用户名: 密码: 验证码:
稀土离子Eu、Tb掺杂的以CaMoO_4和SiO_2一元或二元体系为基质的发光材料的制备与发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先采用共沉淀法和高温焙烧法制备了CaMoO_4:RE (RE=Eu~(3+),Tb~(3+)或Eu~(3+)和Tb~(3+)共掺)。通过TG-DTA分析的测试发现,CaMoO_4:RE(RE =Eu~(3+),Tb~(3+)或Eu~(3+)和Tb~(3+)共掺)样品材料分别在800℃(CaMoO_4:Eu~(3+))、850℃(CaMoO_4:Tb~(3+))和866℃(CaMoO_4:Eu~(3+):Tb~(3+))达到最高的活化点,使CaMoO_4:RE(RE=Eu~(3+),Tb~(3+)或Eu~(3+)和Tb~(3+)共掺)样品形成稳定结构;XRD的测试结果表明样品在800℃(CaMoO_4:Eu~(3+))、850℃(CaMoO_4:Tb~(3+))和866℃(CaMoO_4:Eu~(3+):Tb~(3+))时,形成了四方晶形结构,具有与白钨矿CaMoO_4相同的结构,这也进一步说明在样品中2个M取代3个Ca~(2+),导致了晶体产生微小的晶体缺陷,从而形成具有p-n结的半导体,并且当样品受激时,晶体中的电子与空穴会相遇形成电子-空穴的束缚态,即F-激子。通过三维荧光谱图,激发和发射谱图的测试结果证明:这种缺陷结构不但可以使M禁戒的4f电子发生跃迁,而且还可以使MoO_4~(2-)的能量高效地传递给M,尤其是与MoO_4~(2-)的发射特征峰(488nm)产生部分或完全重叠的M的4f电子跃迁。进而CaMoO_4:Eu~(3+)在λex=465nm的发射谱图中,自激活荧光体MoO_4~(2-)的发射强度被大大减弱甚至猝灭,而Eu~(3+)的5D0—7F2(612nm)跃迁的红光发光强度被大大增强;同样CaMoO_4:Tb~(3+)在λex=488nm的发射谱图,随着自激活荧光体MoO_4~(2-)的发射强度猝灭,Tb~(3+)的~5D_4→~7F_5(544nm)磁偶级跃迁的绿光强度得到了很大的加强;而对于样品CaMoO_4:Eu~(3+):Tb~(3+)在λex=302nm的发射谱图中,可以同时发出蓝、绿和红光。由于上述CaMoO_4:RE材料具有各自的明显特征,很有可能成为具有潜在应用价值的发光材料。
     文中还采用溶胶-凝胶法制备了RE(Eu~(3+),Tb~(3+)或Eu~(3+)和Tb~(3+)共掺)以CaMoO_4和SiO_2为基质发光材料。通过XRD谱图表明:样品主要形成的是非晶态SiO_2结构,但在网格中还存在CaMoO_4:RE(Eu~(3+),Tb~(3+)或Eu~(3+)和Tb~(3+)共掺)的小晶体,并且在小晶体的内部仍然具有由于RE取代造成的缺陷,进而产生的p-n结和受激时产生的F-激子。通过三维荧光谱图、激发和发射谱图测试表明:在SiO_2网格中的CaMoO_4:RE(Eu~(3+),Tb~(3+)或Eu~(3+)和Tb~(3+)共掺)小晶体仍然具有晶体的所有特性,但是CaMoO_4:RE(Eu~(3+),Tb~(3+)或Eu~(3+)和Tb~(3+)共掺)小晶体毕竟处于SiO_2网格中,使得MoO_4~(2-)只能向RE(Eu~(3+),Tb~(3+)或Eu~(3+)和Tb~(3+)共掺)传递部分能量,另一部分能量就用于自身荧光体MoO_4~(2-)发光。如:SiO_2:CaMoO_4:Eu~(3+)在λex=465nm的发射谱图中,既有MoO_4~(2-)在498nm和514nm处的绿光发射,也有Eu~(3+)在612nm处的红光发射;SiO_2:CaMoO_4:Tb~(3+)在λex=488nm的发射谱图中,有MoO_4~(2-)在517nm和Tb~(3+)在544nm的两处绿光发射;而对于样品材料SiO_2:CaMoO_4:Tb~(3+):Eu~(3+)则在λex=302nm的发射谱图中,可以发射出蓝、绿和红光,并且三种颜色的光强度基本相同。因此,制备的SiO_2:CaMoO_4:RE(Eu~(3+),Tb~(3+)或Eu~(3+)和Tb~(3+)共掺)材料可以在同一种材料中同时发出一种、两种或者三种颜色的光。
In this paper, first of all, the sample CaMoO_4:RE(RE= Eu~(3+), Tb~(3+) or co-doped Eu~(3+) and Tb~(3+)) has been prepared with the coprecipitation method and high-temperature roasting method. TG-DTA spectra shows that the energy of the samples is up to the maximum implying that it has formed stable structures at 800℃(CaMoO_4:Eu~(3+)),
     850℃(CaMoO_4:Tb~(3+)) and 866℃(CaMoO_4:Eu~(3+):Tb~(3+)) respectively. XRD pattern of the sample shows that the CaMoO_4:Eu~(3+) (800℃)、CaMoO_4:Tb~(3+) (850℃)and CaMoO_4:Eu~(3+):Tb~(3+) (866℃), at the single phase, is a representative scheelite structure of CaMoO_4.Due to three Ca~(2+) replaced by two RE in the cell of the samples CaMoO_4:RE(RE= Eu~(3+), Tb~(3+) or co-doped Eu~(3+) and Tb~(3+)), the crystal produced tiny crystal defect, so that it has the samples CaMoO_4:RE (RE=Eu~(3+), Tb~(3+) or co-doped Eu~(3+) and Tb~(3+)) form the semiconductor which is possessed of p-n junctions, as the samples are waken, the hole and the electron around the hole, it can form a F- (Frenkel) exciton, which is at the bound state, in the crystal.The three-dimensional fluorescence spectra, excitation and emission spectras of the samples are investigated and reveal that the defect structures of the sample not only enable the but also make energy of MoO_4~(2-) high efficiently transfer RE, especially the 4f electron of the RE transit, with the 488 nm of MoO_4~(2-) partly or completely overlapped, is greatly strengthened. For the sample CaMoO_4:Eu~(3+), as a result, the emission spectra withλex=465nm shows the emission intensity of the spontaneously activated fluorescence MoO_4~(2-) is greatly weaken or even quenching, while the red light luminescence intensity of the 5D0-7F2 transition(612nm)of Eu~(3+) is greatly enhanced, similarly the emission spectra of CaMoO_4:Tb~(3+) withλex=488nm shows the emission intensity of the green light luminescence intensity of the ~5D_4→~7F_5 transition (544nm)of the Tb~(3+) is greatly enhanced. About the emission spectra of the sample CaMoO_4:Eu~(3+):Tb~(3+) withλex=302nm, it can emit blue、green and red light at the same time. These particular advantages tell us a fact that the samples CaMoO_4:RE(RE= Eu~(3+), Tb~(3+) or co-doped Eu~(3+) and Tb~(3+)) will become the luminescence material that is of great potentially used value.
     In addition, the sample RE(RE=Eu~(3+), Tb~(3+) or co-doped Eu~(3+) and Tb~(3+)) to CaMoO_4 and SiO_2 matrix light-emitting materials, it are prepared by the sol-gel method. XRD spectra of the sample show that the samples are mainly formed by the structure of amorphous SiO_2, but the small crystals of CaMoO_4:RE (RE=Eu~(3+), Tb~(3+) or co-doped Eu~(3+) and Tb~(3+)),which are in SiO_2 network structure , and in a small crystal the defective internal still have caused RE to replace Ca~(2+), thus as a result of generating p-n junction and F-(Frenkel) exciton. Through three-dimensional fluorescence spectra, excitation and emission spectra of the sample showed that: CaMoO_4:RE(RE=Eu~(3+), Tb~(3+) or co-doped Eu~(3+) and Tb~(3+)) still has all the character of a small crystal,but after all in SiO_2 network structure, it make transfer part of the energy from MoO_4~(2-) to the RE (RE=Eu~(3+) , Tb~(3+) or co-doped Eu~(3+) and Tb~(3+)), the other part of energy is saved for its own emitting phosphor of MoO_4~(2-). Such as the emission spectrum of the sample SiO_2:CaMoO_4:Eu~(3+) atλex= 465nm, it takes on green light of MoO_4~(2-)in 498nm and 514nm and red light of Eu~(3+) in 612nm; the emission spectrum of SiO_2:CaMoO_4:Tb~(3+) inλex= 488nm, it presents two green light of MoO_4~(2-) in the 517nm and Tb~(3+) in the 544nm; the emission spectra of sample materials for SiO_2:CaMoO_4:Eu~(3+):Tb~(3+)inλex= 302nm, it emits blue, green and red light at the same time, and the intensity is basically the same of three colors. Therefore, it can take on one, two or three colors of light in the same material SiO_2:CaMoO_4:RE(RE=Eu~(3+), Tb~(3+) or co-doped Eu~(3+)and Tb~(3+)).
引文
[1]贾昌文. TiO2基半导体材料的光学和磁学特性研究[D](博士生论文)兰州,兰州大学,2007.
    [2]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003:
    [3] C.-H. Chiu, C.-H. Liu, S.-B. Huang, T.-M. Chen, White-lightemitting diodes using red-emitting LiEu(WO_4)2-x(MoO_4)x phosphors[J]. Electrochem. Soc. 154 (7) (2007) J181–J184.
    [4] X. Zhao, X. Wang, B. Chen, Q. Meng, W. Di, G. Ren, Y. Yang, Novel Eu3+-doped red-emitting phosphor Gd2Mo3O9 for white light emitting diodes (WLEDs) application[J]. Alloys Compd. 433 (2007) 352–355.
    [5] J.H. Ryu, J.-W. Yoon, K.B. Shim, Blue-luminescence of nanocrystalline MWO_4 (M =Ca, Sr, Ba, Pb) phosphors synthesized via a citrate complex route assisted by microwave irradiation[J]. Electrochem. Solid State Lett. 8 (5) (2005) D15–D18.
    [6] Z. Wang, H. Liang, J. Wang, M.G.Q. Su, Red-light-emitting diodes fabricated by near-ultravioled InGaN chips with molybdate phosphors[J].Appl. Phys. Lett. 89 (2006) 071921.
    [7] W.F. van der Weg, T.J.A. Popma, A.T. Vink. Concentration dependence of UV and electron-excited Tb3+ luminescence in Y3Al5O12[J]. Appl. Phys. 57(1985) 5450.
    [8] R.P. Rao, W.W. Duley. Preparation and luminescence of MgO:Tb phosphors[J]. Mater. Sci. 27 (1992) 5883.
    [9] M. Nikl, R. Morlotti, C. Magro, R. Bracco. Two-dimensional sheath evolution in a negative ion plasma[J]. Appl. Phys. 79 (1996)2853.
    [10]李东平,缪春燕,刘亭.蓝光转换白光荧光粉YAG:Ce3的研究进展[J].江西化工,2005,20(1):38-40.
    [11]Blasse G, Grabmaier B C. Luminescent Materials[M]. Springer-Verlag, Berlin Heidelberg, 1994.
    [12]XU Xu-rong(徐叙瑢), SU Mian-zeng(苏勉曾),Luminescence & Luminescence material(发光学与发光材料)[M].化学工业出版社.2004.
    [13] Arpad A. Bergh, P. J. Dean. Light-Emitting Diodes[M]. Proceedings of the IEEE Invited paper, 1972, 60(2).
    [14]刘木清,周德成,梅毅.LED与传统光源光效比较分析[J].照明工程学报, 2006, 17(4).
    [15]徐江善.绿色革命----半导体照明[J].记者观察,2003(10):49-50
    [16] K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, Warmwhite light-emitting diode with yellowish orange SiAlON ceramic phosphor[J]. Opt. Lett. 29 (17) (2004) 2001–2003.
    [17] Y.Q. Li, A.C.A. Delsing, G. de With, H.T. Hintzen, Luminescence properties of Eu2+-activated alkaline earth silicom-oxynitride MSi2O2-δN2+2/3δ(M =Ca, Sr, Ba): a promising class of novel LED conversion phosphors[J]. Chem. Mater. 17 (2005) 3242–3248.
    [18] C.J. Summers, B. Wagner, H. Menkara, Solid-state lighting: diode phosphors[A]. in Proceedings of the SPIE, vol. 5187, 2004,pp. 123–131.
    [19] H.S. Janga, W.B. Ima, D.C. Leeb, D.Y. Jeona, S.S. Kim, Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application towhite LEDs[J]. Lumin. 126 (2007) 371–377.
    [20] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, Q. Su, Three-band white light from InGaN-based blue LED chip precoated withGreen/red phosphors[J]. IEEE Photon. Technol. Lett. 17 (6) (2005) 1160–1162.
    [21] J.K. Sheu, S.J. Chang, C.H. Kuo, Y.K. Su, L.W.Wu, Y.C. Lin, W.C. Lai, J.M. Tsai, G.C. Chi, R.K. Wu, White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors[J]. IEEE Photonics Technol. Lett. 15 (2003) 18.
    [22]Xiao-xiao Wang, Yu-lun Xian, Gang Wang, Jian-xin Shi, Qiang Su, Meng-lian Gong. Luminescence investigation of Eu3+–Sm3+ co-doped Gd2-x-yEuxSmy(MoO_4)3 phosphors as red for UV InGaN-based light-emitting diode phosphors[J]. Optical Materials 30 (2007) 521–526
    [23] S. Neeraj, N. Kijima, A.K. Cheetham. Novel red phosphors for solid-state lighting: the system NaM(WO_4)2?x(MoO_4)x:Eu3+ (M=Gd, Y, Bi)[J]. Chem. Phys. Lett. 387 (2004) 2.
    [24] Zhengliang Wang, Hongbin Liang, Liya Zhou, Hao Wu, Menglian Gong, Qiang Su. Luminescence of (Li0.333Na0.334K0.333)Eu(MoO_4)2 and its application in near UV InGaN-based light-emitting diode[J]. Chem. Phys. Lett. 412 (2005) 313.
    [25] S. Neeraj, N. Kijima, A.K. Cheetham, Chem. Phys. Lett. 387 (2006) 2.
    [26]徐剑,张剑辉,张新民,等.Ga_2S_3:Eu~(2+)和SrGa_(2+x) S_(4+y):Eu~(2+)系列荧光粉的发光性能研究[J].中国稀土学报,2003, 21(6):635.
    [27]Pan Yue-xiao, Wu Ming-mei, Su Qiang. Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor[J].Materials Science and Engineering B, 2004,106:251.
    [28]Zhang Xin-min, Li fang-Liang, Zhang Jian-hui, et a1.Luminescence properties of (Ca1-xSrx )Se:Eu2+ phosphors for white LEDs application [J]. Material Letter, 2005,59:749. [29]Wu Hao, Zhang Xinmin, Guo Chongfeng, et a1. Three-band white light from InGaN—based blue LED chip precoated with green/red phosphors[J].IEEE Photonies Technology Letters, 2005,17(6):1160.
    [30]Wang Zheng-liang, Liang Hong-bin, Gong Meng-lian,et a1. A potential red-emitting phosphor for LED solid-state lighring[J].Eleetroehem.and Solid State Letters.2005, 8(4):H33.
    [31] Hong-mei Yanga, Jian-xin Shia,_, Meng-lian Gonga, K.W. Cheah. Synthesis and photoluminescence of Eu3+- or Tb3+-doped Mg2SiO_4 nanoparticles prepared by a combined novel approach[J]. Journal of Luminescence 118 (2006) 257–264.
    [32] E.-M. Pavelescua, J. Slotteb, V.D.S. Dhakac, K. Saarinena. On the optical crystal properties of quantum-well GaIn(N)As/GaAs semiconductors grown by molecular-beam epitaxy[J]. Journal of Crystal Growth 297 (2006) 33–37
    [33] Xiao-xiao Wang, Yu-lun Xian, Gang Wang, Jian-xin Shi, Qiang Su, Meng-lian Gong . Luminescence investigation of Eu3+–Sm3+ co-dopedGd2-x-yEuxSmy(MoO_4)3 phosphors as red phosphors for UV InGaN-based light-emitting diode [J] . Optical Materials 30 (2007) 521–526.
    [34] Fang Ying(方英),Zhuang weidong(庄卫东), Hu Yunsheng(胡运生), Ye Xinyu(叶信宇), Huang Xiaowei(黄小卫). Luminescent Properties of Gmen Phosphor Ca8Mg(SiO_4 )4Cl2 :Eu2+,Dy3+ for LED Applications[J].Journal of Rare Earths 25 (2007) 573–577.
    [35] Zhi-Jun Zhang, Hao-Hong Chen, Xin-Xin Yang, Jing-Tai Zhao. Preparation and luminescent properties of Eu3+ and Tb3+ ions inthe host of CaMoO_4[J]. Materials Science and Engineering B 145 (2007) 34–40.
    [36] S. Yudate, T. Fujii, S. Shirakata. Structural properties of Eu-doped GaN films prepared by RF magnetron sputtering[J]. Thin Solid Films 517 (2008) 1453–1456.
    [37] Fa-bin Cao, Yan-wen Tian, Yong-jie Chen, Lin-jiu Xiao, Qian Wu. Luminescence investigation of red phosphors Ca0.54Sr0.34-1.5xEu0.08Smx(MoO_4)y (WO_4)1-y for UV-white LED device[J]. Journal of Luminescence (2008).11.024.
    [38] Gwan-Hyoung Lee, Tae-Hyung Kim, Chulsoo Yoon, Shinhoo Kang, Effect of local environment and Sm3+-codoping on the luminescence properties in the Eu3+-doped potassium tungstate phosphor forwhite LEDS[J]. Journal of Luminescence 128 (2008) 1922– 1926.
    [39] Li-Ya Zhou, Jian-She Wei, Ling-Hong Yi, Fu-Zhong Gong, Jun-Li Huang, Wei Wang. A promising red phosphor MgMoO_4:Eu~(3+) for white light emitting diodes[J]. Materials Research Bulletin.已录用.
    [40]贺干武,刘应亮,张俊文.沉淀法合成纳米晶长余辉材料Y2O2S:Eu~(3+),Ti[J].无机化学学报,2007, 23(2):315-318.
    [41]韩美娟.模板导向低温固相合成稀土发光材料及其机理研究[D]:(硕士学位论文).广州:华南师范大学,2007.
    [42]G.Blasse, A.Brill, W.C.Nieuwpoort. On the Eu~(3+) fluorescence in mixed metal oxides Part I—The crystal structure sensitivity of thr intensity ratio of electric and magnetic dipole emission[J]. Physics and Chemistry of Solids,1966,27(10):1587-1592.
    [43]舒绪刚,张延霖,黄慧民等.溶胶—凝胶法制备纳米氧化物.韶关学院学报(自然科学版) [J].2001, 22(6):5-9.
    [44]杨水金,孙聚堂,秦子斌,冯伊利.掺杂Tb~(3+)的混合碱土金属钨酸盐的合成和性质[J].无机化学学报,1994,10(4):358-362.
    [45] Liang J K. Phase Diagrams and Phase Structures[M]. Beijing: Science Press, 1993,406.
    [46]刘正伟,刘应亮,袁定胜,张静娴,容建华,黄浪欢.CaWO_4中Eu~(3+)的长余辉发光[J].无机化学学报,2004,20(12):1433-1435.
    [47]Shionoya Shigeo, Yen William M, et al. Phosphor Hand-book[M]. New York: CRC Press, 1998,189.
    [48] R. Grasser, E. Pitt, A. Scharmann, G. Zimmerer. Optical properties of CaWO_4 and CaMoO_4 crystals in the 4 to 25 eV region[J].Phys. Status Solid. B 69 (1975) 359–368.
    [49] S.B. Mikhrin, A.N. Mishin, A.S. Potapov, P.A. Rodnyi, A.S. Voloshinovskii. X-ray excited luminescence of some molybdates[J]. Nucl. Inst. Meth. A 486 (2002) 295–297.
    [50] D.A. Spassky, S.N. Ivanov, V.N. Kolobanov, V.V. Mikhailin, V.N. Zemskov, B.I. Zadneprovski, L.I. Potkin, Optical and luminescent properties of the lead and barium molybdates[J].Rad. Meas. 38 (2004) 607–610.
    [51] B.K. Chandrasekhar, W.B. White, Luminescence of single crystal CaMoO_4[J]. Mater. Res. Bull. 25 (1990)1513–1518.
    [52]Sun Jia-yue(孙家跃), Du Hai-yan(杜海燕), Hu Wen-xiang(胡文祥) .Solid-state Luminescence materials(固体发光材料) [M]. Beijing: Chemistry Industry Press.2003.
    [53]Wang Feng, Fan Xiao-ping, Wang Min-quan, et al. Luminescence behavior of the dibenzoyl methane europium(Ⅲ) complexes in sol-gel derived host materials[J]. Journal of Luminescence, 2005,114:281-287.
    [54]Zheng Zi-qiao(郑子樵), Li Hong-ying(李红英). Rare-earth Function materials(稀土功能材料) [M]. Beijing: Chemistry Industry Press.2003.
    [55]Kottaisamy M, Jagannathan R, et al.On the Formation of Flux Y2O2S:Eu~(3+) Red Phosphor[J]. Electrochem. Soc, 1995,142(9): 3205-3209.
    [56] Hu Yunsheng, zhuang Weidong, Ye Hongqi. Luminescent Properties of Samarium Ion in Calcium Molybdate[J]. J. Rare Earths, 2004,22(6):821-824.
    [57]赵元恺.光谱学与光谱分析[M].北京:北京大学出版社,1981.
    [58] Cláudia A. Kodaira, Hermi F. Brito and Maria Cláudia F.C. Felinto. Luminescence investigation of Eu~(3+) ion in the RE2(WO_4)3 matrix(RE=La and Gd) produced using the Pechini method[J]. Solid State Chemistry 171 (2003) 401–407.
    [59]胡国兵,肖定全,田云飞,刘洋,郭吾卿,余萍.钼酸钙多晶薄膜的制备及特征表征[J].功能材料,2006,37:4-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700