用户名: 密码: 验证码:
CSN1S2、CSN2、CSN3基因在西农萨能奶山羊乳腺组织中的表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酪蛋白是乳中特有的蛋白,可以分为五种:αs1-酪蛋白(CSN1S1)、αs2-酪蛋白(CSN1S2)、β-酪蛋白(CSN2)、γ-酪蛋白和k-酪蛋白(CSN3)。酪蛋白含有几乎全部的必需氨基酸,是唯一可凝固的乳蛋白,可与钙、磷形成稳定的微胶粒而提高对乳中钙磷含量的吸收。因此,酪蛋白是新生幼仔最具营养价值的蛋白质,对新生动物的健康和生长发育起到非常重要的调节作用。
     随着基因结构和功能研究的深入,人们逐渐认识到奶山羊泌乳性能的个体差异最终决定于其自身基因的差异表达。乳腺规律性的生理变化直接影响奶山羊泌乳期的长短、乳成分的变化和泌乳量的高低。因此,本试验以西农萨能奶山羊泌乳中期的乳腺组织为试验材料,采用实时定量的方法检测CSN1S2基因、CSN2基因和CSN3基因的表达量,分析其与泌乳性状的关系,并对目的基因进行克隆和鉴定。本试验旨在发现对奶山羊泌乳量有显著影响的基因,为奶山羊的选育提供理论和实践参考依据。主要获得以下结果:
     1 CSN1S2基因在西农萨能奶山羊乳腺组织中的表达分析与克隆鉴定
     以看家基因β-actin为内参对CSN1S2基因进行相对定量PCR分析,结果表明:CSN1S2基因在第1组山羊(泌乳量:1100.00±15.00kg)乳腺组织中的mRNA平均表达量是第2组山羊(泌乳量:600.00±12.00kg)的2.47倍;对两组山羊乳的乳成分分析表明:第1组山羊乳中蛋白质含量是第2组的1.05倍,差异显著(P<0.05);第2组山羊乳中脂肪含量是第1组的1.18倍,差异不显著(P>0.05)。对CSN1S2表达片段进行克隆测序,发现差异表达片段与山羊CSN1S2基因的核苷酸序列同源性为99%,验证了差异表达片段就是目的片段;同时发现在目的片段的64bp处发现了一个C→T的碱基突变,推测CSN1S2表达量的增高可能和碱基突变有关。
     2 CSN2基因在西农萨能奶山羊乳腺组织中的表达分析与克隆鉴定
     以看家基因β-actin为内参对CSN2基因进行相对定量PCR分析,结果发现:CSN2在第1组山羊(泌乳量:1100.00±15.00kg)乳腺组织中的mRNA平均表达量是第2组山羊(泌乳量:600.00±12.00kg)的5.48倍;由相关性分析可知,CSN2基因的表达量与产奶量呈正相关(P<0.05);对差异表达片段进行克隆测序,发现差异表达的片段与山羊CSN2基因的核苷酸序列同源性为100%,验证了引物的特异性和表达片段的正确性。
     3 CSN3基因在西农萨能奶山羊乳腺组织中的表达分析与克隆鉴定
     以看家基因β-actin为内参对CSN3基因进行相对定量PCR分析,结果发现:CSN3基因在第1组(泌乳量:1100.00±15.00kg)的西农萨能奶山羊乳腺组织中的表达量是第2组(泌乳量:600.00±12.00kg)的3.10倍,差异极显著(P<0.01)。由相关性分析可知,CSN3基因的表达量与蛋白质呈正相关(P<0.05),与产奶量和脂肪含量相关性较小,不显著(P>0.05)。对差异表达片段进行克隆测序,发现差异表达的片段与山羊CSN3基因的核苷酸序列同源性为100%,验证了引物的特异性和表达片段的正确性。
     通过以上研究表明,CSN1S2、CSN2和CSN3基因可作为奶羊泌乳性状选育的候选基因。
Casein was a specific protein in milk which including CSN1S1, CSN1S2, CSN2,γ-casein and CSN3. It almost contains all the essential amine acid, meanwhile, It can raise the contents of calcium and phosphor by forming microne because it is the only solidifiable lactoprotein. So, casein is an important lactoprotein and is very popular for people.
     With the development of gene structure and function, people are increasingly aware of that the regularity of milk performance which affects lactation period, milk composition and milk yield is upon the difference of expression of related genes. So, in this study we detected the relationship between the expression of CSN1S2, CSN2 and CSN3 gene and milk performance by real time RT-PCR using the breast gland in the medium-term of lactation period of xinong Saanen dairy goat. In addition, the amplified products were cloned and analyzed their structure and function using bioinformatics. Our objective was to find out genes which significantly affect the milk yield and milk composition in goat. The important results were in the followings:
     1. expression analysis and cloning of CSN1S2 gene in the breast gland of xinong saanen dairy goat
     By analyzing the CSN1S2 with the real-time fluorescent relative quantitative PCR using theβ-actin as the reference gene, the results showed that the relative average expression of CSN1S2 gene in the first group including 15 goats of which milk production of one lactation period was 1100.00±15.00Kg was much 2.47 fold higher than that of the second group of which was 600.00±12.00Kg. By analyzing the milk composition of the two group goats, results revealed that the protein content of the first group goat was 1.05 fold compared with that of the second group goats, of which the difference was significant (P<0.05); while for the fat content was not significant (P>0.05). Then cloned and sequenced the amplified products and blasted the cloned sequenced, it showed that the homology of CSN1S2 cloned fragment with the aim fragment were 99% which explained that the amplified products was the target DNA segments, while found a mutation in 64bp from base C→T. We supposed that the expression of CSN1S2 was related to the change of the base.
     2. expression analysis and cloning of CSN2 gene in the breast gland of xinong saanen dairy goat
     By analyzing the CSN2 with the real-time fluorescent relative quantitative PCR using theβ-actin as the reference gene, the results showed that the relative average expression of CSN2 gene in the first group including 15 goats of which milk production of one lactation period was 1100.00±15.00Kg was much 5.48 fold higher than that of the second group of which was 600.00±12.00Kg, and it was a positive correlation between the expression of CSN2 and the milk yield and protein content(P<0.05), while it was negative correlation the expression of CSN2 and the fat content(P<0.05).Then cloned and sequenced the amplified products and blasted the cloned sequenced, it showed that the homology of CSN2 cloned fragment with the aim fragment were 100% which explained that the amplified products was the target DNA segments.
     3. expression analysis and cloning of CSN3 gene in the breast gland of xinong saanen dairy goat
     By analyzing the CSN3 with the real-time fluorescent relative quantitative PCR using theβ-actin as the reference gene, the results showed that the relative average expression of CSN3 gene in the first group including 15 goats of which milk production of one lactation period was 1100.00±15.00Kg was much 3.10 fold higher than that of the second group of which was 600.00±12.00Kg, which showed the difference was extremely significant (P<0.01).Then cloned and sequenced the amplified products and blasted the cloned sequenced, it showed that the homology of CSN3 cloned fragment with the aim fragment were 100% which explained that the amplified products was the target DNA segments.
引文
[1] Capuco A V, Ellis S E, Hale S A, et al. Lactation persistency: insights from mammary cell proliferation studies [J]. J Anim Sci, 2003, 81: 18-31.
    [2] Turner J D, and Huynh H. Role of tissue remodeling in mammary epithelial cell proliferation and morphogenesis [J]. J Dairy Sci, 1991, 74(2):01-807.
    [3] Baval Rapett L, Crovetto G M, et al. Effect s of a nonforage diet on milk production, energy, and nitrogen metabolism in dairy goat’s through-out lactation [J]. J Dairy Sci, 2001, 4(2): 450- 459.
    [4] Pollott G E. A biological approach to lactation curve analysis for milk yield [J]. J Dairy Sci, 2000, 83:(24): 482-458.
    [5] Naylor M J, Oakes S R, Garden M G, et al.Transcriptional changes underlying the secretory activation phase of mammary gland development [J]. Molecular Endocrinology, 2005, 19: 868-1883.
    [6] Zhao Y, Johansson C, Tran T,et al. Identification of a bHL H ranscription factor expressed in mammary gland alveolar cells and required for main-tenance of the differentiated state[J]. Molecular Endocrinology, 2006, 20(2): 187-198.
    [7] Bava L, Rapetti L, Crovetto G M,e t al. Effects of a nonforage diet on milk production,energy,and nitrogen metabolism in dairy goats throughout lactation[J]. J Dairy Sci, 2001, 84:2450-2459.
    [8] Min B R, Hart S P, Sahlu T, et al. The effect of diets on milk production and composition and on lactation curves in pastured dairy goats [J]. J Dairy Sci, 2005, 88(2): 604-615.
    [9] Linzel J L, Peaker M. Mechanism of milk secretion [J]. Physiol Rev, 1971, 51: 564-597.
    [10] Soryal K B, eyene F A, Zeng S B, et al. Effect of goat breed and milk composition on yield,sensory quality,fatty acid concentration of soft cheese during lactation[J].Small Rumin Res,2005(58):275-281.
    [11]罗军,单翠燕,刘拉平,等.不同胎次西农萨能羊鲜乳中、短链脂肪酸组成的初步研究.西北农林科技大学学报[J],2005,33(3):24-28.
    [12] Reh W A, Maga E A, Collette NMB, et al.Hot topic: using a stearoyl-coa desaturase transgene to alter milk fatty acid composition [J]. J Dairy Sci, 2004, 87:3510-3514.
    [13] Lin XL, Herbein J H. Trans10.Cis12-18:2 is a more potent inhibitor of de novo fatty acid synthesis and desaturation than cis9, trans11-18:2 in the mammary gland of lactating mice [J]. J Nutr 134:1362-1368.
    [14] Ringseis R, Saal D, Mueller A, et al.Dietary conjugated linoleic acids lower the triacylglycerol concentration in the milk of lactating rats and impair the growth and increase the mortality of their suckling pups[J]. J Nutr, 2004, 134:3327-3334.
    [15] Takahashi Y, Kushiro M, Shinohara K, et al.Activity and mRNA levels of enzymes involved in hepatic fatty acid synthesis and oxidation in mice fed conjugated linoleic acid [J]. Biochim Biophys Acta, 2003, 631: 265-273.
    [16] Jolivet G, Meusnier C, Chaumaz G, et al.Extracellular matrix regulates alpha s1-casein gene expression in rabbit primary mammary cells and CCAAT enhancer binding protein(C/EBP) binding activity [J]. J Cell Biochem, 2001, 82(3): 371-86.
    [17] Kuo C B, Wu W, Xu X, et al. Pseudophosphorylated prolactin (S179D PRL) inhibits growth andpromotes beta-casein gene expression in the rat mammary gland [J].Cell Tissue Res, 2002, 309(3): 429-437.
    [18] Yamashita H, Nevalainen M T, Xu J, et al. Role of serine phosphorylation of Stat5a in prolactin-stimulated beta-casein gene expression[J]. Mol Cell endocrinol, 2001, 183(12):151-163.
    [19] Zhao F Q, Adachi K, Oka T. Involvement of Oct-1 in transcriptional regulation of beta-casein gene expression in mouse mammary gland [J]. Biochim Biophys Acta, 2002, 1577(1):27-37.
    [20] Geymayer S, Doppler W. Activation of NF-kB p50/p65 is regulated in the developing mammary gland and inhibits STAT5-mediatedβ-casein gene expression [J]. FASEB J, 2000, 14:1159-1170.
    [21] Beaton A, Broadhurst M K, Wilkins R J, et al. Suppression of beta-casein gene expression by inhibition of protein synthesis in mouse mammary epithelial cells is associated with stimulation of NF-kappaB activity and blockage of prolactin-Stat5 signaling[J]. Cell Tissue Res, 2003, 311(2): 207-215.
    [22] Ward P P, Uribe-Luna S, Conneeley OM. Lactoferrin and host defense.Biochem [J].Cell Biol, 2002, 80: 95-102.
    [23] Vogel H J, Schibli D J, Jing W, et al. Towards a structure-function analysis of bovine lactoferricin and related tryptophan and arginine-containing peptides[J]. Biochem Cell Biol, 2002, 80: 49-63.
    [24] Zheng J, Ather J L, Sonstegard TS, et al. Characterization of the infection-responsive bovine lactoferrin promoter [J]. Gene, 2005, 353(1): 107-117.
    [25] Grey A, Banovic T, Zhu Q, et al. The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells [J]. Mol Endocrinol, 2004, 18(9): 2268-2278.
    [26] Naot D, Grey A, Reid I R, et al. Lactoferrin-a novel bone growth factor [J].Clinical Medicine& Research, 2005, 3(2): 93-101.
    [27] Chen H L, Lai Y W, Yen C C, et al. Production of recombinant porcine lactoferrin exhibiting antibacterial activity in methylotrophic yeast, pichia pastoris [J]. J Mol Microbiol Biotechnol 2004 8(3): 41-149.
    [28] Yu H Q, Li Z G, Liu H R, et al. Expression of goat beta-casein gene targeting vector in mammary gland cell [J]. Sheng Wu Gong Cheng Xue Bao, 2004, 20(1): 21-24.
    [29] Liu Z, Zhao C, Fan B, et al. Variable expression of human lactoferrin gene in mice milk riven by Its90kB pstream flanking sequences [J].AnimBiotechnol, 2004, 15(1):21-31.
    [30] Permyakov E A, Berliner L J.α-lactalbumin: structure and function [J].FEBS Lett, 2000, 473: 269-274.
    [31] Lonnerdal B, Lien E L. Nutritional and physiologic significance of alpha-lactalbumin in infants [J]. Nutr Rev, 2003, 61(9): 295-305.
    [32] Baltzer A, Svanborg C, and Jaggi R.Apoptotic cell death in the lactating mammary gland is enhanced by a folding variant of alpha-lactalbumin [J]. Cell Mol Life Sci, 2004, 61(10): 1221-1228.
    [33] Sawyer L, Brownlow S, Polikarpov I, et al.β-lactoglobulin: structural studies, biological clues [J].Int Dairy J, 1998, 8: 65-72.
    [34] Muresan S, Bent van der A, and Wolf de F A.Interaction ofβ-lactoglobulin with small hydrophobic ligands as monitored by fluorometry and equilibrium dialysis: Nonlinear quenching effects related to protein-protein association [J]. J Agric Food Chem, 2001, 49: 2609-2618.
    [35] Whitelaw C B. Nucleosome organisation of the beta-lactoglobulin gene transcription complexformation [J]. Adv Exp Med Biol, 2000, 480: 147-153.
    [36] Gao J J, Yan J B, Huang Y, et al. Goat beta-lactoglobulin gene cloning and high expression in the mammary gland of transgenic mice[J].Yi Chuan, 2003,25(5): 499-503.
    [37] Liang P, Pardee AB. DifferentialdisPlayofeukaryotiemessengerRNAbymeans 0f the polymerase chain reaetion [J]. Seienee, 1992, 257: 967.
    [38] Steina J, Liang P. Differential display technology: a general guide [J]. CellMol Life Sei, 2002, 59: 12-35.
    [39]黄薇,方孝东,赵文明,等.分离差异表达基因的方法[J].生物工程学报,2002,18(4):521.
    [40] Hubank M, Sehatz DG. Identifying differences in mRNA expression by representational difference analysis of cDNA [J]. Nucleic Acid Res, 1994, 22(23): 5640.
    [41]池晓菲,舒庆尧.开放的差异基因表达技术研究进展[J].中国生物化学与分子生物学报,2002, 18(3):259-264.
    [42]张党权,谭晓风,杨伟.植物基因cDNA克隆新技术进展[J].中国生物工程杂志,2002,22(4):70-75.
    [43] Velculeseu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene exPression [J]. Seienee, 995, 70: 484-492.
    [44] Nobuaki T, Shigenori N, Yuya T, et al. Analysis of mRNA with microsomal Fractionation using a SAGE-based DNA Microarray system facilitates identifieation of the genes encoding secretary Protein [J]. GenomeRes, 2003, 13: 1728.
    [45]李靖,陈宇光,孔祥银.基因表达系列分析技术的新进展[J].生物工程学报,2001,17(6):613.
    [46]王吉树,药立波,赵忠良.筛选差异表达基因和蛋白质的方法进展[J].生物化学与生物物理进展,2001,28(l):33-38.
    [47] DiatehenkoL, Lau Y C, Campvell A, et al. Suppression subtraetive hybridization: A method for generating differentially regulated or tissue specific cDNA probes and libraries [J]. Proc Natl Acad Sci USA, 1996, 93: 60-65.
    [48] vonstein O D,Thies W G, Horman M A. High throughput screening for rarely Transeribed differentially exPressed genes [J]. Nueleic Acids Res, 1997, 25(13): 25-28.
    [49] Lipshutz D, Morriss D, Chee M, et al. Using oligo nucleotide probe array to access genetic diversity [J]. BioTechniques, 1995, 19(3): 442.
    [50] Duggan D J, Bittner M, Chen Y, et al. ExPreession Profiling using cDNA microarrays[J]. Nat Genet, 1999(21): 10-14.
    [51]杨劲松,陈诗书.微阵列技术及其应用[J].生命科学,2001,13(2):85.
    [52] Mong J A, Krebs C, and Donald W P.Perspective: Microarray and differential display PCR tools for studying transcript levels of gene in neuroendoerine systems [J]. Endocrinology, 2002, 143(6): 2002.
    [53] Han H, Bearss D J, Browne L W, et al.Identification of differentially expressed genes in pancreatic cancer cells using cDNA mieroarray [J]. Caneer Reaserch, 2002, 62: 2890.
    [54] Chen B P C, Li Y S, Zhao Y H, et al. DNA microarray analysis of gene expression In endothelial cells in response to24-h shear stress [J]. Physiol Genomies, 2001, 7: 55-61.
    [55] Ian MM, Katherine EA, Andreas N. Survey and surnmary real-timePCR in virology [J]. Nueleie Acids Res, 2002, 30(6): 1292-1305.
    [56] Beeker S, Bger P, OehlmannR,et al. PCR bias in ecological analysis:a case study for quantitative Taqnuelease assays in analysises of microbial communities[J]. Applied and Environmental Microbioly, 2000, 66(11): 4945-4953.
    [57] Kolb S, Knieti C, StubnerS, et al. Quantitative detection of methano trophs in soil by novel targeted real-time PCR assays [J]. Applied and Environmental Microbiology, 2003, 69(5): 2423-2429.
    [58] Wikstrom P, Hagglund L, Forsman M. Strueture of a naturalm ierobial community in a nitroaromatic comtaminated groundwater is altered during biodegradation of extrinsic, but no tintrinsic substrates [J]. Microbiall Ecology, 2000, 39: 203-210.
    [59] Mayer Z, Fther, Geisen R. Monitoring the Produetion of aflatoxin Blin wheat by measuring the concentration of nor-l mRNA [J]. Applied and Environmental Microbiology, 2003, 69(2): 1154-1158.
    [60]葛忠源,熊东艳,张启永.实时荧光定量PCR技术及应用[J] .中国牧业通讯,2008(13):12-14.
    [61]阳成波,印遇龙,龚建华,等.实时定量PCR研究进展及其应用[J].中国预防兽医学报,2003,9(5):395-399.
    [62]余舜武,刘鸿艳,罗利军,等.利用不同实时定量PCR方法分析相对基因表达差异[J].作物学报,2007,33(7):1214-1218.
    [63]张德礼.电子克隆新基因[J].中国高校科技与产业化,2002,9:40-42.
    [64]张德礼,马大龙,钱敏平.人类新基因电子克隆的自动化软件系统建立和实验验证与功能研究[J]. 2005,10:89-91.
    [65] Li, G.L, T.Y.Leong. Feature selection for the prediction of translation initiation sites.Genomics Proteomics Bioinformatics [J]. 2005, 3(2): 73-83.
    [66] Setubal J C, M.Reis, J Matsunaga, et al. Lipoprotein computational prediction in spirochaetal genomes [J]. Microbiology. 2006, 152(Pt 1): 113-121.
    [67] Karolchik D A S, Hinrichs T.S. Furey, et al, The UCSC Table Browser dataretrieval tool [J]. Nucleic Acids Res. 2004, 32(Database issue): D493-496.
    [68] Rajasekaran S V, Thapar H, Dave. et al. Randomized and parallel algorithms for distance matrixcalculations in multiple sequence alignment[J]. J Clin Monit Comput, 2005, 19(4-5): 351-359.
    [69] Gasteiger E A, Gattiker C, Hoogland, et al. ExPASy: The proteomics server for in-depth protein knowledge and analysis [J]. Nucleic Acids Res. 2003, 31(13): 3784-3788.
    [70] Geourjon CG, Deleage. Sopma: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments [J]. Comput Appl Biosci .1995, 11(6): 681-684.
    [71]陈宏,蓝贤勇,李瑞彪,等. CSN1S2、CSN3和β-lg基因对西农萨能奶山羊产奶性能的影响[J].遗传学报,2005,32 (8):804-81.
    [72] Szilvia Kusza. Genetic polymorphism ofα_s1-andα_s2 caseins in Hungarian Milking Goats [J]. Small Ruminant Research 2007(68): 329-332.
    [73] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-CT method [J]. Methods, 2001, 25: 402-408.
    [74] Heid C A, Stevens J, Livak J K, et al. Real time quantitative PCR[J]. Genome Res, 1996, 6: 986-994.
    [75] Willard M F, Stephen J W, Kent E V. Quantitative RT-PCR [J]. Bio-Techniques, 1999, 26(1): 112-125.
    [76] Kawakami K, Brabender J, Lord R, Goshen S J. Natl. Cancer Inst [J]. 2000,92:1805-1811.
    [77] Met U L, Han K. Real-time PCR analysis of DNA extracted from formalin, fixed and paraffin–embedded biopsies [J]. Methods, 2001, 25:409-418.
    [78]郑维主编.汉英医学分子生物学实验方法[M].中国协和医科大学出版社,2005.
    [79]付小波,昝林森,张佳兰,等.中国荷斯坦奶牛CSN1S2基因第二外显子SSCP多态性与产奶性状的关系[J].西北农林科技大学学报(自然科学版),2006,834):22-25.
    [80]陈宏,蓝贤勇,李瑞彪,等.CSN1S2、CSN3、β-lg基因对西农萨能奶山羊产奶性能的影响[J].遗传学报,2005,32(8):804-810.
    [81] Ramunno L, Co senza G, PappalardoM, et al. Characterization of two new alleles at the goat CSN1S2 locus [J]. Anim Genet, 2001, 32: 2640-2680.
    [82]刘文静,郑玉才,钟光辉. K-酪蛋白研究进展[J].西南民族学院学报,自然科学版2001(1):95-97.
    [83]张丽娟,罗军,武会娟,等.山羊与牛乳腺差异表达基因的筛选及半定量RT-PCR分析[J].动物学报,2007,53(4):710-716.
    [84] K. Raynal-Ljutovaca et al.Composition of goat and sheep milk products: An update[J].Small Ruminant Research 2008 (79):57
    [85] LeandriA R, ButtazzoniL G, Schneider J C, et al. The effects of m ilk p ro tein po lymo rph ism s on m ilk components and cheese2p roducing ability [J]. Dairy Science, 1990, 73: 241-244.
    [86]朱婧,梁克明,童德文,等.西农萨能奶山羊β-酪蛋白基因5′侧序列通用表达载体的构建[J].第四军医大学学报,2005,26(12):1066-1069.
    [87]成军,陆荫英,李克,等.生物信息学技术与新基因的研究[J].世界华人消化杂志,2003,11(4):474-477.
    [88] Jones J, Clemmons D R.Insulin-like growth factors and their binding proteins biological actions [J]. Endocrine Rev, 1995, 16: -34.
    [89] Girbau M, Comez J A, et al. Insulin-like and IGF-1 both stimulate metabolism and growth in the posmeurula chick embryo [J]. Endocrinol, 1987, 121:1477-1482.
    [90] Bassas L, Lesniak M A, Serrano J. Developmental regulation of insulin and type I insulin-like growth factor receptors and absence of type II receptors in chicken embryo tissues[J]. Dabetes, 1988, 37: 637-644.
    [91] Pablo F, Henri L R, Trinidad C, et al. Insulin-like growth factor-1 and insulin as growth and differentiation factors in chicken embryogenesis [J]. Poultry Sci, 1991, 70: 1790-1796.
    [92] Mathews L S, Hammer R L, Bchringer R R, et al. Growth enhancement of transgenic mice expressing human insulin-like growth factor-I [J]. Endocrinology, 1988, 123(6): 2827-2833.
    [93] Siddiqui R A, Mccutcheon N, Blair H T. Growth allometry of organs, muscles and bones in mice from lines divergently selection on the basis of plasma insulin-like growth factor-l [J]. Growth Dev Aging, 1992, 56: 53-60.
    [94] Kocamis K, Keller K, Klandorf H, et al. In Ovo administration of recombinant human insulin-likeM growth factor-1 alters postnatal growth and development of the broiler chicken [J]. Poultry Sci, 1998, 77: 1913-1919.
    [95] Gasteiger E, Gattiker A, Hoogland C, et al. ExPASY: the proteomics server for in-depth protein knowledge and analysis [J]. Nucleic Acids Res, 2003, 31(13): 3784-3788.
    [96] Kenneth J, Livak Thomas D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△CT Method[J]. 2008: 402-408.
    [97]刘金龙,郑月茂,王玉洁,等.奶牛B-酪蛋白基因5′和3′调控区的克隆及序列分析[J].西北农林科技大学学报(自然科学版),2004,2(32):99-103.
    [98]张克忠,陈立,卢大儒,等.牛B-酪蛋白基因控制的人凝血?因子基因在小鼠乳腺组织中的表达调控[J ].中国科学(C辑),1998,28(5):463- 469.
    [99]张月云.牛乳腺上皮细胞中β-酪蛋白的检测[D]. 2004,6.
    [100]白英.微量元素锌对山羊β-酪蛋白合成及分泌影响的研究[D]. 2007,5.
    [101]葛增广,佟慧丽,秦君,等.不同中药提取物对小鼠乳腺上皮细胞β-酪蛋白表达的影响[J].东北农业大学学报. 2009,1(40):66-71.
    [102] Brockman J L, Schroeder M D, Schuler L A. PRL activates the cyclin D1 promoter via the Jak2/Stat pathway [J]. Molecular Endocrinology, 2006, 16(4): 774-784.
    [103] Faraci-Orf E, McFadden C, Vogel W F. DDR1 signaling is essential to sustain Stat5 function during lactogenesis [J]. J Cell Biochem, 2006, 97(1): 109-121.
    [104] Wu W, Chen Y H, Ueda E, et al. Different forms of prolactin have opposing effects on the expression of cell cycle regulatory proteins in differentiated mammary epithelial cells[J]. Oncol Res, 2006, 16(2): 75-84.
    [105] Buser A C, Gass-Handel E K, Wyszomierski S L, et al. Progesterone receptor repression of prolactin /signal transducer and activator of transcription 5-mediated transcription of theβ-casein gene in mammary epithelial cells[J]. Mol Endocrinol, 2007, 21(1): 106-125.
    [106]秦宜德,邹思湘.乳蛋白的主要组分及其研究现状[J].生物学杂志,2003,20(2):5-7.
    [107]林福玉,程萱,陈红星,等.小鼠β-酪蛋白基因序列调控人t-PA突变体基因在小鼠乳腺的表达[J].遗传学报,2002,29(12):1057-1062.
    [108]周明亮,吴登俊,曾云琦.β-酪蛋白基因的研究进展[J].内蒙古农业科技,2005(2):12-14.
    [109]董琼珠,李素萍,秦宜德,等.小鼠β-酪蛋白基因载体的构建与表达[J].安徽农业大学学报,2006,33(2):180-182.
    [110] Fan B L, Li Ning, Hu X X, et al. Cloning sequencing and polymorphism analyzing of the exon 4 of the kappa-casein gene in yak [J]. Progress in Natural Science, 2000, 10(10): 769-773.
    [111] Alexander L J, Stewart A F, Mackinlay A C, et al. Isolation and characterization of the bovine kappa-casein gene [J], Eur.J.Biochem. 1998, 178(2): 395-399。
    [112] B. Moioli, F. Pilla, C.Tripaldi. Detection of milk protein genetic polymorphisms in order to improve dairy traits in sheep and goats: a review [J]. Small Ruminant Research. 27: 185–195.
    [113] B. Moioli, M, D Andrea, F.Pilla. Candidate genes affecting sheep and goat milk quality [J].Small Ruminant Research. 2007, 68: 179-192.
    [114] Lin C Y, M P Sabour, A J Lee. Direct typing of milk proteins as an acid for genetic improvement of dairy bulls and cosus. A review [J]. Animal Breed Abstr, 1992, 60: 19.
    [115] Alison VAN, Eenennaamand J uan Fernando medrano Differences in Alletic Protein expression in the milk of heterozygous k2casein lows [J]. J Dairy Sci, 1991, 74: 1491-1496.
    [116] Ron M O, E Yoffe, Zra F, et al. Deterination of effects of milk protein genotype on production traits of Israel:Holsteins[J]. J Dair Sci, 1994, 77: 1106-1113.
    [117] Marziall A S, K F Ng-kwai-hang. Effect of milk composition and genetic polymor phism on cheese composition [J]. J.Dairy Sci, 1986, 69: 2533-2542.
    [118] Aleandi R L G, Buttazzoni J C, Schneider A, et al. The effects of milk protein polymorphisms on milk components and cheese -producing ability [J].J Dairy sci, 1990,73 : 241-249.
    [119] Alexander L J F, Stewart A G, Mackinglay, et al. Isolation and characterization of the bovine k-casein gene[J]. Eur. J. Biochem, 1988, 1789: 395.
    [120] Tredgill D W, J E Womack. Genomic analysis of the major milk protein genes [J].Nucleic Acids Res. 1990, 18: 6935-6941.
    [121] Coll J M, Foleh, A.Sanchez. Structural Features of the 5′Flanking Region of the Caprine k2casein gene [J]. J Dairy Sci, 1995, 78: 973-977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700