用户名: 密码: 验证码:
PMMA介质层铟锌氧化物薄膜晶体管的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文低温制备了以铟锌氧化物(IZO)为沟道层、聚甲基丙烯酸甲酯(PMMA)为介质层的薄膜晶体管。由反应直流磁控溅射法沉积无机IZO沟道层,浸渍提拉法制备有机PMMA介质层,真空热蒸发沉积金属铝电极。整体工艺温度低于90℃,与柔性电子学相兼容。分别对沟道层、介质层单层薄膜的表面形貌、光学性能和电学性能进行了表征。PMMA介质层/IZO沟道层两层薄膜的可见光区平均透射率高于90%(不含基板)。分析了沟道层厚度、溅射氧分压、靶材组分、介质层厚度等因素对铟锌氧化物薄膜晶体管(IZO-TFT)性能的影响,优化实验参数,改善器件性能。探索性地研究了TFT器件稳定性和低温制备透明电极。
     室温下反应直流磁控溅射In/Zn合金靶材于玻璃基板上沉积IZO沟道层。所制备的IZO薄膜为非晶结构,表面平整,可见光区平均透射率高于85%(不含基板)。包括沟道层厚度、溅射氧分压、靶材组分含量在内的实验参数对IZO-TFT的电学性能有影响。IZO厚度为60~90 nm时制备的器件性能较优。溅射氧分压为5.0×10-2Pa时制备得到饱和迁移率最高的IZO-TFT,数值是7.67cm2V-1s-1,其闽值电压为-14.59 V,开关比2.4×102。靶材中Zn含量的适当增加有利于提高TFT的饱和迁移率,同时关态电流略增。
     使用浸渍提拉法在IZO沟道层上制备有机PMMA介质层。PMMA薄膜表面十分平整,可见光区平均透射率达到92%(不含基板)。制备了AI-PMMA-A1的MIM结构,测试表明PMMA薄膜的介电性能良好,1 kHz时相对介电常数为3.49。随着PMMA介质层厚度在150~580 nm范围内增加,TFT的饱和迁移率和阈值电压均呈现先增加后减小的现象。调节介质层厚度在360 nm左右制备的IZO-TFT电学特性最优,饱和迁移率1.99 cm2V-1s-1,阈值电压-2.77 V,电流开关比约2.6×104。
     通过对IZO-TFT施加一定时间的固定栅极偏压,分析老化过程中器件饱和迁移率、阈值电压的偏移情况以判断其电学稳定性。先适当施加较小的栅极偏压进行一定时间的老化有利于提高器件稳定性。探索低温制备适用作电极的透明导电氧化物薄膜。室温下用反应磁控溅射沉积了非晶掺钨氧化铟(IWO)薄膜,调节氧分压与溅射功率以提高其导电性和透光性。掺钨含量1 wt%的IWO薄膜可达最小的薄膜电阻5.75×10-4Ω·cm,可见光区平均透射率高于90%。
Indium zinc oxide based thin film transistors (IZO-TFTs) were fabricated at low temperature, where poly(methyl methacrylate) (PMMA) serves as the insulator. The inorganic channel layers were deposited by reactive de magnetron sputtering. The organic dielectric layers were prepared by dipping method and aluminum electrodes by thermal evaporation. The processing temperature all along is below 90℃, which is compatible with the fabrication of flexible electronics. The optical and electrical properties of channel layers and dielectric layers were characterized, respectively. The average transmittance in the visible region of PMMA layer together with IZO layer is more than 90%. The effects of experimental parameters including channel thickness, oxygen partial pressure, target composition and dielectric thickness on the electrical performances of IZO-TFTs were analyzed. Besides, electrical stability of the devices and transparent electrodes prepared at low temperature were investigated.
     Amorphous IZO channel layers were deposited from an alloy target by reactive dc magnetron sputtering at room temperature. The surfaces are smooth and the average transmittance in the visible region is over 85%. Channel thickness, oxygen partial pressure and target composition affect electrical performances of IZO-TFTs. IZO-TFTs exhibit optimum characteristics with channel thickness of 60~90 nm. The device prepared at oxygen partial pressure of 5.0×10-2 Pa reaches its highest saturation mobility of 7.67 cm2V-1s-1, with the threshold voltage of-14.59 V and on/off current ratio of 2.4×102. The increase of zinc content in the alloy target helps to enhance the mobility of TFT while off current increases simultaneously.
     The PMMA dielectric layers were prepared by dipping method. The average transmittance of PMMA thin film in the visible region is 92%. Its surface is rather smooth. The MIM capacitor with Al-PMMA-Al structure was fabricated. The dielectric property of PMMA is good and its relative dielectric constant is 3.49 measured at 1 kHz. With the enhancement of dielectric thickness from 150 to 580 nm, the saturation mobility and threshold voltage of devices both increase firstly and decrease afterward. The prepared IZO-TFT exhibits the optimum performance when dielectric thickness is around 360 nm. Its saturation mobility is 1.99 cm2V-1s-1and the threshold voltage is-2.77 V with on/off current ratio of 2.6×104.
     The electrical stability of IZO-TFT was tested by applying bias stress with gate voltage for some time. The variations of saturation mobility and threshold voltage of the device are studied. A prior aging process with a relatively small gate bias stress is conductive to device stability. Tungsten-doped indium oxide (IWO) films were investigated for the usage of transparent electrodes. The IWO films deposited at room temperature are amorphous and the ones prepared from 1 wt% tungsten-doped target reach a minimum resistivity of 5.75×10-4Ω·cm with the average transmittance of over 90% in the visible region.
引文
[1]H. Sato, H. Fujikake, Y. lino, et al. Flexible grayscale ferroelectric liquid crystal device containing polymer walls and networks[J]. Jpn. J. Appl. Phys.,2002,41:5302.
    [2]G. Gelinck, H. Huitema, E. van Veenendaal, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors[J]. Nature Mater.,2004,3:106.
    [3]Janos Veres, Simon Ogier, Giles Lloyd, and Dago de Leeuw. Gate insulators in Organic Field-Effect Transistors[J]. Chem. Mater.,2004,16(23):4543-4555.
    [4]Lilienfeld J E. Method and apparatus for controlling electric currents[P]. US 1745175,1930.
    [5]Sheats JR. Manufacturing and commercialization issues in organic electronics[J]. J. Mater. Res. 2004,19:1974-1989.
    [6]R. L. Hoffman, B. J. Norris and J. F. Wager, ZnO-based transparent thin-film transistors[J]. Appl. Phys. Lett.,2003,82:733-735.
    [7]K. Nomura, H. Ohta, A. Takagi, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature,2004,432:488-491.
    [8]Donald A. Neamen. Semiconductor Physics and Device,3rd edition[M], Boston:McGraw Hill, 2003:486-495.
    [9]Wehrspohn R B, Powell M J and Deane S C. Kinetics of Defect Creation in Amorphous Silicon[J]. Thin Film Transistors. J. Appl. Phys.2003,93(9):5780-5788.
    [10]YIN Sheng, LIU Chen, ZHONG Zhi-you, et al. The Development of Low Temperature Poly-Si TFT Technology[J]. Advanced Display.2003,35:33-37.
    [11]H N Lee, J W Kyung, S K Kang, et al. Current status of, challenges to, and perspective view of AM-OLED[A]. In:Proceedings of The 13th International Display Workshops[C]. Shiga, Japan, 2006:663-666.
    [12]H N Lee, J W Kyung, S K Kang, et al.3.5 inch QC1F+AM-OLED panel based on oxide TFT backplane[A]. In:SID Symposium Digest of Technical Papers[C]. California, USA,2007:1826.
    [13]G. Lavareda, C. Nunes de Carvalho, E. Fortunato, et al. Transparent thin film transistors based on indium oxide semiconductor[J]. J. Non-Cryst. Solids,2006,352:2311-2314.
    [14]David C. Paine, Burag Yaglioglu, Zach Beiley, et al. Amorphous IZO-based transparent thin film transistors[J]. Thin Solid Films,2008,516:5894-5898.
    [15]R E Presley, C L Munsee, C-H Park, et al. Tin oxide transparent thin-film transistors[J]. J. Phys D:Appl. Phys.,2004,37:2810-2813.
    [16]Q. J. Yao, D. J. Li. Fabrication and property study of thin film transistor using rf sputtered ZnO as channel layer[J]. J. Non-cryst. Solids,2005,351:3191-3194.
    [17]Q. J. Yao, D. J. Li. Indium oxide thin film transistors via reactive sputtering using metal targets[J]. Phys. Status. Solidi (a),2008,205:389-391.
    [18]L. Zhang, J. Li, X. W. Zhang, X. Y. Jiang, Z. L. Zhang. High-performance ZnO thin film transistors with sputtering SiO2/Ta2O5/SiO2 multilayer gate dielectric[J]. Thin Solid Films,2010, 518:6130-6133.
    [19]Hai Zhong Zhang, Hong Tao Cao, Ai Hua Chen, et al. Enhancement of electrical performance in In2O3 thin-film transistors by improving the densification and surface morphology of channel layers[J]. Solid-State Electronics,2010,54:479-483.
    [20]G. F. Li, J. Zhou, Y. W. Huang, et al. Indium zinc oxide semiconductor thin films deposited by dc magnetron sputtering at room temperature[J]. Vacuum,2010,85:22-25.
    [21]P. Barquinha, A. Pimentel. A. Marques, el al. Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide[J]. J. Non-Cryst. Solids,2006, 352:1749-1752.
    [22]Jin-Seong Park, Jae Kyeong Jeong, Yeon-Gon Mo and Hye Dong Kim. Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment[J]. Appl. Phys. Lett.,2007,90:262106.
    [23]Donghua Kang, Hyuck Lim, Changjung Kim, et al. Amorphous gallium indium zinc oxide thin film transistors:Sensitive to oxygen molecules[J]. Appl. Phys. Lett.,2007,90:192101.
    [24]Yasuhiro Shimura, Kenji Nomura, Hiroshi Yanagi, et al. Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes[J]. Thin Solid Films,2008, 516:5899-5902.
    [25]Zhang Xin an, Zhang Jingwen, Zhang Weifeng, et al. Fabrication of bottom-gate and top-gate transparent ZnO thin film transistors[J]. J. Semi.(Chinese),2008,29:859-862.
    [26]Y. Vygranenko, K. Wang, R. Chaji, et al. Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition[J]. Thin Solid Films,2009,517:6341-6344.
    [27]Toshio Kamiya, Kenji Nomura and Hideo Hosono. Present status of amorphous In-Ga-Zn-O thin-film transistors[J]. Sci. Technol. Adv. Mater.,2010,11:044305.
    [28]Yuriy Vygranenko, Kai Wang, Arokia Nathan. Stable indium oxide thin-film transistors with fast threshold voltage recovery[J]. Appl. Phys. Lett.,2007,91:263508.
    [29]P. Barquinha, E. Fortunato, A. Goncalves, et al. Influence of time, light and temperature on the electrical properties of zinc oxide TFTs[J]. Superlattices and Microstructures,2006,39:319.
    [30]R. Navamathavan, Chi Kyu Choi, Eun-Jeong Yang, et al. Fabrication and characterizations of ZnO thin film transistors prepared by using radio frequency magnetron sputtering[J]. Solid-State Electronics,2008.52:813.
    [31]K. Nomura, H. Ohta, K. Ueda, et al. Electron transport in InGaO3 (ZnO)m, (m=integer) studied using single-crystalline thin films and transparent MISFETs[J]. Thin Solid Films,2003, 445:322.
    [32]H. Kumomi, K. Nomura, T. Kamiya, et al. Amorphous oxide channel TFTs[J]. Thin Solid Films,2008,516:1516-1522.
    [33]Yu-Lin Wang, F. Ren, Wantae Lim, et al. Room temperature deposited indium zinc oxide thin film transistors[J]. Appl. Phys. Lett.,2007,90:232103.
    [34]Chaun Gi Choi, Seok-Jun Seo, and Byeong-Soo Bae. Solution-processed indium-zinc oxide transparent thin-film transistors[J]. Electrochemical and Solid-State Letters,2008,11:H7-H9.
    [35]H. Q. Chiang, J. F. Wager, R. L. Hoffman, et al. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer[J]. Appl. Phys. Lett.,2005:013503.
    [36]Y. Kwon, Y. Li, Y. W. Heo, et al. Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel[J]. Appl. Phys. Lett.,2004,84:2685.
    [37]K. Matsuzaki, H. Yanagi, T. Kamiya, et al. Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3[J]. Appl. Phys. Lett.,2006,88:92106.
    [38]T. Moriga, D. Edwards, T. O. Mason, et al. Phase relationships and physical properties of homologous compounds in the zinc oxide-indium oxide system[J]. J. Am. Ceram. Soc.,1998, 81:1310.
    [39]Young-Je Cho, Ji-Hoon Shin, S.M. Bobade et al. Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors[J]. Thin Solid Films,2009,517:4115-4118.
    [40]Silvia Gross. Daniele Camozzo, Vito Di Noto et al.. PMMA A key macromolecular component for dielectric low-κ hybrid inorganic-organic polymer films[J]. European Polymer Journal,2007,43:673-696
    [41]David C. Paine, Burag Yagliogkla, Zach Beiley et al. Amorphous IZO-based transparent thin film transistors[J]. Thin Solid Films,2008,516:5894-5898.
    [42]S. OsonoY. Uchiyama, M. Kitazoe, et al. Coverage properties of silicon nitride film prepared by the Cat-CVD method[J]. Thin Solid Films,2003,430:165.
    [43]M.D. Groner, J.W. Elam, F.H. Fabreguette, et al. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates[J]. Thin Solid Films,2002,413:186.
    [44]Young-Je Cho, Ji-Hoon Shin, S.M. Bobade, et al. Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors[J]. Thin Solid Films,2009,517:4115.
    [45]Jong Hoon Kim, Byung Du Ahn, Choong Hee Lee, et al. Characteristics of transparent ZnO based thin film transistors with amorphous HfO2 gate insulators and Ga doped ZnO electrodes[J]. Thin Solid Films,2008,516:1529.
    [46]L. Zhang, J. Li, X. W. Zhang, et al. Glass Glass-substrate-based high-performance ZnO-TFT by using a Ta2O5 insulator modified by thin SiO2 films[J]. Physica Status Solidi A,2010,207: 1815-1819.
    [47]Wen-His Lee, Chun Chieh Wang and Jia Chung Ho. Influence of nano-composite gate dielectrics on OTFT characteristics[J]. Thin Solid Films,2009,517:5305-5310.
    [48]Jung-An Cheng, Chiao-Shun Chuang, Ming-Nung Chang et al. Controllable carrier density of pentacene field-effect transistors using polyacrylates as gate dielectrics[J]. Organic Electronics, 2008,9:1069-1075.
    [49]Janos Veres. Simon Ogier. Giles Lloyd and Dago de Leeuw. Gate Insulators in Organic Field-Effect Transistors[J]. Chem. Mater.,2004,16(23):4543-4555.
    [50]D.N. Sandzhiev, K.G. Abdulvakhidov, V. Yu. Shonov, et al. Dielectric properties of thin ferroelectric Sn2P2S6 films deposited by thermal evaporation[J]. Technical Physics,2009.54: 1622-1625.
    [51]R.B. Wu, G.Y. Yang, Y. Pan, et al. Thermal evaporation and solution strategies to novel nanoarchitectures of silicon carbide[J]. Appl. Phys. A.2007,88:679.
    [52]Xifeng Li, Weina Miao, Qun Zhang, et al. Preparation of molybdenum-doped indium oxide thin films using reactive direct-current magnetron sputtering[J], J. Mater. Res.,2005,20(6):1404.
    [53]Mwabora JM, Lindgren T, Avendano E, et al. Structure, composition, and morphology of photoelectrochemically active TiO2-xNx thin films deposited by reactive DC magnetron sputtering[J]. J. Phys. Chem. B,2004,108:20193.
    [54]A.I. Nikiforov, V.V. Ulyanov, S. A. Teys, et al. MBE growth of vertically ordered Ge quantum dots on Si[J]. Physica Status Solidi (c).2007,4:262.
    [55]Reisse G, Weissmantel S, Keiper B, et al. Properties of pulsed laser deposited boron nitride films[J]. Appl. Surf. Sci.,1997,108:9.
    [56]R. Martins, P. Barquinha, A. Pimentel, et al. Transport in high mobility amorphous wide band gap indium zinc oxide films[J]. Physica status solidi A,2005,222:R95-R97.
    [57]N.L. Dehuff, E.S. Kettenring, D. Hong, et al. Transparent thin-film transistors with zinc indium oxide channel layer[J]. J. Appl. Phys.,2005,97:064505.
    [58]Ju-II Song, Jae-Soung Park, Howoon Kim, et al. Transparent amorphous indium zinc oxide thin-film transistors fabricated at room temperature[J]. Appl. Phys. Lett.,2007,90:022106.
    [59]Wantae Lim. Yu-Lin Wang, F.Ren, et al. Indium zinc oxide thin films deposited by sputtering at room temperature[J]. Appl. Surf. Sci., 2008,254:2878-2881.
    [60]R. Martins, P. Barquinlia, I. Ferreira, et al. Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors[J]. J. Appl. Phys.,2007,101:44505.
    [61]B. Yaglioglu, H.Y. Yeom, R. Beresford, et al. High-mobility amorphous In2O3-10 wt%ZnO thin film transistors[J]. Appl. Phys. Lett.,2006,89:062103.
    [62]Hideo Hosono. Ionic amorphous oxide semiconductors:Material design, carrier transport and device application[J]. J. Non-Cryst. Solids,2006,352:851-858.
    [63]Hamberg I, Granqvist C G. Evaporated Sn-doped In2O3 films:basic optical properties and applications to energy-efficient windows[J]. J. Appl. Phys.,1986,60:R123.
    [64]Sivaramasubramaniam R, Muhamad MR, Radhakrishna S. Optical-properties of annealed tin(Ⅱ) oxide in different ambients[J]. Physica status solidi A.1993,136:215.
    [65]Natsume Y, Sakata H. Zinc oxide films prepared by sol-gel spin-coating[J]. Thin Solid Films. 2000,372:30.
    [66]Jun Zhou. The investigation of amorphous indium zinc oxide-based TFTs (in Chinese)[D]. Shanghai:Fudan University,2010:41-42.
    [67]Mark HF, Bikales NM, Overberger CG, Menges G. Encyclopaedia of polymer science and technology[M]. New York:John Wiley and Sons,1985.
    [68]Ji Hoon Park, D.K. Hwang, Jiyoul Lee, el al. Studies on poly(methyl methacrylate) dielectric layer for field effect transistor:Influence of polymer tacticity[J]. Thin Solid Films,2007,515: 4041-4044.
    [69]Meng Y, Yang XL, Chen H X, et al. A new transparent conductive thin film In2O3:Mo[J]. Thin Solid Films.2001,394:219-223.
    [70]Li Xifeng, Miao Weina, Zhang Qun, et al. Growth of high mobility transparent conducting In2O3:Mo thin film[J]. J. Vac. Sci. and Tech.(Chinese),2005,25(2):142-145.
    [71]Ming Yang. Jiahan Feng, Guifeng Li, Qun Zhang. Tungsten-doped In2O3 transparent conductive films with high transmittance in near-infrared region[J]. J. Cryst. Growth,2008,310: 3474-3477.
    [72]J R Bellingham, W A Phillips, C J Adkins. Electrical and optical properties of amorphous indium oxide[J]. J. Phys. Condens. Matter.,1990,2:6207-6221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700