573-578.
    [113] J.-j. Lee, Y. Xu. New method of switching surface design for multivariable variable structure systems. IEEE Transactions on Automatic Control, 1994, 39(2): pp. 414-419.
    [114] V. Utkin, J. Shi. Integral sliding mode in systems operating under uncertainty conditions. Kobe, Jpn, 1996. 4: pp. 4591-4596.
    [115] W.-J. Cao, J.-X. Xu. Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems. IEEE Transactions on Automatic Control, 2004, 49(8): pp. 1355-1360.
    [116] M. U. Salamci, M. K. Ozgoren, S. P. Banks. Sliding mode control with optimal sliding surfaces for missile autopilot design. Journal of Guidance, Control, and Dynamics, 2000, 23(4): pp. 719-727.
    [117] Y. Kim, S. Cho, K. Kim, J. L. Junkins, H. Bang. Variable structure control with optimized sliding surface for slew maneuver. Advances in the Astronautical Sciences, 2003, 115(SUPPL): pp. 384-396.
    [118] M. S. Berger.非线性及泛函分析.北京:科学出版社, 2005.
    [119]唐功友,刘永清.大型动力系统的理论与应用:滞后,稳定与控制.广州:华南理工大学出版社, 1992.
    [120] W. B. Gao, J. C. Hung. Variable structure control of nonlinear systems: A new approach. IEEE Transactions on Industrial Electronics, 1993, 40(1): pp. 45-55.
    [121] V. I. Utkin. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 1977, 22(2): pp. 212-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700