用户名: 密码: 验证码:
M元扩频关键技术及芯片化实现方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信集成电路的快速发展和SOC技术的不断推广,通信设备制造趋向于芯片化设计,从以前的分立式元件向SOC发展。扩频通信在通信领域占有重要的地位,芯片化设计中较多采用直接序列扩频技术,而作为扩频通信重要的技术分支M元扩频它的芯片化却少有实现。论文在深入研究M元扩频基本理论的基础上,对M元通信芯片化设计展开相关工作,提出适合芯片化的M元扩频改进算法,并利用SOC技术进行芯片化设计工作。论文的主要贡献如下:
     1针对采用同步码实现同步的M元扩频方案,提出两种改进方案。它们通过将扩频码的码相位和码极性相结合而实现。方案一用BPSK调制直扩替代同相支路上的同步码,在正交支路上采用基于CPSK(code phase shift keying,码相位循环移位)调制的M元扩频。这里同相支路选用的扩频码是用于正交信道扩频码源码的倒序序列。相对于采用同步码实现同步的M元扩频方案,该方案可以增加1比特信息的传输量;方案二进一步提高扩频码的资源利用率。它将所有的扩频码改进成均由一条扩频码通过循环移位提供,但对同相支路与正交支路采用的扩频码的码相位进行码相位约束以确保可实现自我同步。采用以上方案还具有易于系统集成的特点。
     2为了在保持较高的频带利用率的条件下提高M元扩频的码资源利用率,给出在同相支路上采用传统的M元双正交扩频,在正交支路上采用基于CPSK调制技术的M元扩频的方案。该方案所需扩频码码资源是传统M元扩频的条数只需约四分之一。为了进一步提高扩频码利用率,在此基础上提出采用同步帧结构的正交两路CPSK调制M元扩频的改进方案。它的同步码是通过在两支路同时采用特定相位的扩频码进行传输而实现。它的优点是同步码易于识别。以上两方案降低系统设计复杂度,易于系统芯片化设计。
     3为了提高M元扩频系统在衰落信道下的性能,给出在空时编码后采用M元扩频的方案。在此基础上提出将空时编码用于M元扩频码片的方案。后者在一个码元时间内就能完成信号处理,具有处理时延小的特点。同时该方案在时间选择性快衰落情况下,它可以获得更多的时间分集增益,从而提升系统的性能。
     4针对时间选择性快衰落条件下难以有效的估计信道信息,分析在扩频码码片上采用差分空时编码的方案。该方案具有较强的抗快衰落性能并且当信道相干时间小于一个符号周期时,该方案能获得更多的时间分集增益,系统性能得到改善。在此基础上分析在M元扩频码片上采用空时编码方案的性能。以上方案可适应大的晶振频偏影响,易于芯片化设计,适于低成本,小体积的便携式产品设计。
     5对M元扩频系统核心模块进行功能划分,给出芯片化实现算法,利用EDA工具完成IP软核设计和验证,并完成数字化版图设计。
With the rapid development of communications IC and continious promotion of SOC technology, communications equipment manufacturers tend to realize by IC, from the previous discrete components to the SOC development. Spread Spectrum Communication plays an important role in the communications field. IC design of Spread Spectrum Communication has mainly applied to direct sequence spread spectrum. The M-ary spread spectrum is one most important component in spread spectrum communication system while its IC chip achieves little. The basic theory of M-ary spread spectrum is studied deeply in the paper, which is useful in.the realization of M-ary spread spectrum IC design. Some improved algolithms are given, which suit IC design. And SOC technology is adopted in realization of M-ary spread spectrum chip. The main contribution of paper is as follows:
     Firstly, two improved scheme combining code polarity of spreading code with code phase of spreading code are proposed for M-ary spread spectrum system which needs synchronization code. Scheme 1 adopts BPSK modulation based on polarity modulation of PN in in-phase branch, and CPSK(code phase shift keying) modulation based on phase modulation of PN code in orthogonal branch. The scheme is easy to realize because all spread spectrum codes comes from one SS code and its reverse order sequence. Compared to the M-ary spread spectrum system which need synchronization code, the new scheme can add a bit of information transmission capacity. Scheme II reduces the resource of spreading code further. In the scheme, the code set of SS codes comes from one SS code by cyclic shifting with the limit of phase area, which is easy for IC design.
     Secondly, in order to improve the utilization of spreading code resource under the conditions of high bandwidth efficiency, a scheme is proposed which adopts M-ary biorthogonal spread spectrum modulation in in-phase branch, and CPSK spread spectrum modulation in orthogonal branch. The system has the advantages which can achieve synchronization accurately and fleetly by itself, but rather offer additional synchronization resource. The scheme maintains a comparable performance as the M-ary spread spectrum but needs only about quarter of spread spectrum codes of M-ary spread spectrum system, which saves source of spread spectrum codes effectively. And more, an improved scheme is proposed to solve the limitation that conventional spread sptrum communication suffers from spreading code sources. The scheme proposed double code phase shift keying spread spectrum communication system which adopts structure of synchronization frame. The all SS codes come from one SS code by cyclic shifting. Synchronization is achieved by transmit the synchronization code at both orthogonal channels at the same time which is easy to distinguish. Both of the schemes has low complexity and is easy for IC design.
     Thirdly, in order to improve the bit error ratio(BER) performance of M-ary spread spectrum in fading channel. We propose a scheme which adopts space-time coding before M-ary spread spectrum. And more, we propose applies space time block coding to chips of spread spectrum code which has shorter decoding delay because both detection and decoding can be completely performed within one symbol period. And under the time selective channel, the scheme can get more time diversity, which can improve BER performance.
     Fourthly, for time selective fast fading condition which is difficult to estimation channel state information, we propose a scheme in which difference space time coding is applied to chips of direct sequence spread spectrum. The scheme is robustness in the presence of oscillator frequency offsets and fast time-selective fading channels. Further more, we apply difference space time coding to chips of M-ary spread spectrum. Compared to the scheme that difference space time coding is applied to chips of direct sequence spread spectrum, the scheme can improve the system performance and information bit rate greatly with the increase of the diversity order. Both the schemes are simple for IC design and acceptable in applications where very low device size and cost are paramount and high speed conditions.
     Finally, Spread Spectrum System for M-ary core module function is divided, chip-based algorithms are given, IP soft core design and verification are implemented by EDA tools, and digital layout design is also implemented.
引文
[1] Robert A. Scholt.The Origins of Spread-Spectrum Communications.IEEE Trans. Commun., 1982,5,30(5):822-854.
    [2] C L Weber, G K Smith, B H Batson. Performance considerations of code division multiple-access systems.IEEE Trans. Vehic.Technol., 1981,2,30(1):3-10.
    [3] M B Pursley. Performance evaluation for phase-coded spreadspectrum multiple access communication-Part 1: System analysis.IEEE Trans. Commun., 1977, 8(25):795-799.
    [4] R L Pickholtz, D L Schilling, L B Milstein. Theory of spread spectrum communications-A tutorial. IEEE Trans. Commun.,1982,5,30(5):855-884.
    [5] M Kavehrad. Performance of nondiversity receivers for spread spectrum in indoor wireless communications. Bell Syst, Tech. J.,1985,7/8,64(6): 1181-1210.
    [6] Chiang C T. Performance analysis of M-ary DS-CDMA systems with imperfect power control.Communications, IEE Proceedings, 2004,151 (6):574-580.
    [7] Garg V K. IS-95 CDMA and cdma200, cellular/PCS systems implementation. Prentice Hall, NJ, USA, 2000, Prentice Hall PTR, 2000.
    [8] C Kchao, G. Stuber. Analysis of a direct-sequence spread spectrum cellular radio system.IEEE Trans. Commun., 1993,10,41(10):1507-1516.
    [9] J G Proakis. Digital Communications, 2nd ed. New York,McGraw-Hill, 1989.
    [10]陈炎桂,陈志伟,关德新.基于SC1128的无线扩频通信系统.电子技术应用,2005,12,31(12): 57-58.
    [11]刘丽敏,田日才.使用直接序列扩频芯片SX043实现高增益扩频Modem.电子技术应用,2002,l28(9):63-66.
    [12]徐磊,潘强.扩频通信新器件Z87200的应用研究.信息与电子工程, 2005,9,3(3):207-209.
    [13]虞希清.专用集成电路设计实用教程.浙江:浙江大学出版社.2007.32-48.
    [14]林丰成,竺红卫,李立.数字集成电路设计与技术.北京.科学出版社. 2008.268-310.
    [15]威斯特,哈里斯著,汪东等译. CMOS超大规模集成电路设计(第三版).北京.中国电力出版社.2006.612-678.
    [16]马光胜,冯刚.Soc设计与IP核重用技术.北京.国防工业出版社.2006.67-95.
    [17] Telecommunication Industry Association. TIA/EIA/IS-665: W-CDMA interface compatibility standard for 1.85 to 1.99GHz PCS applications. 1995.
    [18] A. Fukasawa et al. W-CDMA system for personal radio communications. IEEE Journal on Selected Areas in Communications, 1996, 34(10): 32-34.
    [19] A.Baier. Open Multi-rate Radio Interface Architecture Based on CDMA . The 2nd International Conference on Universal Personal Communications. Ottawa, Canada, 1993, 2: 985-989.
    [20] M. Y Rhee. CDMA Cellular Mobile Communications and Network Security. Prentice hall PTR, 1998.
    [21] Erik Dahlman, Bjorn, et al.. UMTS/IMT-2000 Based on Wideband CDMA [J] IEEE Communications Magazine, 1998,36(9): 70-80.
    [22] A. Baier et al. Design study for a CDMA-based third-generation mobile radio system [J]. IEEE Journal on Selected Areas in Communications, 1994, 12(4): 733-743.
    [23] IEEE Standard for Information technology Telecommunications and information exchange between systems Local and metropolitan area networks Specific requirements. Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs). New York:IEEE,2006.
    [24] K. Kim. On the error probability of a DS/SSMA system with a noncoherent M-ary orthogonal modulation. in Proc. IEEE Veh. Tech. Conf., Denver, CO, May 1992, pp. 482-485.
    [25] A J Viterbi. Very low rate convolutional code for maximum theoretical performance of spread-spectrum multiple-access channels.IEEE J.Select. Areas Commun.,1990,5,8(4):641-649.
    [26] Q Bi, Performance analysis of CDMA cellular system Pror. IEEE Vehic. Technol. Conf. Denver,CO, 1992,5:43-46.
    [27] L M Jalloul,J M Holtzman. Performance analysis of DS/CDMA with noncoherent M-ary orthogonal modulation in multipath fading channels. IEEE J. Select. Areas Commun.,1994,6,12:862-870.
    [28] E K Hong, K J Kim, K C Whang. Performance evaluation of DS-CDMA system with M-ary orthogonal signaling. IEEE Trans. Veh.Technol., 1996,2, 45: 57-63.
    [29] C D Amours,A Yonga?co_glu.Spectral efficiency of a hybrid DS/FH-CDMA system employing noncoherent M-ary orthogonal signaling in slow Rayleigh fading.Proc. IEEE GLOBECOM, San Francisco, CA, 1994: 951-955.
    [30] V. Aalo, O. Ugweje, and R. Sudhakar. Performance analysis of a DS/CDMA system with noncoherent M-ary orthogonal modulation in Nakagami fading. IEEETransactions on Vehicular Technology, 1998, 47(1): 20-29.
    [31] A.F. Naguib and A. Paulraj.Performance of wireless CDMA with M-ary orthogonal modulation and cell site antenna arrays. IEEE J. Select.Areas Commun., 1996, 14: pp. 1770–1783.
    [32] Yungwhoon Cheun. Performance of direct-sequence spread-spectrum RAKE receivers with random spreading sequences. IEEE Transactions on Communications, 1997, 45(9): 1130-1143.
    [33]褚振勇,易克初,田红心.Rician慢衰落信道下的正交循环码M元扩频系统性能分析,电路与系统学报,2008,13(1):61-66.
    [34]孙文江,张平,胡健栋,双正交多码CDMA系统在衰落信道的性能分析,电子学报, 27(4),1999,31:35.
    [35]薛筱明,李建东,多进制正交码扩频系统的解扩和同步技术及其实现.电子学报, 1998,vol.26(1):105-110.
    [36]邱庆,辛刚,张水莲,多进制正交码扩频系统的帧同步,信息工程大学学报, 2003,4(2):72-74.
    [37] Cyril-Daniel Iskander, Performance of Multicode DS/CDMA With Noncoherent M-ary Orthogonal Modulation in the Presence of Timing Errors,IEEE Transactions on Vehicular Technology,2008,57(6):3867-3874.
    [38] M.Oguz and Peter J. Mclane. Diversity combining for DS CDMA systems with Synchronization errors [A]. IEEE International Conference on Communications. Dallas, Texas, USA, 1996, 1: 83-89.
    [39] Nishinaga N. Iwadare Y., Orthogonal M-ary Spread Spectrum System under Carrier Frequency Offset.Spread Spectrum Techniques and Applications Proceedings, 1996., IEEE 4th International Symposium on,1996,1:214-218.
    [40]A. L. Kachelmyer K. W. Forsthc, M-ary Orthogonal Signaling in the presence of Doppler,IEEE Trans. on Commun.1993, 41(8):1192-1200.
    [41] T. Wada, T. Yamazato, M. Katayama, A. Ogawa. Non-coherent Reception of M-ary Spread-Spectrum Signals in the Presence of Carricr Frequency Offset. IEICE Trans., 1995,E78-A(9):1102-1108.
    [42] Hyung-Rae Park.A Parallel Code Acquisition Technique for M-ary Orthogonal Signals in a Cellular CDMA System. IEEE Transactions on Vehicular Technology, 2000, 49(5)5: 2003-2012.
    [43] Byoung-Hoon Kim and Byeong Gi Lee. DSA: A Distributed Sample-Based Fast DS/CDMA Acquisition Technique. IEEE Transactions on Communications, 1999, 47(5): 754-765.
    [44] Byoung-Hoon Kim and Byeong Gi Lee. Parallel DSA for Fast Acquisition in M-ary DS/CDMA Systems. APCC/OECC '99 (Fifth Asia-Pacific Conference on Communications, 1999. and Fourth Optoelectronics and Communications Conference), 1999,1: 727-730.
    [45]陈育斌.高速分组无线网关键技术研究.西安电子科技大学博士学位论文, 2000.
    [46]李维英,杨军,陈彦辉,晏颖,高速分组无线网中M进制正交扩频方法的研究,西安电子科技大学学报,2001,28(4):496-499
    [47] Lie-Liang Yang, Kai Yen, Lajos Hanzo,A Reed–Solomon Coded DS-CDMA System Using Noncoherent M-ary Orthogonal Modulation over Multipath Fading Channels IEEE Journal on Selected Area In Communications, 2000, 18(11): 2240-2251
    [48] S. W. Kim and W. Stark. Performance limits of Reed–Solomon coded CDMA with orthogonal signaling in a Rayleigh-fading channel. IEEE Transactions on Communications, 1998, 46(9): 1125-1134.
    [49] Laurie L. Joiner and John J. Komo. Errors and Erasures Decoding of BCH and Reed–Solomon Codes for Reduced M-ary Orthogonal Signaling. IEEE Transactions on Communications, 2003, 51(1): 57-62.
    [50] Ying Xiaofan, Chu Zhenyong, Wang Yong, Yi Kechu. A scheme of M-ary multi-carrier spread spectrum based on wavelet packet. Journal of Electronics (China), 2004, 21(3): 236-242.
    [51]孙文江,张轶凡等.卷积编码正交序列扩频多码CDMA系统在Nakagami衰落信道的性能.电子学报, 1999, 27(6): 100-103.
    [52] Zhu Jinkang, Sasaki Shigenobu. Marubayashi Gen. Proposal of parallel combinatory SS communication system. Transactions of IEICE, 1991, J74-B II(5): 207-214.
    [53] Jinkang ZHUx,Gen MARUJ3AYASHI. Properties and Application of Parallel Combinatory SS Communication System(ISSSTA’OB)Yokohama, Japan, 1992:227-230.
    [54] ril-Daniel Iskander, P. Takis Mathiopoulos. Performance of Multicode DS/CDMA with Noncoherent M-ary Orthogonal Modulation in Multipath Fading Channels. IEEE Transactions on Wireless Communications, 2004, 3(1): 209-223.
    [55]文江,张平,胡健栋.正交序列扩频多码CDMA系统在AWGN信道的性能分析.通信学报, 1998, 19(10): 52-58.
    [56] Niko lai D, Kammeyer K D. BER analysis of a novel hybrid modulat ion scheme for noncoherent DS2CDMA systems. IEEE 8th International Symposium onPersonal, Indoor and Mobile Radio Communications97’. Helsink i, Finland: [s. n], 1997. 256-260.
    [57]程云鹏. DSSS系统的参数估计和性能分析.南京:解放军理工大学通信工程学院, 2003.
    [58]乔晓强,徐友云,程云鹏,蔡跃明.基于导频符号的双多进制正交扩频与MPSK复合调制系统的性能分析,上海交通大学学报, 2005,vol.39(9): 1489-1499.
    [59]周武旸,夏鹏飞,朱近康.用符合正交扩频码进行调制的M-ary MC-CDMA方法,通信学报,vol.22(10),2001:116-122.
    [60] A. Hammer and D. J. Shaefer, Performance analysis of M-ary code shift keying in code division multiple access systems, IEEE International Conference on Communications, 1982.3: 19-32.
    [61] A. G. Burr.Capacity improvement of CDMA systems using M-ary code shift keying. in Proceeding of IEEE Sixth International Conference on Mobile Radio and Personal Communications, 1991: 63-67.
    [62] L. Guo, N. Kuroyanagi and N. Suehiro, Transmission efficiency of code shift keying, in Proceeding of IEEE Conference on Military Communications, 1993: 35-40.
    [63] A. Y.-C Wong and V. C. M. Leung.Code-phase-shift keying: a power and bandwidth efficient spread spectrum signaling technique for wireless local area network applications. in Proc. IEEE 1997 Canadian Conference on Electrical and Computer Engineering, 1997, 2: 478-481.
    [64]R. Link and V.C.M. Leung.Design of a DSP-based code phase shift keying modem for wireless local area network applications. in Proc. IEEE VTC’97, Phoenix,AZ, 1997:1069-1073.
    [65] S. K. S. Chan and V. C. M. Leung.An FPGA receiver for CPSK spread spectrum signaling. IEEE Trans. Consumer Electronic, 1999, 45:181-191.
    [66] Yuh-Ren Tsai, Coherent M-ary Spreading-Code-Phase-Shift-Keying Modulation for Direct-Sequence Spread Spectrum Systems. Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th. 2004,1:759- 763.
    [67]褚振勇,应小凡,易克初,田红心.正交循环码M进制扩频接收机的研究.电子与信息学报, 2005, 27(11): 1704-1709.
    [68]褚振勇,易克初,田红心.非相干解扩解调信号的范数计算方法.西安电子科技大学学报, 2004, 31(5): 705-708.
    [69]褚振勇,应小凡,田红心,易克初.一种双正交循环码M元扩频接收机性能分析.西安电子科技大学学报, 2004, 31(6): 850-854.
    [70]褚振勇,易克初,周诠.基于预均衡的正交循环码M元MC-CDMA系统研究,西安电子科技大学学报,2007,34(2):199-204.
    [71] Volz P U, Maga?a M E, and Speidel J. A new block interleaver and noniterative decision feedback decoding enhance performance of IS-95 CDMA uplink or similar M-ary system. IEEE Trans. on Vehicular Technology, 2002, 51(4): 690-699.
    [72] Scott L. Miller. An Efficient Channel Coding Scheme for Direct Sequence CDMA Systems. IEEE 1991 Military Communications Conference. USA: IEEE, 1991: 1249-1253.
    [73]William W. Jones and James R. Luecke. Cyclic Code Phase Multiple Access for Inbound Satellite Communications . US Patent No. 6108317,Aug. 22, 2000.
    [74]Hiroshi Harada and Masayuki Fujise. Feasibility study on a highly mobile microwave-band broad-band telecommunication system. IEEE Transactions on Intelligent Transporation Systems, 2002, 3(1): 75-88.
    [75] Weigel R., Kalabic F., Ostermayer G., Pohl A., Seifert F. and Reindl L.. Design of SAW expander and compressor on LiTaO3 for a TCDMA spread spectrum system. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(12): 2486-2492.
    [76] Suehiro N., Torii H.; Matsufuji S. and Kuroyanagi N. Quadriphase M-ary CDMA signal design without co-channel interference for approximately synchronized mobile systems. Third IEEE Symposium on Computers and Communications (ISCC’1998). Athens, Greece: 1998:110-114.
    [77] Moeller, F.; Enderlein, J.; Belkerdid, M.A.; Malocha, D.C.; Buff, W.Direct sequence spread spectrum differential phase shift keying SAW correlator on GaAs, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1999 46(4):842-848
    [78] Hikita, M.; Takubo, C.; Asai, K ,New high performance SAW convolvers used in high bit rate and wideband spread spectrum CDMA communications system, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2000, 47(1):233-241.
    [79] Pavlina, J.M.; Kozlovski, N.; Santos, B.; Malocha, D.C.; SAW RFID spread spectrum OFC and TDM technology, RFID, 2009 IEEE International Conference on, 2009:110-116.
    [80]郑蝴蝶,刘乃安,郭峰,曾兴雯.SAWTDL-DL解扩解调器及其性能分析.西安电子科技大学学报(自然科学版), 1998, 25(3):333-336.
    [81] F. Moeller, A. Rabah, S. M. Richie, M. A. Belkerdid and D. C. Malocha. Differential phase shift keying direct sequence spread spectrum single SAW basedcorrelator receiver. IEEE Transactions on I Ultrasonics, Ferroelectrics and Frequency Control, 1998, 45(3): 537-538.
    [82]刘积学,钟先信,江洪敏,彭江陵.扩频多符号检测算法及实现.电子学报, 2008, 36(2):261-265.
    [83]刘积学,钟先信.一种新的SAW DQPSK解扩解调器.压电与声光, 2004, 26(4): 259-261.
    [84] High data rate spread spectrum demodulators using low-loss SAW matched filters Takeuchi, Y.; Yamanouchi, K.;Spread Spectrum Techniques and Applications Proceedings, 1996., IEEE 4th International Symposium on 1996,2:725-729.
    [85]刘积学,钟先信,江洪敏,声表面波扩频多符号检测器研究[J],声学学报,2008,vol.33(1):35-40.
    [86]Cyril-Daniel Iskander, P. Takis Mathiopoulos. Performance of Multicode DS/CDMA with Noncoherent M-ary Orthogonal Modulation in Multipath Fading Channels. IEEE Transactions on Wireless Communications, 2004, 3(1): 209-223.
    [87]褚振勇.卫星重叠通信中的M元扩频技术关键问题研究.西安电子科技大学博士学位论文, 2005.
    [88]褚振勇,易克初,田红心.卫星重叠通信技术研究.2002军事电子信息学术会议论文集.海口,海南: 2002:365-370.
    [89] M.Moeneclaey, G.De.Jonghe, ML-oriented NDA carrier synchronization for general rotationally symmetric signal constellations, IEEE Trans. Commun., 1994, 42(8): 2531-2533
    [90] H.Meyr, M.Moeneclaey, Digital Communicate Receivers: Synchronization, Channel Estimation, and Signal Processing, New York: Wiley NY, 1998
    [91] S.A.Tretter, Estimating the frequency of a noisy sinusoid by linear regression。IEEE Transform. Inform. Theory, 1985.11, 31(6): 832-835
    [92] M.P.Fitz, Further result in the fast estimation of a single frequency, IEEE Trans. Commun., 1994, 42(234): 862-864
    [93] U.Mengali, M.Morelli, Data aided frequency estimation for burst digital transmission, IEEE Trans. Commun., 1997, 45(1): 23-25
    [94] P.Y.Kam, Maximum likelihood carrier phase recovery for linear suppressed carrier digital data modulations, IEEE Trans. Commun., 1986.6, 34(6): 605~627
    [95] N.G.Coastas, Blind carrier phase acquisition for QAM constellations, IEEE Trans.Commun., 1997.11, 45(11):1477-1486
    [96]曾志斌,褚振勇,易克初.一种基于伪频偏的载波恢复算法.西安电子科技大学学报,2004,31(5):688-692.
    [97]郑蝴蝶,刘乃安,郭峰,曾兴雯. SAWTDL-DL解扩解调器及其性能分析.西安电子科技大学学报(自然科学版), 1998, 25(3): 333-336.
    [98] S M Alamouti. A simple transmit diversity technique for wireless communications, IEEE J. Sel. Areas Comun, 1998, 16(8):1451-1458.
    [99] Sezginer, S.; Sari, H.; Biglieri, E. On High-Rate Full-Diversity 2x2 Space-Time Codes with Low-Complexity Optimum Detection, IEEE Trans. on Commun.,2009, 57(5):1532-1541.
    [100] Gesbert D,Shafi M, Da-shan Shiu, Smith P J, Naguib A. From theory to practice: an overview of MIMO space-time coded wireless systems, Selected Areas in Communications, IEEE Joumal on, 2003, 21(3):281-302.
    [101] Hamouda W. Space-time spreading for MIMO CDMA-based systems over fast-fading channels, Wireless Networks, Communications and Mobile Computing, 2005 International Conference on, 2005, 1:470-474
    [102] Yuanbin Guo, Jianzhong Zhang, McCain D, Cavallaro J R. Displacement MIMO Kalman Equalizer for CDMA Downlink in Fast Fading Channels[C],Global Telecommunications Conference,2005.GLOBECOM'05. IEEE, 2005. 4(28): 2281-2286.
    [103] Jin Zhang, James S. Lehnert. Space-Time Coded Asynchronous DS-CDMA with Decentralized MAI Suppression: Performance and Spectral Efficiency. IEEE Transactions on Wireless Communications,2008, 7(5): 1550-1559.
    [104] Takeda, K.; Adachi, F.; MMSE frequency-domain equalization combined with space-time transmit diversity and antenna receive diversity for DS-CDMA[C], Vehicular Technology Conference, 2004. VTC 2004 Spring.2004 IEEE 59th ,2004, 1:464-468.
    [105] Branka Vucetic, Jinhong Yuan, space time coding, John Wiley & Sons,27 June, 2003.
    [106] B. Hochwald, T. L. Marzetta and C. B. Papadias. A transmitter diversity scheme for wideband CDMA systems based on space-time spreading.IEEE Journal on Selected Areas in Commun., 2001,19(1): 48-60.
    [107] Hamouda W. Space-time spreading for MIMO CDMA-based systems over fast-fading channels, Wireless Networks, Communications and Mobile Computing, 2005 International Conference on, 2005, 1:470-474.
    [108] Yuanbin Guo, Jianzhong Zhang, McCain D, Cavallaro J R. Displacement MIMO Kalman Equalizer for CDMA Downlink in Fast Fading Channels,Global Telecommunications Conference,2005.GLOBECOM'05. IEEE, 2005, 4(28):2281-2286.
    [109] De Baynast A, Radosavljevic P, Cavallaro J R. Chip-level LMMSE equalization for downlink MIMO CDMA in fast fading environments Global Telecommunications Conference, 2004. GLOBECOM '04. IEEE, 2004, 4(29):2552-2556.
    [110] Takeda, K.; Adachi, F.; MMSE frequency-domain equalization combined with space-time transmit diversity and antenna receive diversity for DS-CDMA, VTC 2004 Spring.2004 IEEE 59th ,2004,1:464-468.
    [111] HOCTOR R T, TOMLINSON H W. An Overview of Delay–Hopped, Transmitted Reference rf Communications. Technique Information Series: GE Research & Development Center, 2002.
    [112] QUEK T Q S, WIN M Z. Performance analysis of ultrawide bandwidth transmitted-reference communications. Vehicular Technology Conference. VTC 2004. Los Angeles: IEEE, 2004: 1285-1289.
    [113] CHOI J D, STARK W E. Performance of ultra-wideband communications with suboptimal receivers in multipath channels. IEEE Journal on Selected Areas in Communications, 2002, 20(9): 1754-1766.
    [111]Lutz H.-J. Lampe, Robert Schober, Robert F. H. Fischer Coded Differential Space–Time Modulation for Flat Fading Channels, IEEE Trans. Wireless Communication, 2003,2(3):582-590.
    [112]H. Jafarkhani and V. Tarokh. Multiple transmit antenna differential detection from generalized orthogonal designs. IEEE Trans. Inform. Theory, 2001,47(6):2626-2631.
    [113]Jianhua Liu, Jian Li, Erik G. Larsson. Differential Space-Time Block CodeModulation for DS-CDMA Systems, EURASIP Journal on Applied Signal Processing 2002,3:289–296.
    [114] David Tse Pramod Viswanath, Fundamentals of Wireless Communication, Cambridge University Press,2004
    [115] Xun Shao, Jinhong Yuan. A New Differential Space-Time Block CodingScheme. IEEE COMMUNICATIONS LETTERS, 2003, 7(9):437-439.
    [116]Alberto Cavallini, Filippo Giannetti, Marco Luise and Ruggero, Chip-level Differential Encoding/Detection of Spread-spectrum Signals for CDMA Radio Transmission over Fading Channels. IEEE Trans. Commun.1997, 45(4):456-463.
    [117] Chunjun Gao,Haimovich, A.M. A differential detection scheme for DS/CDMA spatial diversity, Communications, 2002. ICC 2002. IEEE International Conference on, 2002,1: 465- 469.
    [118] Alesiani, F., Tarable, A. Differential space-time CDMA with turbo decoding, GLOBECOM'03, IEEE, 2002, 2: 616-620.
    [119] V. Traokh and H.Jafarkhani, A differential detection scheme for transmit diversity, IEEE J.Sel.Areas Commun., 2000, 18:1169-1174.
    [120] peter j. ashenden.Digital Design-An Embedded Systems Approach Using Verilog. United States, Morgan Kaufmann Publishers, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700