用户名: 密码: 验证码:
北京城近郊区地下水硝酸盐氮和总硬度水文地球化学过程及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“北京城近郊区地下水硝酸盐氮和总硬度水文地球化学过程及数值模拟研究”研究目的是通过北京城近郊区地下水硝酸盐氮和总硬度的水文地球化学过程研究,建立三维硝酸氮和总硬度迁移转化数值模型,预测地下水中硝酸盐氮和总硬度的演化趋势,为北京地下水管理提供科学依据。
     论文主要包括以下几个方面的内容:(1)研究区地下水硝酸盐氮和总硬度的一般特征和演化规律;(2)与硝酸盐氮和总硬度有关的水文地球化学作用研究,定量评价矿物溶解、离子交换和反硝化作用对研究区地下水中硝酸盐氮和总硬度的影响;(3)建立硝酸盐氮和总硬度三维运移数值模型。(4)利用硝酸盐氮和总硬度的数值模型预测研究区地下水的硝酸盐氮和总硬度的演化趋势。
     论文最主要的研究方法是数值模拟,包括地下水流场模拟、溶质运移模拟、水文地球化学运移模拟等,另外还采用了数理统计方法、GIS中的空间分析方法、水文地球化学中的比例系数法等。
     论文通过对北京城近郊区浅层地下水总硬度和硝酸盐氮迁移转化数值模拟研究,取得了以下成果:(1)通过方差对比分析方法和水文地球化学的方法对研究区地下水中化学组份进行了物源研究。结果表明,NO_3~-和Cl~-表现出强烈人为输入影响的特征,而Ca~(2+)、Mg~(2+)、HCO_3~-主要受碳酸盐矿物溶解和离子交换的影响。(2)采用一维和二维水文地球化学模拟的方法,研究含水层矿物溶解和离子交换等对地下水化学组份地影响。结果表明,含水层中的矿物溶解和离子交换作用,只在模拟初期对地下水各组份有一定的影响,且对地下水各组份的贡献较小。由此推断,地下水中硬度升高主要是包气带矿物溶解和离子交换的结果。(3)应用硝酸盐污染羽的观测数据,计算了研究区地下水中反硝化速率及其一级反应动力学常数。(4)建立了北京城近郊区总硬度和硝酸盐氮三维运移模型。
     论文的创新点包括:(1)提出了适用于城市地区地下水中硝酸盐氮反硝化一级反应动力学常数的计算方法;(2)应用了二维的水文地球化学模拟;(3)提出了判断地下水中化学组份受人类活动影响程度的方差对比分析方法。
The propose of the dissertation is to set up three-dimensional groundwater transport numerical model on the total hardness and nitrogen in Beijing urban, and forecast their evolution trend in order to provide the evidence for groundwater management.
     The main content in the dissertation include:
     1. Summarize the evolution characteristics of the total hardness and nitrogen;
     2. Investigate the hydrogeochemical process including mineral precipitation/dissolution, ion exchange and denitrification, and quantificational evaluate the effect on the groundwater.
     3. Set up the three-dimensional groundwater transport model on total hardness and nitrogen, and
     4. Forecast the evolution trend of total hardness and nitrogen by the transport model.
     The main method is numerical simulation, including the groundwater flow simulation, solute transport simulation and the hydrogeological transport simulation, and the dissertation also applies the geological statistics, spatial analysis on GIS and the hydrogeological ratio coefficient.
     The dissertation results includes:
     1. The sources of the primary ions of groundwater in Beijing urban were discussed by the methods of the variance analysis and ratio-coefficient. The main conclusion illustrate that NO_3~- and Cl~- come from the anthropogenic discharge, and Ca~(2+), Mg~(2+) and HCO_3~- comes from mineral dissolution. The hydrogeochemical processes with respect to hardness and nitrogen are mineral precipitation/dissolution, ion exchange and denitrification.
     2. By one-dimensional and two-dimensional hydrogeological modeling, the solute transport characteristics with respect to recharge, dilution, mineral precipitation/dissolution and ion exchange are discussed. The conclusion reveals that the mineral precipitation/dissolution and ion exchange have great influence on the concentration of ions only in initial period, and after that, the influence is trifling. Thus it is predicted that the increase reason about the total hardness is likely to the mineral precipitation/dissolution, ion exchange in vadose zone.
     3. The first-order coefficient of denitrification is estimated by the observed data of the nitrogen plume, and
     4. The three-dimensional groundwater transport model on the total hardness and nitrogen in Beijing urban is achieved.
     The innovation in the dissertation may be:
     1. Advanced new estimate method about the first-order dynamic coefficient of the denitrification in urban.
     2. The application of the two-dimensional hydrogeological modeling, and
     3. The application of variance analysis to judge anthropogenic influence on chemical composition of groundwater
引文
[1] J Bear. 多孔介质流体动力学[M]. 北京: 中国建筑工业出版社, 1983.
    [2] 杨金忠, 蔡树英, 黄冠华, 等. 多孔介质中水分及溶质运移的随机理论[M]. 北京: 科学出版社, 2000,
    [3] 张永祥, 陈鸿汉. 多孔介质溶质运移动力学[M]. 北京:地震出版社,2000.
    [4] 陈崇希, 李国敏. 地下水运移理论及模型[M]. 武汉: 中国地质大学出版社, 1992.26-31
    [5] 韩大匡,油藏数值模拟基础[M]. 北京: 石油工业出版社,2001.
    [6] 薛禹群, 吴吉春. 面临 21 世纪的中国地下水模拟问题[J]. 水文地质工程地质, 1999,(5):1-3.
    [7] 孙讷正, 地下水流的数值模型和数值方法[M]. 北京: 地质出版社, 1989.
    [8] 薛禹群. 地下水动力学原理[M]. 北京: 地质出版社, 1986.
    [9] Eshel Bresler, Gedeon dagan. Unsaturated flow in spatially variable fields 2.application of water flow model to various fields [J].Water resource research.1983,19(2):421-428.
    [10] G.Dagan,E.Bresler. Unsaturated flow in spatially variable fields 1.Derivation of Models of infiltration and redistribution[J].water resource research.1983,19 (2) : 413-420.
    [11] John D, Bredehoeft, From models to performance assessment: the conceptualization problem[J]. Groundwater Water. 2003, 41(5): 571-577.
    [12] N Lavitt, R I Acworth, J Jankowski. Vertical hydrochemical zonation in a coastal section of the botany sands aquifer, Sydney, Australia. Hydrogeology Journal, 1997, 5(2): 64-74.
    [13] 张宗祜, 沈照理, 薛禹群, 等. 华北平原地下水环境演化[M]. 北京: 地质出版社,2000.
    [14] Waterloo Hydrogeologic. User’s manual of Visual Modflow, 1996.
    [15] Randall j, Charbeneau. Multicomponent exchange and subsurface solute transport: characteristics, coherence, and the riemamn problem[J]. Water Resources Research. 1988, 24(1): 57-64.
    [16] 王秉忱, 杨天行. 地下水污染-地下水水质模拟方法. 北京: 北京师范学院出版社, 1985.
    [17] David russo. Numerical analysis of the nonsteady transport of interacting solutes through unsaturated soil 1.homogeneous systems [J].Water resources research.1988,24 (2) :271-284.
    [18] David Russo. Numerical analysis of the nonsteady transport of interacting solutes through unsaturated soil 2.layerd systems [J].Water resources research .1988,24 (2) :285-290.
    [19] 魏新平, 王文焰, 王全九. 溶质运移理论的研究现状和发展趋势[J], 灌溉排水, 1998,17(4):58-62.
    [20] 陈泽昂,谢水波,何超兵 等. 浅层地下水中污染物迁移模拟技术研究现状与发展趋势[J]. 南华大学学报(自然科学版). 2005, 19(1): 7-10.
    [21] Gour-Tsyh Yeh, Malcom D Siegel, Ming-Hsu Li. Numerical modeling of coupled variably saturated fluid flow and reactive transport with fast and slow chemical reactions[J]. Journal of Contaminant Hydrology. 2001, 47:379-390.
    [22] Tianfu Xu, Eric sonnenthal, Gudmundur Bodvarsson . A reaction-transport model for calcite precipitation and evaluation of infiltration fluxes in unsaturated fractured rock[J]. Journal of contaminant hudrology.2003,64:113-127.
    [23] C. W. Miller, L. V. Benson. Simulation of solute transport in a chemically reactive heterogeneous system: model development and application[J]. Water Resources Research. 1983, 19(2): 381-391.
    [24] Caroline L.Tebes-Stevens,Felipe Espinoza.Evluating the sensitivity of a subsurface multicomponent reactive transport model with respect to transport and reaction parameters [J].Journal of contaminant hydrology.2001,52 :3-27.
    [25] Chen Wuing Liu, T N Narasimhan. Redox-controlles mutiple-species reactive chemical transport. 1. model development[J]. Water Resources Research. 1989, 25(5): 869-882.
    [26] Xiao Dong Chen. A new water sorption equilibrium isotherm model[J]. Food Research International. 1997, 30(10):755-759.
    [27] R.Srivastava,M.L.Brusseau. Nonideal transport of reactive solutes in heterogeneous porous media:1.numerical model development and moment analysis [J].Journal contaminant hydrology.1996(24) :117-143.
    [28] S.majid Hassanizadeh, Toon leijnse. On the modeling of brine transport in porous media [J]. Water resources research.1998,24 (3) :321-330.
    [29] Keith R .Lassey. Unidimensonal solute transport incorporating equilibrium and rate-limited isotherms with first-order loss 1.An approximated simulation after a pulsed input [J]. Water resource research.1988,24 (3) :251-355.
    [30] Keith R .Lassey. Unidimensonal solute transport incorporating equilibrium and rate-limited isotherms with first-order loss 1.model conceptualization and analytic solutions [J].Waterresource research .1998,24 (3) :343-350.
    [31] Mark L, Brusseau. The effect of nonlinear sorption on transformation of contaminants during transport in porous media[J]. Journal of Contaminant Hydrology. 1995, 17:277-291.
    [32] Zhihui Zhang,Mark L.Brusseau. Nonideal transport of reactive contaminants in heterogeneous porous media:7.distributed-domain model incorporating immiscible-liquid dissolution and rate-limited sorption/desorption [J]. Journal contaminant hydrology.2004, 74 :83-103.
    [33] G.R.Johnson,K.Gupta,D.K.Putz,D.K.Putz.The effect of local-scale physical heterogeneity and nonlinear, rate-limited sorption/desorption on contaminant transport in porous media [J]. Journal contaminant hydrology.2003 (64) :35-58.
    [34] Kimberley S Hunter, Yifeng Wang, Philipe Van Cappellen. Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry[J]. Journal of Hydrology. 1998, 209:53-80.
    [35] Leslie A Desimone, Brian L howes, Paul M B arlow. Mass-balance analysis of reactive transport and cation exchange in a plume of waster- contaminated groundwater[J]. Journal of Hydrology. 1997, 203: 228-249.
    [36] Albert J, Valoccchi, Robert L, Paul V. Transport of Ion-Exchanging Solutes in Groundwater: Chromatographic theory and field simulation[J]. Water Resources Research. 1983, 17(5): 1517-1527.
    [37] B. M. Van Breukelen, C A Appelo, T N Olsthoorn. Hydrogeochemical transport modeling of 24 years of Rhine water infiltration in the dunes of the Amsterdam water supply[J]. Journal of Hydrogeology, 1998, 209: 281-296.
    [38] Debar S .Knopman,Clifford I.Voss.Further comments on sensitivities, parameter estimation and sampling design in one-dimensional analysis of solute transport in porous media [J].Water resources research research.1998,24 (2) :225-238.
    [39] Eshel Bresler. Unsaturated flow in spatially variable fields 3.solute transport models and their application to two fields[J].Water resources research.1983,19(2):429-435.
    [40] L.M.Dudley, R.J.Wagenet,J. Jurinak.Description of soil chemistry during transient solute transport [J].water resources research.1981,17 (5) :1498-1504.
    [41] N.T.Nelson,Q. Hu,M.L. Brusseau. Characterizing the contribution of diffusive mass transferto solute transport in sedimentary aquifer systems at laboratory and field scales [J].Journal of hydrology .2003 (276) :275-286.
    [42] Bruce A Robinson, Hari S Viswanathan, Albert J Valocchi. Efficient numerical techniques for modeling multicomponent groundwater transport based upon simultaneous solution of strongly coupled subsets of chemical components[J]. Advances in Water Resources. 2000, 23:307-324.
    [43] Zhengxue Dai, Javier Samper. Inverse modeling of water flow and multicomponent reactive transport in coastal aquifer systems[J]. Journal of Hydrology, 1994, 120: 225-250.
    [44] Hrissi K.Karapanagilti,Chris M.Gossard,Keith A.Sabatini. Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation process [J]. Journal contaminant hydrology.2001 (48) :1-21.
    [45] 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1999.
    [46] 钱会,王晓娟,李便琴. 地下水系统平衡化学模型的研究现状及发展方向[J]. 地球科学与环境学报,2005,27(1):60-64.
    [47] 钱天伟,李书绅,武贵宾. 地下水多组分反应溶质迁移模型的研究进展[J]. 水科学进展. 2002, 13(1): 116-121.
    [48] 文冬光, 沈照理, 钟佐燊. 水-岩相互作用的地球化学模拟理论及应用[M]. 北京: 中国地质大学出版
    [49] C W Liu, J F Chen. The simulation of geochemical reactions in the Heng-Chun limestone formation, Taiwan[J]. Appl. Math. Modelling. 1996, 20(7): 549-558.
    [50] Catharina Baverman, Bo Stromberg, Luis Moreno. Chemfronts: a coupled geochemical and transport simulation tool[J]. Journal of Contaminant Hydrology. 1999, 36:333-351.
    [51] H Prommer, D A Barry C Zheng. Modelflow/mt3dms-based reactive multicomponent transport modeling[J]. Groundwater Water. 2003, 41(2): 247-257.
    [52] N. Abu-Jaber, M. Ismail. Hydrogeochemical modeling of the shallow groundwater in the northern Jordan vally[J]. Envirnmental Geology. 2003, 44: 391-399.
    [53] 陈宗宇. 水文地球化学模拟研究的现状[J], 地球科学进展,1995,10(3):278-281.
    [54] 张翠云, 刘文生. 河北平原浅层地下水地球化学演化模拟[J]. 地学前缘, 1996, 3(1~2):245-248
    [55] 李义连, 王焰新, 张江华, 等. 娘子关泉域岩溶水硫酸盐污染的地球化学模拟分析[J].地球科学, 2000,25(5):467-471.
    [56] 郭永海, 沈照理, 钟佐燊. 河北平原地下水化学环境演化的地球化学模拟[J]. 中国科学(D 辑), 1997, 27(4):360-364.
    [57] 文冬光, 沈照理, 钟佐燊. 地球化学模拟及其在水文地质中的应用[J]. 地质科技情报,1995, 14(1): 99-104. 社,1998.
    [58] 曹玉清,胡宽容,胡忠毅 等. 水文地球化学综合模型的数值模拟[J]. 世界地质. 2000, 19(3): 240-247.
    [59] 郭永海,沈照理,钟佐燊. 河北平原地下水化学环境演化的地球化学模拟[J]. 中国科学(D 辑),1997,27(4):360-365.
    [60] 蒋良文,李宽良,王士天. 地下水中污染物迁移数学模型模拟实验研究方法及建模技术初探[J]. 山地学报. 2000, 18(2): 48-50.
    [61] N. Rajmohan, L. Elango. Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar river basin, southern Indian[J]. Environmental Geology. 2004, 46: 47-61.
    [62] N. Subba Rao. Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh, India[J]. Environmental Geology, 2002, (41): 552-562.
    [63] R Stephen Fisher, William F Mullican. Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern chihuahuan desert, tran-pecos, Texas, USA[J]. Hydrogeology Journal, 1997, 5(2): 4-16.
    [64] Roger W Lee, Donald J Strickland. Geochemistry of groundwater in tertiary and cretaceous sediments of the southeastern coastal plain in eastern Georgia[J]. Water Resources Research. 1988, 2425): 291-305.
    [65] Susan X Meng, J Barry Maynard. Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in Sao Paulo state, Brazil[J]. Journal of Hydrology[J]. 2001, 250: 78-97.
    [66] Plummer L N, Parkhust D L. PHREEQC — a computer program for geochemical calculations[R]. USGS, Water Resource Investigations Report, 1990, 80-96.
    [67] W. Mike Edmunds. Geochemical indicators in the groundwater environment of rapid environmental change[M]. Proceedings of the 8th international symposium on water-rockinteraction, 1995: 3-8.
    [68] 吴耀国. 地下水中反硝化作用,环境污染治理技术与设备[J],2002,3(3):27-31.
    [69] Gillham R. W, Cherry J. A. Field evidence of denitrification in shallow groundwater flows system. Water Pollut Res[J], 1978, 13(1): 53-71.
    [70] Desimone L. A, Howes B. L. Nitrogen transport and transformation in a shallow aquifer receiving waste water discharge: A mass balance approach. Water Resour Res[J], 1998, 34(2): 271-285.
    [71] Luk G. K., Au-Yeung W.C. Experimental investigation on the chemical reduction of nitrate from groundwater. Advances in Environmental Research[J], 2002, (6): 441-453.
    [72] R. Umar, A. Absar. Chemical characteristics of groundwater in parts of the Gambhir river basin, Bharatpur district, Rajasthan, India[J]. Environmental Geology, 2003, (44): 535-544.
    [73] Reddy K. J, Lin J. Nitrate removal from groundwater using catalytic reduction. Water Res[J], 1999, 34(3): 995-1001.
    [74] E. Lakshmanan, R. Kannan, M. Senthil Kumar. Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India[J]. Environmental Geosciences, 2003,10(4): 157-166.
    [75] Shen Zhaoli, Wang Yunpu, Weng Dongguang. An introduction to geochemistry of the oilfield waters in china. Beijing, China[M], Science Press,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700