用户名: 密码: 验证码:
白光LED用BaMoO_4:Pr~(3+)体系红色荧光材料的制备及其光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过一种简单方便的制备方法合成了高效的BaMoO4:Pr3+系列红色荧光粉,研究了掺杂碱金属、卤素等阴阳离子对其光学性能的影响。并在没添加任何表面活性剂的条件下,通过溶液化学法合成了BaMoO4:Pr3+/Na纳米晶构成的空心微球。同时,我们利用差热-热重(TG-DTA)、X-射线衍射(XRD)、X光电子能谱(XPS)、比表面吸附(BET)、扫描电子显微镜(SEM)、场发射扫描电子显微镜(FESEM)透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)及荧光光谱(PL)等测试手段对制备材料的结构、形貌及光学性能等方面进行了详细的表征,并得到如下结果:
     通过简便的固相反应法,在900oC烧结条件下,成功地合成了Pr3+离子掺杂的BaMoO4红色荧光粉。所制备的发光材料粒径在3μm以下,对430~500 nm的光谱有很好的吸收,并能很强的发出主峰位于643 nm的红光,其发光强度约是商业红粉Y2O2S:Eu发光强度的5.6倍。并且该材料的物理化学性能稳定,发光效率较高。同时,该材料制作方法简便,原材料成本较低,完全适于工业化生产。该材料应用于白光LEDs将显著改善其显色性。
     在制备BaMoO4:Pr3+的起始原料BaCO3, (NH4)6Mo7O24·4H2O和Pr6O11中加入碱金属卤化物,从而在材料中引入了碱金属离子和卤素离子,成功地制备了碱金属和卤素共掺杂的荧光材料。碱金属、卤素的掺杂可以起到平衡材料中电荷的作用。引入碱金属和卤素后,荧光材料的发光性能得到了显著提高,是掺杂前荧光材料发光强度的2.67倍。同时考察了样品的温度淬灭特性。实验表明:当测试温度达到150 oC时Ba0.96MoO4:0.02Pr3+,0.02KCl样品的发光强度仍保持在74%以上,满足市场上白光LEDs对荧光材料温度淬灭的应用指标。
     另外,我们采用一种简便的溶液化学方法,在不添加任何表面活性剂的情况下,成功地合成了BaMoO4:Pr3+/Na+纳米晶空心微球。所制备的空心微球是由30-60 nm的BaMoO4:Pr3+/Na+纳米晶构成的,并且粒径均匀、在3-5μm之间。构成空心微球的纳米晶具有极高的结晶度,产生了非常优良的的红光特性。在样品中存在的少量Na+离子能够起到电荷补偿的作用,从而改善材料的光学性能。论文还对纳米晶空心微球BaMoO4:Pr3+/Na+的形成机理进行了深入的探讨,我们用奥斯特瓦熟化定律合理的解释了它的形成过程,并提出柠檬酸在纳米晶空心微球的形成过程中起到了关键的作用。同时,这种不添加表面活性剂的自组装方法也为设计构造其它新型的功能纳米装置提供了一种新的思路。
A highly efficient red phosphor, BaMoO4:Pr3+, has been fabricated by a convenient method and we researched the influence of optical properties by doping alkali metals and halide in the phosphor system BaMoO4:Pr3+. We also prepared BaMoO4:Pr3+/Na+ hollow microspheres composed of nanocrystals by a solution chemistry method without adding any templates. In addition,the structures, morphologies and optical properties of as-prepared products were thoroughly characterized by using TG-DTA, XRD, XPS, BET, SEM, FESEM, TEM, HRTEM), and PL, respectively. The main results are summarized as follows:
     BaMoO4:Pr3+ phosphors were synthesized successfully by a convenient solid method via annealing at 900°C. The sizes of as-prepared particles are below 3μm and a strong red emission band centered at 643nm corresponding to the transition 3P0→3F2 of Pr3+ is observed under 430-500 nm excitation. The emission intensity of red phosphor BaMoO4: Pr3+ is 5.6 times compared with that of the commercial red phosphor Y2O2S:Eu3+. And the materials have the stable physical and chemical properties and high luminous efficiency. Furthermore, the material method is simple and the raw materials are low cost, fully suitable for industrial production. The color rendering will be improved significantly when the materials applied in white LEDs. The introduce of alkali metal and halide in the phosphor system BaMoO4:Pr3+ and the alkali metal and halide co-doped phosphors were prepared by adding appropriate amounts of alkali halide into the mixtures of BaCO3, (NH4)6Mo7O24·4H2O and Pr6O11.
     The doping alkali metal and halide can play an important role in balancing the charge in the materials. The red emission intensity was enhanced significantly by doping alkali metal and halide in the BaMoO4:Pr3+ phosphor system and the emission intensity is 2.67 times compared with that of undoped alkali metal and halide samples. In addition, we checked the temperature dependence of the emission intensity of samples. Experimental results showed that the red emission intensity of Ba0.96MoO4:0.02Pr3+,0.02KCl remained about 74% at 150°C which met the temperature quenching indicators of phosphors for white LED application in the market.
     In addition, we prepared BaMoO4:Pr3+/Na+ hollow microspheres composed of nanocrystals by a solution chemistry method without adding any templates. The average size of hollow mirospheres was 3-5μm and the hollow mirospheres composed by nanocrystals well-dispersed with a 30-60 nm size. The nanocrystals with extraordinarily high crystallinity produce excellent luminescence emission. The small amount of Na+ ions in BaMoO4:Pr3+ hollow mirospheres can play a role in charge balance and improve the optical properties of the materials. The paper discussed the growth mechanism of the hollow structured BaMoO4:Pr3+/Na+ microspheres. We explained the growth mechanism by Ostwald ripening and put forward that citric acid played a key role in the formation process of hollow microspheres composed of nanocrystals.Furthermore, the self-assembly concept may also be applicable to other compounds for design and fabrication of novel functional nanoarchitectures.
引文
[1] Haiqiang Jia, Liwei Guo, Wenxin Wang, Hong Chen, Recent progress in GaN-based light-emitting diodes, Adv. Mater., 2009, 21, 1–6.
    [2] Kiran T. Kamtekar, Andrew P. Monkman, Martin R. Bryce, Recent advances in white organic light-emitting materials and devices (WOLEDs), Adv. Mater., 2010, 22, 572–582.
    [3] Chien-Chun Wang, Han Ku, Chien-Chih Liu, Kwok-Keung Chong, Chen-I Hung, YEONG-Her Wang, Mau-Phon Houng, Enhancement of the light output performance for GaN-based light-emitting diodes by bottom pillar structure, Applied Physics Letters, 2007, 91, 121109-121112.
    [4] F.K. Yam, Z. Hassan, Innovative advances in LED technology, Microelectronics Journal, 2005, 36, 129–137
    [5] G. Mura, G. Cassanelli, F. Fantini, M. Vanzi, Sulfur-contamination of high power white LED, Microelectronics Reliability, 2008, 48, 1208–1211.
    [6] Jae-Seong Jeong, Jin-Kyu Jung, Sang-Deuk Park, Reliability improvement of InGaN LED backlight module by accelerated life test (ALT) and screen policy of potential leakage LED, Microelectronics Reliability, 2008, 48, 1216–1220.
    [7] Xiao-Mei Zhang, Ming-Yen Lu, Yue Zhang, Lih-J. Chen, Zhong Lin Wang, Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film, Adv. Mater., 2009, 21, 1–4.
    [8]吴洪鹏,颜鲁婷,王鹏,司文捷,白光LED用钼酸盐体系红色荧光粉的研究进展,稀有金属材料与工程, 2009, 38, 2065-2068.
    [9] Jia D, Hunter D.N, Long persistent light emitting diode, Journal of applied physics, 2006, 100, 113125(1)-113125(5).
    [10]刘洁,孙家跃,石春山,与LED匹配的白光发射荧光体的研究进展,化学通报, 2005, 6, 417-424.
    [11] Zhiliang Xiu, Mengkai Lü, Suwen Liu, Haiping Zhang, Guangjun Zhou, Luminescence properties of Sr5(PO4)3Cl:Ni2+ nanocrystals, Materials Letters, 2006, 60, 3514–3516.
    [12] Wei-Ning Wang, Ferry Iskandar, Kikuo Okuyama, Yu Shinomiya, Rapid synthesis of non-aggregated fine chloroapatite blue phosphor powders with high quantum efficiency,Adv. Mater., 2008, 9999, 1–5.
    [13] Zhendong Hao, Jiahua Zhang, Xia Zhang, Xiaoyuan Sun, Yongshi Luo, Shaozhe Lu, white light emitting diodes by usingα-Ca2P2O7:Eu, Mn2+ phosphor, Applied Physics Letters, 2007, 90, 261113-261116.
    [14] Qinghua Zeng, Zhiwu Pei, Shubing Wang, Qiang Su, Shaozhe Lu, Luminescent properties of divalent samarium-doped strontium hexaborate, Chem. Mater., 1999, 11 (3), 605-611.
    [15] Zuoling Fu, Shihong Zhou, Yingning Yu, Siyuan Zhang, Photoluminescence properties and analysis of spectral structure of Eu3+-doped SrY2O4, J. Phys. Chem. B, 2005, 109, 23320-23325.
    [16] Woan-Jen Yang, Liyang Luo, Teng-Ming Chen, and Niann-Shia Wang, Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED, Chem. Mater., 2005, 17, 3883–3888.
    [17] M. Pardha Saradhi, U. V. Varadaraju, Photoluminescence studies on Eu2+-activated Li2SrSiO4-a potential orange-yellow phosphor for solid-state lighting, Chem. Mater., 2006, 18, 5267-5272.
    [18] Jie Liu, Jiayue Sun, Chunshan Shi, A new luminescent material: Li2CaSiO4:Eu2+, Materials Letters, 2006, 60, 2830–2833.
    [19] Yoshiyuki Kawahara, Valery Petrykin, Takahashi Ichihara, Naoto Kijima, Masato Kakihana, Synthesis of high-brightness sub-micrometer Y2O2S red phosphor powders by complex homogeneous precipitation method, Chem. Mater., 2006, 18, 6303-6307.
    [20] Dan Zhao, Seok-Jun Seo, Byeong-Soo Bae. Full-color mesophase silicate thin film phosphors incorporated with rare earth ions and photosensitizers, Adv. Mater., 2007, 19, 3473–3479.
    [21] Xuefang Hu, Shirun Yan, Lin Ma, Guojiang Wan, Jianguo Hu, Preparation of LaPO4:Ce,Tb phosphor with different morphologies and their fluorescence properties, Powder Technology, 2009, 192, 27-32.
    [22] May Nyman, Lauren E. Shea-Rohwer, James E. Martin, and Paula Provencio, Nano-YAG:Ce mechanisms of growth and epoxy-encapsulation, Chem. Mater., 2009, 21, 1536–1542.
    [23] Volker Bachmann, Cees Ronda, Andries Meijerink, Temperature quenching of yellow Ce3+luminescence in YAG:Ce, Chem. Mater., 2009, 21, 2077–2084.
    [24]李绍霞,李大吉,王亚平,王卓,白光LED用光转换材料的研究,材料导报, 2008, 22, 18-25.
    [25].T. Tamura, T. Setomoto, and T. Taguchi, Illumination characteristics of lighting array using 10 candela-class white LEDs under AC 100 V operation, Journal of Luminescence, 2000, 87-9, 1180-1182.
    [26].T. Taguchi, Japanese semiconductor lighting project based on ultraviolet LED and phosphor systems, Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4445, 5-12.
    [27]. T.U. N. Shibata, H. Yamaguchi, T. Yasukawa, Fabrication of LED based on III-V nitride and its applications, physica status solidi (a), 2003, 200(1), 58-61.
    [28].Y.Uchida, Theoretical and experimental illumination luminous characteristics of white LEDs composed of multi phosphors and near UV LED for lighting, Proceedings of SPIE - The International Society for Optical Engineering, 2003, 4996, 166-173.
    [29].J. Sheu, C. Kuo, White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors, IEEE Photonics Technology Letters, 2003, 15(1), 18-20.
    [30].A. Srivastava, A. Duggal, W. Beers, A single phosphor for creating white light with high luminosity and high CRI in a UV LED device. 2001: EP 1138747 A2. p. 16.
    [31] Chongfeng Guo, Dexiu Huang, Qiang Su, Methods to improve the fluorescence intensity of CaS:Eu2+ red-emitting phosphor for white LED, Materials Science and Engineering B, 2006, 130, 189–193.
    [32] I. W. Park,J. H. Kim, J. S. Yoo, H. H. Shin,C. K. Kim, and C. K. Choi, Longevity improvement of CaS:Eu phosphor using polymer binder coating for white LED application, J. Elechem. Soc., 2008, 155, G132– G135.
    [33] Thomas Baby, V. P. N. Nampoori, Flourescence emission of SrS: Eu2+ phosphor-energy level splitting of Eu2+, Solid State Communications, 1992, 81, 367-369.
    [34] Yunsheng Hu, Weidong Zhuang, Hongqi Ye, Shusheng Zhang, Ying Fang, Xiaowei Huang, Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED, Journal of Luminescence, 2005, 111, 139-145.
    [35] Rong-Jun Xie, Naoto Hirosaki, Takayuki Suehiro, Fang-Fang Xu, and Mamoru Mitomo, Asimple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes, Chem. Mater., 2006, 18, 5578–5583.
    [36] Naoki Kimura, Ken Sakuma, Syunichiro Hirafune, Kenichiro Asano, Extrahigh color rendering white light-emitting diode lamps using oxybitride and nitride phosphors excited by blue light-emitting diode, Applied Physics Letters, 2007, 90, 051109–051112.
    [37] Jinwang Li, Tomoaki Watanabe, Hiroshi Wada, Tohru Setoyama, Masahiro Yoshimura, Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates, Chem. Mater., 2007, 19, 3592-3594.
    [38] C. J. Duan, X. J. Wang, W. M. Otten, A. C. A. Delsing, J. T. Zhao, H. T. Hintzen, Preparation, electronic structure, and photoluminescence properties of Eu2+- and Ce3+/Li+-activated alkaline earth silicon nitride MSiN2 (M= Sr, Ba), Chem. Mater., 2008, 20, 1597–1605.
    [39] Volker Bachmann, Cees Ronda, Oliver Oeckler, Wolfgang Schnick, Andries Meijerink, Color point tuning for (Sr,Ca,Ba)Si2O2N2:Eu2+ for white light LEDs, Chem. Mater., 2009, 21 (2), 316–325.
    [40] Cora Hecht, Florian Stadler, Peter J. Schmidt, J? rn Schmedt auf der Günne, Verena Baumann, Wolfgang Schnick, SrAlSi4N7:Eu2+-A nitridoalumosilicate phosphor for warm white light (pc)LEDs with edge-sharing tetrahedra, Chem. Mater., 2009, 21, 1595–1601.
    [41] S. Neeraj, N. Kijima, A.K. Cheetham, Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x(MoO4)x:Eu3+(M=Gd, Y, Bi), Chemical Physics Letters, 2004, 387, 2–6.
    [42] Xiaoxiao Wang, Yulun Xian, Gang Wang, Jianxin Shi, Qiang Su, Menglian Gong, Luminescence investigation of Eu3+–Sm3+ co-doped Gd2-x-yEuxSmy(MoO4)3 phosphors as red phosphorsfor UV InGaN-based light-emitting diode, Optical Materials, 2007, 30, 521–526.
    [43] Xiaoxia Zhao, Xiaojun Wang, Baojiu Chen, Qingyu Meng, Bin Yan, Weihua Di, Luminescent properties of Eu3+ dopedα-Gd2(MoO4)3 phosphor for white light emitting diodes, Optical Materials, 2007, 29, 1680–1684.
    [44] Xiaoxia Zhao, Xiaojun Wang, Baojiu Chen, Qingyu Meng, Weihua Di, Guozhong Ren, Yanmin Yang, Novel Eu3+-doped red-emitting phosphor Gd2Mo3O9 forwhite-light-emitting-diodes (WLEDs) application, Journal of Alloys and Compounds, 2007, 433, 352–355.
    [45] Yuhua Wang, Yunkui Sun, Jiachi Zhang, Zhipeng Ci, Zhiya Zhang, Lei Wang, New red Y0.85Bi0.1Eu0.05V1-yMyO4 (M =Nb, P) phosphors for light-emitting diodes, Physica B, 2008, 403, 2071–2075.
    [46] Liya Zhou, Jianshe Wei, Fuzhong Gong, Junli Huang, Linghong Yi, A potential red phosphor ZnMoO4:Eu3+ for light-emitting diode application, Journal of Solid State Chemistry, 2008, 181, 1337– 1341.
    [47]吴洪鹏,颜鲁婷,王鹏,司文捷,白光LED用钼酸盐体系红色荧光粉的研究进展,稀有金属材料与工程, 2009, 38, 2065-2068.
    [48] Jie Liu; Hongzhou Lian; Jiayue Sun; Chunshan Shi, Characterization and properties of green emitting Ca3SiO4Cl2:Eu2+ powder phosphor for white light-emitting diodes, Chemistry Letters, 2005, 34, 1340-1341
    [49] C. Chartier, C. Barthou, P. Benalloul, J.M. Frigerio, Photoluminescence of Eu2+ in SrGa2S4, Journal of Luminescence, 2005, 111, 147–158.
    [50] Yunsheng Hu, Weidong Zhuang, Hongqi Ye, Donghui Wang, Shusheng Zhanga, Xiaowei Huang, A novel red phosphor for white light emitting diodes, Journal of Alloys and Compounds, 2005, 390, 226–229.
    [51] Hong He, Renli Fu, Xiufeng Song, Deliu Wang, Jiankang Chen, White light-emitting Mg0.1Sr1.9SiO4:Eu2+ phosphors, Journal of Luminescence, 2008,128, 489-493.
    [52] H. Masui, S. Nakamura, White Light-emitting Diodes, Encyclopedia of Materials: Science and Technology, 2008, 1-6.
    [53] H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, S. S. Kim, Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs, Journal of Luminescence, 2007, 126, 371-374.
    [54] Ho Seong Jang, Heesun Yang, Sung Wook Kim, Ji Yeon Han, Sang-Geun Lee, and Duk Young Jeon, White light-emitting dodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5:Ce3+, Li+ Phosphors, Adv. Mater., 2008, 9999, 1–7.
    [55] Ana Paula Azevedo Marques, Dulce M.A. de Melo, Elson Longo, Carlos A. Paskocimas,Paulo S. Pizani, Edson R. Leite, Photoluminescence properties of BaMoO4 amorphous thin films, Journal of Solid State Chemistry, 2005, 178, 2346-2353
    [56] DE AZEVEDO MARQUES Ana Paula, DE MELO Dulce M. A., PASKOCIMAS Carlos A., PIZANI Paulo S., JOYA Miryam R., LEITE Edson R., LONGO Elson, Photoluminescent BaMoO4 nanopowders prepared by complex polymerization method (CPM), Journal of solid state chemistry, 2006, 179, 671-678.
    [57] Ieda L. V. Rosa, Ana Paula A. Marques, Marcos T. S. Tanaka, Dulce M. A. Melo, Edson R. Leite, Elson Longo, JoséArana Varela, Synthesis, characterization and photophysical properties of Eu3+ doped in BaMoO4, J Fluoresc., 2008, 18, 239–245.
    [58] Mitsuru Itoh, Photoluminescence properties of pr-doped (Ca,Sr,Ba)TiO3, Chem. Mater., 2005, 17, 3200–3204.
    [59] Weijie Guo, Yanfu Lin, Xinghong Gong, Yujin Chen, Zundu Luo, Yidong Huang, Spectroscopic properties of Pr3+:KY(MoO4)2 crystal as a visible laser gain medium, Journal of Physics and Chemistry of Solids, 2008, 69, 8–15.
    [60] Santa Chawla, Nitin Kumar, Harish Chander, Broad yellow orange emission from SrAl2O4: Pr3+ phosphor with blue excitation for application to white LEDs, Journal of Luminescence, 2008, 129, 114-118.
    [61] Yanlin Huang, Taiju Tsuboi, Hyo Jin Seo, Spectroscopic properties of Pr3+ ions in a PbWO4 single crystal, J. Phys. Chem. A, 2008, 112, 5839–5845.
    [62] Tang Wanjun, Chen Donghua, Photoluminescence properties Pr3+ and Bi3+-codoped CaTiO3 phosphor prepared by a peroxide-based route, Materials Research Bulletin, 2009, 44, 836–839.
    [63] Tae Hwan Cho, Ho Jung Changb, Preparation and characterizations of Zn2SiO4:Mn green phosphors, Ceramics International, 2003, 29,611-618.
    [64] Jie Liu, Hongzhou Lian, Chunshan Shi, Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4:Eu3+, Optical Materials, 2007, 29, 1591–1594.
    [65] Suxia Yan, Jiahua Zhang, Xia Zhang, Shaozhe Lu, Xinguang Ren, Zhaogang Nie, Xiaojun Wang, Enhanced red emission in CaMoO4:Bi3+,Eu3+, J. Phys. Chem. C, 2007, 111, 13256-13260.
    [66] Xiaonan Li, Brian Keyes, Sally Asher, S. B. Zhang, Su-Huai Wei, Timothy J. Coutts, Hydrogen passivation effect in nitrogen-doped ZnO thin films, Appl. Phys. Lett., 2005, 86, 122107-122110.
    [67]F.X. Xiu, Z. Yang, L.J. Mandalapu, J.L. Liu, Donor and acceptor competitions in phosphorus-doped ZnO, Appl. Phys. Lett., 2006, 88, 152116.
    [68] Maitri Mapa and Chinnakonda S. Gopinath, Combustion synthesis of triangular and multifunctional ZnO1-xNx (x≤0.15) materials, Chem. Mater., 2009, 21, 351–359.
    [69] G. Shen, J.H. Cho, S.I. Jung, C.J. Lee, Synthesis and characterization of S-doped ZnO nanowires produced by a simple solution-conversion process, Chem. Phys. Lett., 2005, 401, 529-532.
    [70] John V. Foreman, Jianye Li, Hongying Peng, Soojeong Choi, Henry O. Everitt, Jie Liu, Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders, Nano Lett., 2006, 6 (6), 1126-1130.
    [71] Zhenwei Tao, Xibin Yu, Xiaoyan Fei, Jie Liu, Yongheng Zhao, HongeWu, Guangqian Yang, Shiping Yang, Liangzhun Yang,Synthesis and optical properties of halogen-doped ZnO phosphor, Materials Letters, 2008, 31 1–5.
    [72]张志焜,崔作林,纳米技术与纳米材料,北京,国防工业出版社, 2000.
    [73]刘吉平,郝向阳,纳米科学与技术,北京,科技出版社, 2002.
    [74]顾宁,付德刚,张海黔等,纳米科技与应用,北京,人民邮电出版社, 2002.
    [75]曹茂盛,关长斌,徐甲强,纳米材料导论,哈尔滨,哈尔滨工业大学出版社, 2001.
    [76] Yiguo Su, Liping Li, and Guangshe Li, Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+, Chem. Mater., 2008, 20(19), 6060-6067.
    [77] Tsedev Ninjbadgar, Georg Garnweitner, Alexander B?rger, Leonid M.Goldenberg, Oksana V. Sakhno, Joachim Stumpe, Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites, Adv. Funct. Mater., 2009, 19, 1819–1825.
    [78] Zhanao Tan, Fan Zhang, Ting Zhu, and Jian XuAndrew Y. Wang, John, Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots, Nano Lett., 2007, 7 (12), 3803-3807.
    [79] Wan Ki Bae, Jeonghun Kwak, Ji Won Park, Kookheon Char, Changhee Lee, Seonghoon Lee, Highly efficient green-light-emitting diodes based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient, Adv. Mater., 2009, 21, 1–5.
    [80] Jan Ziegler, Shu Xu, Erol Kucur, Frank Meister, Miroslaw Batentschuk, Frank Gindele, Thomas Nann, Silica-coated InP/ZnS nanocrystals as converter material in white LEDs, Adv. Mater., 2008, 20, 4068–4073.
    [81] Andrea M. Munro, David S. Ginger, Photoluminescence quenching of single CdSe nanocrystals by ligand adsorption, Nano Lett., 2008, 8 (8), 2585–2590.
    [82] Wanli Ma, Joseph M. Luther, Haimei Zheng, Yue Wu and A. Paul Alivisatos, Photovoltaic devices employing ternary PbSxSe1-x nanocrystals, Nano Lett., 2009, 9 (4), 1699–1703
    [83] Chunguang Li, Ying Zhao, Feifei Li, Zhan Shi, Shouhua Feng, Near-infrared absorption of monodisperse water-soluble PbS colloidal nanocrystal clusters, Chem. Mater., 2010, 22 (5), 1901–1907.
    [84] Jennifer N. Cha, Michael H. Bartl, Michael S. Wong, Alois Popitsch, Timothy J. Deming, Galen D. Stucky, Microcavity lasing from block peptide hierarchically assembled quantum dot spherical resonators, Nano Letters, 2003, 3 (7), 907-911.
    [85] Qing Peng, Yajie Dong and Yadong Li, ZnSe semiconductor hollow microspheres, Angew. Chem. Int. Ed., 2003, 42, 3027– 3030.
    [86] Andrew M. Collins, Christine Spickermann, Stephen Mann, Synthesis of titania hollow microspheres using non-aqueousemulsions, J. Mater. Chem., 2003, 13, 1112–1114.
    [87] Bin Liu and Hua Chun Zeng, Mesoscale organization of CuO nanoribbons: formation of“dandelions”, J. Am. Chem. Soc., 2004, 126(26), 8124-8125.
    [88] Qunhui Sun,Yulin Deng, In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization, J. Am. Chem. Soc., 2005, 127 (23), 8274-8275.
    [89] Alejandro Wolosiuk, Onur Armagan, and Paul V. Braun, Double direct templating of periodically nanostructured ZnS hollow microspheres, J. Am. Chem. Soc., 2005, 127 (47), 16356-16357.
    [90] An-Min Cao, Jin-Song Hu, Han-Pu Liang, Li-Jun Wan, Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries, Angew. Chem. Int. Ed., 2005, 44, 4391–4395.
    [91] Wen-Shou Wang, Liang Zhen, Cheng-Yan Xu, Bao-You Zhang, Wen-Zhu Shao, Room temperature synthesis of hollow CdMoO4 microspheres by a surfactant-free aqueous solution route, J. Phys. Chem. B, 2006, 110, 23154-23158.
    [92] Jia Hong Pan, Xiwang Zhang, Alan Jianhong Du, Darren D. Sun, and James O. Leckie, Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications, J. Am. Chem. Soc., 2008, 130 (34), 11256-11257.
    [93] Yiguo Su, Liping Li and Guangshe Li, Self-assembly and multicolor emission of core/shell structured CaWO4:Na+/Ln3+ spheres, Chem. Commun., 2008, 4004–4006.
    [94] Y. F. Zhu, D. H. Fan, W. Z. Shen, Chemical conversion synthesis and optical properties of metal sulfide hollow microspheres, Langmuir, 2008, 24, 11131-11136.
    [95] Zhanjun Gu, M. Parans Paranthaman, Jun Xu, Zheng Wei Pan, Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method, ACS Nano, 2009, 3 (2), 273-278.
    [96] Jin Ho Bang, Kenneth S. Suslick, Dual Templating Synthesis of Mesoporous Titanium Nitride Microspheres, Adv. Mater., 2009, 21, 1–5.
    [97] Hua Gui Yang, Hua Chun Zeng, Preparation of hollow anatase TiO2 nanospheres via ostwald pipening, J. Phys. Chem. B, 2004, 108, 3492-3495.
    [98] Wen-Shou Wang, Liang Zhen, Cheng-Yan Xu, Li Yang, Wen-Zhu Shao, Controlled synthesis of calcium tungstate hollow microspheres via ostwald ripening and their photoluminescence property, J. Phys. Chem. C, 2008, 112 (49), 19390–19398.
    [99] Xibin Yu, Xiaolin Xu, Chunlei Zhou, Jinfeng Tang, Xiudong Peng, and Shiping Yang, Synthesis and luminescent properties of SrZnO2:Eu3+,M+(M=Li, Na, K) phosphor, Materials Research Bulletin, 2006, 41, 1578–1583.
    [100] Xuyong Yang, Jie Liu, Hong Yang, Xibin Yu, Yuzhu Guo, Yongqin Zhou, and Jieyu Liu, Synthesis and characterization of new red phosphor for white LED Application, J. Mater. Chem., 2009, 19, 3771-3774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700