用户名: 密码: 验证码:
Ru(Ⅱ)多吡啶配合物与DNA相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA对于生命遗传密码的翻译、转录、复制起着非常重要的作用。研究金属配合物与DNA相互作用的键合机理将有助于人们从分子水平上了解生命现象的本质,在生命科学上具有重要的理论意义和潜在的应用价值。近年来,由于钌(II)多吡啶配合物在光化学、光物理及生物化学等领域的广泛应用,对这类配合物的研究已经引起了人们广泛的关注,特别是它们在生物无机领域的重要应用。例如:充当识别DNA结构的探针;DNA介导的电子转移;金属足迹试剂;DNA切割试剂。
     本研究工作的重点是设计对DNA有较大亲和力和识别能力的配合物,并探索影响其结合DNA能力的各种因素。因此我们不但合成了一系列有代表性的新型配体及其钌(II)多吡啶配合物,而且深入研究了配合物与CT-DNA相互作用的机理。主要工作如下:
     首先,合成了含有柔性链的BPIP多吡啶配体,利用这个配体进一步合成了配合物[Ru(bpy)2(BPIP)](ClO4)2·H2O和[Ru(phen)2(BPIP)](ClO4)2·H2O (bpy = 2,2'-联吡啶,phen = 1,10-邻菲咯啉)。并用紫外光谱、核磁和质谱对它们进行了表征。采用电子吸收光谱、稳态荧光、圆二色谱和粘度测定研究了配合物与CT-DNA的相互作用。结果表明亚甲基的存在对配合物与CT-DNA键合与相互作用机理有很大影响。
     其次,对新型含S原子的多吡啶配体btip及其配合物[Ru(bpy)2(btip)](ClO4)2·2H2O和[Ru(dmb)2(btip)](ClO4)2·nH2O(dmb = 4,4'-二甲基联吡啶)进行了合成及表征,研究了配合物与CT-DNA的相互作用,并用紫外光谱和荧光光谱研究了铜离子对配合物与DNA相互作用的影响。
     另外,在配体dppz的基础上,合成了新的配体tbtc及其配合物。通过紫外可见光谱、稳态荧光、圆二色谱和粘度测定研究了配合物与CT-DNA的相互作用。结果发现配合物[Ru(bpy)2(tbtc)](ClO4)2·2H2O是一良好的分子光开关。
DNA is the most important substance in the inherited password's translation, convey, reproduction for the life. Studying the interactions and mechanism of metal complexes binding with DNA may be a more complete understanding of the origin of life on a molecular level, which have great theoretical significance and potential applied values in biological science. Ruthenium(II) polypyridyl complexes have aroused intense interest because of their extensive applications in the fields of photochemistry, photophysics and biochemistry. In particular, their important application for probes of DNA structure, DNA mediated electron transfer, DNA footprinting and sequence-specific cleaving agents are well known.
     The aim of this paper is the design complexes with high affinity and specific recognition to DNA, as well as the understanding of factors, which might influence the DNA-binding affinity of the complexes. In order to investigate and explore the DNA-binding mechanism, a series of novel polypyridyl ligands and their ruthenium(II) complexes have been synthesized. The major contents as follows:
     First, a new flexible ligand BPIP and its Ru(II) complexes [Ru(bpy)2(BPIP)](ClO4)2·H2O and [Ru(phen)2(BPIP)](ClO4)2·H2O (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline) have been synthesized and characterized by UV-vis, 1H NMR, and mass spectra. The binding of the two complexes with calf thymus DNA has been investigated by absorption, steady-state luminescence, CD spectra and viscosity measurements. The experimental results indicate that methene group existence or not have a significant effect on the DNA-binding and cleavage mechanism of these complexes.
     Secondly, a new polypyridyl ligand btip (btip = 2-benzo[b]thiophenimidazo [4,5-f]1,10-phenan-throline) which contain S atom and its ruthenium(II) complexes, [Ru(bpy)2(btip)]2+ and [Ru(dmb)2(btip)]2+ (dmb = 4,4'-dimethyl-2,2'-bipyridine) have been synthesized and characterized. The interactions of these complexes with DNA have been investigated. The effect of Cu2+ on the DNA interaction of the two complexes was studied by electronic absorption and emission methods.
     Otherwise, a new polypyridyl ligand tbtc and its ruthenium(II) complexes have been synthesized and characterized. The binding of the two complexes with calf thymus DNA has been investigated by absorption, steady-state luminescence, CD spectra and viscosity measurements. The results suggest that the complex [Ru(bpy)2(tbtc)](ClO4)2·2H2O was a good molecular“light switch”.
引文
[1]中原昭次,山内修.生物无机入门[M].天津:南开大学出版社, 1988.
    [2]杨频,高飞.生物无机化学原理[M].北京:科学出版社, 2002.
    [3]计亮年,黄锦汪,莫庭焕,等.生物无机化学导论[M].广东:中山大学出版社, 2001.
    [4] Guo Lianghong, Wei Mingyuan, Chen Hao. Multiple DNA Binding Modes of a Metallointercalator Revealed by DNA Film Voltammetry[J]. J. Phys. Chem. B., 2006, 110(41):20568-20571.
    [5] Liang Minmin, Liu Shili, Wei Mingyuan, et al. Photoelectrochemical Oxidation of DNA by Ruthenium Tris(bipyridine) on a Tin Oxide Nanoparticle Electrode[J]. Anal. Chem., 2006, 78(2):621-623.
    [6] Liang Minmin, Guo Lianghong. Photoelectrochemical DNA Sensor for the Rapid Detection of DNA Damage Induced by Styrene Oxide and the Fenton Reaction[J]. Environ. Sci. Technol., 2007, 41(2):658-664.
    [7] Barton J K. Metal and DNA:molecular left-handed complements[J]. Science, 1986, 233(4765):727-734.
    [8] Liu Yunjun, Chao Hui, Yuan Yixian, et al. Ruthenium(II) mixed-ligand complexes containing 2-(6-methyl-3-chromonyl)imidazo[4,5-f][1,10]-phenanthroline: Synthesis, DNA-binding and photocleavage studies[J]. J. Inorganica Chimica Acta, 2006, 359(12):3807-3814.
    [9] Li Hong, Mei Wenjie, Xu Zhenghe, et al. Electrochemistry of a novel monoruthenated porphyrin and its interaction with DNA[J]. Journal of Electroanalytical Chemistry, 2007, 600(2,15):243-250.
    [10] Wang Xiaoying, Zhou Jingming, Yun Wen, et al. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)32+-doped silica nanoparticle aptasensor via target protein-induced strand displacement[J]. Analytica Chimica Acta, 2007, 598(2,29):242-248.
    [11] Liu Jie, Zheng Wenjie, Shi Shuo, et al. Synthesis, antitumor activity and structure–activity relationships of a series of Ru(II) complexes[J]. Inorg. Biochem., 2008, 102(2):193-202.
    [12] Mei H Y, Barton J K. Chiral probe for A-form helixes of DNA and RNA: tris(tetramethylphenanthroline)ruthenium(II)[J]. J. Am. Chem. Soc., 1986, 108(23):7414-7416.
    [13] Pyle A M, Rehmann J P, Meshoyrer R, et al. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA[J]. J. Am. Chem. Soc., 1989, 111(8):3051-3058.
    [14] Choi S D, Kim S K, Lincoln P, et al. Binding Mode of [Ruthenium(II) (1,10-Phenanthroline)2L]2+ with Poly(dT*dA-dT) Triplex. Ligand Size Effect on Third-Strand Stabilization[J]. Biochemistry, 1997, 36(1):214-223.
    [15] Lincoln P, Broo A, Norden B. Diastereomeric DNA-Binding Geometries of Intercalated Ruthenium(II) Trischelates Probed by Linear Dichroism: [Ru(phen)2DPPZ]2+ and [Ru(phen)2BDPPZ]2+[J]. J. Am. Chem. Soc., 1996, 118(11):2644-2653.
    [16] Hiort C, Norden B, Rodger A. Enantiopreferential DNA binding of [ruthenium(II)(1,10-phenanthroline)3]2+ studied with linear and circular dichroism[J]. J. Am. Chem. Soc., 1990, 112(5):1971-1982.
    [17] Naing K, Takahashi M, Taniguchi M, et al. Interactions of Enantiomeric Ruthenium (II) Complexes with Polynucleotides as Studied by Circular Dichroism, Electric Dichroism Measurements, and Photolysis[J]. Inorg. Chem., 1995, 34(1):350-356.
    [18] Eriksson M, Leijon M, Hiort C, et al. Binding of .DELTA.- and .LAMBDA.-[Ru(phen)3]2+ to [d(CGCGATCGCG)]2 Studied by NMR[J]. Biochemistry, 1994, 33(17):5031-5040.
    [19] Collins J G, Sleeman A D, Wringt J R, et al. A 1H NMR Study of the DNA Binding of Ruthenium(II) Polypyridyl Complexes[J]. Inorg. Chem., 1998, 37(11):3133-3141.
    [20] Morgan R J, Chattrtjee S, Baker A D, et al. Effects of ligand planarity and peripheral charge on intercalative binding of Ru(2,2'-bipyridine)2L2+ to calf thymus DNA[J]. Inorg. Chem., 1991, 30(12):2687-2692.
    [21] Tysoe S A, Morgan R J, Baker A D, et al. Spectroscopic investigation of differential binding modes of .DELTA.- and .LAMBDA.-Ru(bpy)2(ppz)2+ with calf thymus DNA[J]. J. Phys. Chem., 1993, 97(8):1707-1711.
    [22] Helfand M S, Totir M A, Carey M P, et al. Following the Reactions of Mechanism-Based Inhibitors withβ-Lactamase by Raman Crystallography[J]. Biochemistry, 2003, 42(51):15398-15398.
    [23] Gert Admiraal, Johannis L Van der Veer, Rudolf A G De Graaff, et al. Intrastrand bis(guanine) chelation of trinucleoside diphosphate d(CpGpG) to cis-platinum: an x-ray single-crystal structure analysis[J]. J. Am. Chem. Soc., 1987, 109(2):592-594.
    [24] Zhang C X., Chang P V, Lippard S J. Identification of Nuclear Proteins that Interact with Platinum-Modified DNA by Photoaffinity Labeling[J]. J. Am. Chem. Soc., 2004, 126(21):6536-6537.
    [25] Matsuoka Y, Onodera T, Kojima T, et al. Novel Enzymatic Properties of DNA-Pt Complexes[J]. Biomacromolecules, 2007, 8(9):2684-2688.
    [26] Kelly J M, Tossi A B, Connell D J, et al. A study of the interactions of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation[J]. Nucl. Acids Res., 1985, 13:6017-6034.
    [27] Iwahara J, Clore G M. Direct Observation of Enhanced Translocation of a Homeodomain between DNA Cognate Sites by NMR Exchange Spectroscopy[J]. J. Am. Chem. Soc., 2006, 128(2):404-405.
    [28] Liu Jingang, Ye Baohui, Li Hong, et al. Polypyridyl ruthenium(II) complexes containing intramolecular hydrogen-bond ligand: syntheses, characterization, and DNA-binding properties[J]. J. Inorg. Biochem., 1999, 76(3-4,15):265-271.
    [29] Haq I, Lincoln P, Broo A, et al. Interaction of .DELTA.- and .LAMBDA.-[Ru(phen)2DPPZ]2+ with DNA: A Calorimetric and Equilibrium Binding Study[J]. J. Am. Chem. Soc., 1995, 117(17), 4788-4796.
    [30] Kuruvilla E, Joseph J, Ramaiah D. Novel Bifunctional Acridine-Acridinium Conjugates: Synthesis and Study of Their Chromophore-Selective Electron-Transfer and DNA-Binding Properties[J]. J. Phys. Chem. B., 2005, 109(46):21997-22002.
    [31] Tomoya Hirohama, Yuko Kuranuki, Eriko Ebina, et al. Copper(II) complexes of 1,10-phenanthroline-derived ligands: Studies on DNA binding properties and nuclease activity[J]. Journal of Inorganic Biochemistry, 2005, 99(5):1205-1219.
    [32] Yang Guang, Wu Jianzhong, Wang Lei, et al. Binding of novel octahedral metal complexes to DNA[J]. J. Inorg. Biochem., 1997, 67(1):289.
    [33] Cusumano M, Di Pietro M L, Giannetto A. DNA Interaction of Platinum(II) Complexes with 1,10-Phenanthroline and Extended Phenanthrolines[J]. Inorg. Chem., 2006, 45(1):230-235.
    [34] Suman Das, Gopinatha Suresh Kumar. Molecular aspects on the interaction of phenosafranine to deoxyribonucleic acid: Model for intercalative drug–DNA binding[J]. Journal of Molecular Structure, 2008, 872(1,15):56-63.
    [35] Jenkins Y, Friedman A E, Turro N J, et al. Characterization of dipyridophenazine complexes of ruthenium(II): The light switch effect as a function of nucleic acid sequence and conformation[J]. Biochemistry, 1992, 31(44):10809-10816.
    [36] Friedman A E, Chambron J C, Sauvage J P, et al. A molecular light switch for DNA: Ru(bpy)2(dppz)2+[J]. J. Am. Chem. Soc., 1990, 112(12):4960-4962.
    [37] Satyanarayana S, Dabrowiak J C, Chairs J B. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding[J]. Biochemistry, 1993, 32(10):2573-2584.
    [38]沈同,王镜岩,赵邦悌.生物化学[M].北京:人民教育出版社, 1983.
    [39] Barton J K, Dannenberg J J. Enantiomeric selectivity in binding tris(phenanthroline)zinc(II) to DNA[J]. J. Am. Chem. Soc., 1982, 104(18):4967-4969.
    [40] Barton J K, Goldberg J M, Kumar C T. Binding modes and base specificity of tris(phenanthroline)ruthenium(II) enantiomers with nucleic acids: tuning the stereoselectivity[J]. J. Am. Chem. Soc., 1986, 108(8):2081-2088.
    [41] Rehmann J P, Barton J K. Proton NMR studies of tris(phenanthroline) metal complexes bound to oligonucleotides: characterization of binding modes[J]. Biochemistry, 1990, 29(7):1701-1709.
    [42] Kyaw Naing, Masayuki Takahashi, Masahiro Taniguchi, et al. Electric dichroism evidence for intercalation of optically active [Ru(bpy)2(phi)]2+(phi = 9,10-phenanthrenequinone diimine, bpy = 2,2'-bipyridyl) by DNA[J]. J. Chem. Soc., Chem. Commun., 1993, 402.
    [43] Yamagishi A J. Electric dichroism evidence for stereospecific binding of optically active tris chelated complexes to DNA[J]. J. Phys. Chem., 1984, 88(23):5709-5713.
    [44] Eriksson M, Leijon M, Hiort C, et al. Minor groove binding of [Ru(phen)3]2+ to [d(CGCGATCGCG)]2 evidenced by two-dimensional NMR[J]. J. Am. Chem. Soc., 1992, 114(12):4933-4934.
    [45] Satyanaryna S, Dabrowiak J C, Chaeres J B. Neither .DELTA.- nor .LAMBDA.-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. [J] Biochemstry, 1992, 31(39):9319-9324.
    [46] Dupureur C M, Barton J K. Structural Studies ofΛ- andΔ-[Ru(phen)2dppz]2+ Bound to d(GTCGAC)2: Characterization of Enantioselective Intercalation[J]. Inorg. Chem., 1997, 36(1):33-43.
    [47] Lincoln P, Broo A, Nordén B. Diastereomeric DNA-Binding Geometries of Intercalated Ruthenium(II) Trischelates Probed by Linear Dichroism: [Ru(phen)2DPPZ]2+ and [Ru(phen)2BDPPZ]2+[J]. J. Am. Chem. Soc., 1996, 118(11):2644-2653.
    [48] Tuite E, Lincoln P, Nordén B. Photophysical Evidence ThatΔ- andΛ-[Ru(phen)2(dppz)]2+ Intercalate DNA from the Minor Groove[J]. J. Am. Chem. Soc., 1997, 119(1):239-240.
    [49] Holmlin R E, Stemp E D A, Barton J K. Ru(phen)2dppz2+ Luminescence: Dependence on DNA Sequences and Groove-Binding Agents[J]. Inorg. Chem., 1998, 37(1):29-34.
    [50] Holmlin R E, Dandliker P J, Barton J K. Charge Transfer through the DNA Base Stack. Angew. Chem. Int. Ed. Engl., 1997, 36(24):2714-2730.
    [51] Priyadarshy S, Risser S M, Beratan D N. DNA-mediated electron transfer[J]. J. Biol. Inorg. Chem., 1998, 3(2):196-200.
    [52] Wettig S D, Bare G A, Skinner R J S, et al. Signal Transduction through Dye-Labeled M-DNA Y-Branched Junctions: Switching Modulated by Chemical Reduction of Anthraquinone[J]. Nano Lett., 2003, 3(5):617-622.
    [53] Lewis F D, Letsinger R L. Distance-Dependent Photoinduced Electron Transfer in Synthetic Single-Strand and Hairpin DNA[J]. J. Biol. Inorg. Chem., 1998, 3:215-221.
    [54] Liu T, Barton J K. DNA Electrochemistry through the Base Pairs Not the Sugar-Phosphate Backbone[J]. J. Am. Chem. Soc., 2005, 127(29):10160-10161.
    [55] Wilson E K. DNA: Insulator or wire?[J]. Chem. & Eng. News, 1997, 75(8):33-39.
    [56] Diederichsen U. Charge transfer in DNA:a controversy[J]. Angew. Chem. Int. Ed. Engl., 1997, 36(21):2317-2319.
    [57] Stemp E D A, Arkin M R, Barton J K. Electron transfer between metallointercalators bound to DNA: Spectral identification of the transient intermediate[J]. J. Am. Chem. Soc., 1995, 117(8):2375-2376.
    [58] Chang I J, Winkler J R, Grag H B. High-driving-force electron transfer in metalloproteins: intramolecular oxidation of ferrocytochrome c by Ru(2,2'-bpy)2(im)(his-33)3+[J]. J. Am. Chem. Soc., 1991, 113(18):7056-7057.
    [59] Winkler J R, Grag H B. Electron transfer in ruthenium-modified proteins[J]. Chem. Rev., 1992, 92(3):369-379.
    [60] Cai Z, Li X, Sevilla M D. Excess Electron Transfer in DNA: Effect of Base Sequence and Proton Transfer[J]. J. Phys. Chem. B., 2002, 106(10):2755-2762.
    [61] Ito T, Rokita S E. Excess Electron Transfer from an Internally Conjugated Aromatic Amine to 5-Bromo-2'-deoxyuridine in DNA[J]. J. Am. Chem. Soc., 2003, 125(38):11480-11481.
    [62] Atherton S J, Beaumout P C. Photoinduced electron transfer reactions between copper ions and ethidium bromide in polynucleotides[J]. J. Phys. Chem., 1995, 99(31):12025-12029.
    [63] Manharan M, Tivel K L, Zhao M, et al. Base-Sequence Dependence of Emission Lifetimes for D141018-30-6NA Oligomers and Duplexes Covalently Labeled with Pyrene: Relative Electron-Transfer Quenching Efficiencies of A, G, C, and T Nucleosides toward Pyrene[J]. J. Phys. Chem., 1995, 99(48):17461-17472.
    [64] Holmlin R E, Stemp E D A, Barton J K. Os(phen)2dppz2+ in Photoinduced DNA-Mediated Electron Transfer Reactions[J]. J. Am. Chem. Soc., 1996, 118(22):5236-5244.
    [65] Olson E J C, Hu D, Hormann A, et al. Quantitative Modeling of DNA-Mediated Electron Transfer between Metallointercalators[J]. J. Phys. Chem.B., 1997, 101(3):299-303.
    [66] Hiort C, Lincoln P, Norde′n B. DNA binding of .DELTA.- and .LAMBDA.-[Ru(phen)2DPPZ]2+[J]. J. Am. Chem. Soc., 1993, 115(9):3448-3454.
    [67] Franklin S J, Treadway C R, Barton J K. A Reinvestigation by Circular Dichroism and NMR: Ruthenium(II) and Rhodium(III) Metallointercalators Do Not Bind Cooperatively to DNA[J]. Inorg. Chem., 1998, 37(20):5198-5210.
    [68] Fukuzumi S, Yukimoto K, Ohkubo K. DNA Cleavage Induced by Thermal Electron Transfer from a Dimeric NADH Analogue to Acridinium Ions in the Presence of Oxygen[J]. J. Am. Chem. Soc., 2004, 126(40):12794-12795.
    [69] Drummond T G, Hill M G, Barton J K. Electron Transfer Rates in DNA Films as a Function of Tether Length[J]. J. Am. Chem. Soc., 2004, 126(46):15010-15011.
    [70] Ding H, Greenberg M M. Hole Migration is the Major Pathway Involved in Alkali-Labile Lesion Formation in DNA by the Direct Effect of Ionizing Radiation[J]. J. Am. Chem. Soc., 2007, 129(4):772-773.
    [71] Marcus R A, Sutin N. Electron transfers in chemistry and biology Biochim Biophys Acta[J]. Biophys. Acta., 1985, 811:265-322.
    [72] Tuite T, Lincoln P, Norden B. Short-Circuiting the Molecular Wire: Cooperative Binding ofΛ-[Ru(phen)2dppz]2+ andΔ-[Rh(phi)2bipy]3+ to DNA[J]. J. Am. Chem. Soc., 1997, 119(6):1454-1455.
    [73]Anne M Brun, Anthony Harriman. Dynamics of electron transfer between intercalated polycyclic molecules: effect of interspersed bases[J]. J. Am. Chem. Soc.,1992, 114(10):3656-3660.
    [74] Meade T J, Kayyem J F. Electron Transfer through DNA: Site-Specific Modification of Duplex DNA with Ruthenium Donors and Acceptors[J]. Angew. Chem. Int. Ed. Engl., 1995, 34(3):352-354.
    [75] Hennig D., Archill J. F. R., Agarwal J. Nonlinear charge transport mechanism in periodic and disordered DNA[J ]. Physica D, 2003, 180(3-4):256-272.
    [76] Kalosakas G., Rasmussen K. ?., Bishop A. R. Nonlinear excitati2ons in DNA: polarons and bubbles[J ]. Synthetic Metals, 2004, 141(1-2):93-97.
    [77] Keppler B K. New ruthenium complexes for the treatment of cancer[J]. Prog. Clin. Biochem. Med., 1989, 10:41-69.
    [78]汪中明,计亮年.钌配合物的抗肿瘤活性研究进展[J].化学进展. 2002, 14(4):296-304.
    [79] Clarke M J. Ruthenium metallopharmaceuticals[J]. Coord. Chem. Rev., 2003, 236:207-231.
    [80] Arounaguiri A, Maiya B G. "Electro-Photo Switch" and "Molecular Light Switch" Devices Based on Ruthenium(II) Complexes of Modified Dipyridophenazine Ligands: Modulation of the Photochemical Function through Ligand Design[J]. Inorg. Chem., 1999, 38(5):842-843.
    [81] Moucheron C, Mesmaeker A K D, Choua S. Photophysics of Ru(phen)2(PHEHAT)2+: A Novel "Light Switch" for DNA and Photo-oxidant for Mononucleotides[J]. Inorg. Chem., 1997, 36(4):584-592.
    [82] Barton J K, Dannenb J J, Raphael A L. Photoactivated stereospecific cleavage of double-helical DNA by cobalt(III) complexes[J]. J. Am. Chem. Soc., 1984, 106(8):2175-2468.
    [83] Gao Feng, Chao Hui, Zhou Feng, et al. DNA interactions of a functionalized ruthenium(II) mixed-polypyridyl complex [Ru(bpy)2ppd]2+[J]. J. Inorg. Biochem., 2006, 100(9):1487-1494.
    [84] Krotz A H, Hudson B P, Barton J K. Assembly of DNA recognition elements on an octahedral rhodium intercalator: predictive recognition of 5'-TGCA-3' by .DELTA.-[Rh(R,R)-Me2trien]phi]3+[J]. J. Am. Chem. Soc., 1993, 115(26):12577-12578.
    [85] Xiong Ya, Ji Liangnian. DNA-binding and DNA-mediated luminescence quenching of Ru(II) polypyridine complexes[J]. Coord. Chem. Rev., 1999, 185-186:711-733.
    [86] Ji Liangnian, Zou Xiaohua, Liu Jingang. Shape and enantioselective interaction of Ru (II)/Co (III) polypyridyl complexes with DNA[J]. Coord. Chem. Rev., 2001, 216-217:513-536.
    [87] Mei Wenjie, Liu Jian, Zheng Kangcheng, et al. Experimental and theoretical study on DNA-binding and photocleavage properties of chiral complexesΔ- andΛ-[Ru(bpy)2L](L =o-hpip, m-hpip and p-hpip)[J]. J. Chem. Soc., Dalton Trans., 2003:1352-1359.
    [88] Wu Jianzhong, Ye Baohui, Wang Lei, et al. Bis(2,2' -bipyridine) ruthenium(II) complexes with imidazo[J]. J. Chem. Soc.,Dalton Trans., 1997:1395-1401.
    [89] Zhen Qixiong, Ye Baohui, Zhang Qianling, et al. Synthesis characterization and the effect of ligand planarity of [Ru(bpy)2L]2+ on DNA binding affinity[J]. J. Inorg. Biochem., 1999, 76(76):47-53.
    [90] Goldstein B M, Barton J K, Berman H M. Crystal and molecular structure of a chiral-specific DNA-binding agent[J]. Inorg. Biochem., 1986, 25(6):842-847.
    [91] Peter J Barnard and Robert S Vagg. A spectroscopic investigation of the self-association and DNA binding properties of a series of ternary ruthenium(II) complexes[J]. Journal of Inorganic Biochemistry, 2005, 99(5):1009-1017.
    [92] Paw W, Eisenberg R. Synthesis, Characterization, and Spectroscopy of Dipyridocatecholate Complexes of Platinum[J]. Inorg. Chem., Inorg. Chem., 1997, 36(11):2287-2293.
    [93] Sullivan B P, Salmon D J, Meyer T J. Mixed phosphine 2,2'-bipyridine complexes of ruthenium[J]. Inorg. Chem.,1978, 17(12):3334-3341.
    [94] Xiao X M, Haga M, Matsunura-Inoue T, et al. Synthesis and Proton Transfer-Linked Redox Tuning of Ruthenium(II)Complexes with Tridentate 2 6-Bis(benzimidazole-2-yl) Pyridine Ligands[J]. J. Chem. Soc., Dalton Trans., 1993, 12(6):2447-2484.
    [95] Juris A, Balzani V, Barigelletti F, et al. Ruthenium(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence[J]. Coord. Chem. Rev., 1988, 84:85-227.
    [96] Kalyanasundaram K. Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogs[J]. Coord. Chem. Rev., 1982, 46:159-244.
    [97] Crosby G A. Spectroscopic investigations of excited states of transition-metal complexes[J]. Acc. Chem. Res., 1975, 8:231-241.
    [98] Bolger J, Gourden J, Ishow E, et al. Mononuclear and Binuclear Tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz) Ruthenium and Osmium Complexes[J]. Inorg. Chem., 1996, 35(10):2937-2944.
    [99] Harsh R H, Barton J K. Novel dipyridophenazine complexes of ruthenium(II): exploring luminescent reporters of DNA[J]. J. Am. Chem. Soc., 1992, 114(15):5919-5925.
    [100] Tan Lifeng, Chao Hui, Li Hong, et al. Synthesis, characterization, DNA-binding and photocleavage studies of [Ru(bpy)2(PPIP)]2+ and [Ru(phen)2(PPIP)]2+[J]. J. Inorg. Biochem., 2005, 99(2):513-520.
    [101] Tan Lifeng, Chao Hui, Liu Yunjun, et al. DNA-binding and photocleavage studies of [Ru(phen)2(NMIP)]2+[J]. Inorg. Chim. Acta., 2005, 358(7):2191-2198.
    [102] Tokel N E, Bard A J. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride[J]. J. Am. Chem. Soc., 1972, 94(8):2862-2863.
    [103] Knight A W. A review of recent trends in analytical applications of electrogenerated chemiluminescence[J]. Trends. Anal. Chem., 1999, 18(1):47-62.
    [104] Han Heyou, He Zhike, Zeng Yune. Study on the chemiluminescent characteristics of mulitbipyridine ruthenium (II) complexes[J]. Acta. Chim. Sinica., 2001, 59(9):1513-1518.
    [105] Kumar C V, Barton J K, Turro N J. Photophysics of ruthenium complexes bound to double helical DNA[J]. J. Am. Chem. Soc., 1985, 107(19):5518-5523.
    [106] Friedman A E, Kumar C T, Turro N J, et al. Luminescence of Ruthenium (II) Polypyridyls: Evidence for Intercalative Binding to Z-DNA[J]. Nucleic Acids Res., 1991, 19(10):2595-2602.
    [107] Stijn Wuyts, Dirk E De Vos, Francis Verpoort, et al. A heterogeneous Ru–hydroxyapatite catalyst for mild racemization of alcohols[J]. Journal of Catalysis, 2003, 219(2,25):417-424.
    [108] Opre Z, Grunwaldt J D, Maciejewski M, et al. Promoted Ru–hydroxyapatite: designed structure for the fast and highly selective oxidation of alcohols with oxygen[J]. Journal of Catalysis, 2005, 230(2,10):406-419.
    [109] T?nsuaadu K, Gruselle M, Villain F, et al. A new glance at ruthenium sorption mechanism on hydroxy, carbonate, and fluor apatites: Analytical and structural studies[J]. Journal of Colloid and Interface Science, 2006, 304(2,15):283-291.
    [110] Opre Z, Ferri D, Krumeich F, et al. Insight into the nature of active redox sites in Ru-containing hydroxyapatite by DRIFT spectroscopy[J]. Journal of Catalysis, 2007, 251(1,1):48-58.
    [111] Lecomte J P, Mesmaeker A K, Feeney M M, et al. Ruthenium(II) Complexes with 1,4,5,8,9,12-Hexaazatriphenylene and 1,4,5,8-Tetraazaphenanthrene Ligands: Key Role Played by the Photoelectron Transfer in DNA Cleavage and Adduct Formation[J]. Inorg. Chem., 1995, 34(26):6481-6491.
    [112] Alexander L Ruchelman, Sudhir K Singh, Abhijit Ray, et al. 11H-Isoquino[4,3-c]cinnolin-12-ones: novel anticancer agents with potent topoisomerase-I targeting activity and cytotoxicity[J]. Bioorganic & Medicinal Chemistry.,2004, 12(44):795-806.
    [113] Wolf A, Shimer G H, Meehan T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA[J]. Biochemistry, 1987, 26(20):6392-6396.
    [114] Cheng C C, Kuo Y N, Chuang K S, et al. A New CoII Complex as a Bulge-Specific Probe for DNA[J]. Angew. Chem. Int. Ed. Engl., 1999, 38(9):1255-1257.
    [115] Sigman D S, Mazumder A, Perrin D M. Chemical nucleases[J]. Chem. Rev., 1993, 93(6):2295-2316.
    [116] Hickerson R P, Perez R J, Burrows C J. DNA Damage from Sulfite Autoxidation Catalyzed by a Nickel(II) Peptide[J]. J. Am. Chem. Soc., 1997, 119(7):1501-1506.
    [117] Sigman D S, Bruice T W, Mazumder A. Targeted chemical nucleases[J]. Acc. Chem. Res., 1993, 26(3):98-104.
    [118] Tullins T D. Physical studies of protein-DNA complexes by footprinting[J]. Ann. Rev. Biophys. Chem., 1989, 18:213-237.
    [119] Graham D R, Sigman D S. Zinc ion in Escherichia coli DNA polymerase: a reinvestigation[J]. Inorg. Chem., 1984, 23(25):4188-4191.
    [120] Dervan P B. Design of sequence-specific DNA-binding molecules[J]. Science, 1986, 232(4749):464-471.
    [121] Tan Lifeng, Chao Hui, Zhou Yangfan, et al. Synthesis, characterization, DNA-binding and DNA-photocleavage studies of [Ru(bpy)2(BPIP)]2+ and [Ru(phen)2(BPIP)]2+(BPIP = 2-(4′-biphenyl)imidazo[4,5-f][1,10]phenanthroline)[J]. Polyhedron,. 2007, 26(13):3029-3036.
    [122] Nilsson R, Merkel P R, Kearns D R. Unambiguous evidence for the participation of singlet oxygen (1Δ) in photodynamic oxidation of amino acids[J]. Photochem. Photobiol., 1972, 16(2):117-124.
    [123] Lesko S A, Lorentzen R J, Ts’o P O. Role of superoxide in deoxyribonucleic acid strand scission[J]. Biochem., 1980, 19(13):3023-3028.
    [124] Cheng C C, Rokita S E, Burrows C J. Nickel(III)-Promoted DNA Cleavage by Ambient Molecular Oxygen[J]. Angew. Chem. Int. Ed. Engl., 1993, 32:277-278.
    [125] Sullivan B P, Salmon D J, Meyer T J. Mixed phosphine 2,2'-bipyridine complexes of ruthenium[J]. Inorg. Chem., 1978, 17(12):3334-3341.
    [126] Hage R, Diemen J H, Ehrlich G, et al. Ruthenium compounds containing pyridyltriazines with low-lying .pi.* orbitals[J]. Inorg. Chem., 1990, 29(5):988-993.
    [127] Meadows K A, Fiu F, Sou J, et al. Spectroscopic and photophysical studies of the binding interactions between copper phenanthroline complexes and RNA[J]. Inorg. Chem., 1993, 32(13):2919-2923.
    [128] Tysoe S A, Kopelman R, Schelzig D. Flipping the Molecular Light Switch Off: Formation of DNA-Bound Heterobimetallic Complexes Using Ru(bpy)2tpphz2+ and Transition Metal Ions[J]. Inorg. Chem., 1999, 38(23):5196-5470.
    [129] Jackson B A, Alekseyev V Y, Barton J K. A Versatile Mismatch Recognition Agent: Specific Cleavage of a Plasmid DNA at a Single Base Mispair[J]. Biochemistry, 1999, 38(15):4655-4662.
    [130] Zheng Kangcheng, Liu Xuewen, Wang Juping, et al. DFT studies on the molecular orbitals and related properties of [Ru(phen)2(9,9'-2R-dpq)]2+(R=NH2,OH,H and F)[J]. Journal of Molecular Structure: THEOCHEM, 2003, 637(1-3):195-203.
    [131] Anand K Kondapi, Nathamu Satyanarayana, Saikrishna A D. A study of the Topoisomerase II activity in HIV-1 replication using the ferrocene derivatives as probes[J]. Archives of Biochemistry and Biophysics, 2006, 450(2,15):123-132.
    [132] Kenichi Maruyama, Yuji Mishima, Keiji Minagawa, et al. Electrochemical and DNA-binding properties of dipyridophenazine complexes of osmium(II)[J]. Journal of Electroanalytical Chemistry, 2001, 510(1-2,7):96-102.
    [133] Maximino Bedoya, María T Díez, María C Moreno-Bondi, et al. Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection[J]. Sensors and Actuators B: Chemical, 2006, 113(2,27):573-581.
    [134] Deng Hong, Li Jun, Zheng Kangcheng, et al. Synthesis, characterization, structures and DNA-binding properties of complexes [Ru(bpy)2(L)]2+ (L=ptdb, ptda and ptdp) with asymmetric intercalative ligands.Inorganica Chimica Acta, 2005, 358(12,1):3430-3440.
    [135] Stemp E D A, Barton J K. Ru(phen)2dppz2+ Luminescence: Dependence on DNA Sequences and Groove-Binding Agents[J]. J. Inorg. Chem., 1998, 37(1):29-34.
    [136] Tarita Biver, Claudia Cavazza, Fernando Secco, et al. The two modes of binding of Ru(phen)2dppz2+ to DNA: Thermodynamic evidence and kinetic studies[J]. Journal of Inorganic Biochemistry, 2007, 101(3):461-469.
    [137] Hactshon R H, Barton J K. Novel dipyridophenazine complexes of ruthenium(II): exploring luminescent reporters of DNA[J]. J. Am. Chem. Soc., 1992, 114(15):5919-5925.
    [138] Liu Xuewen, Li Jun, Li Hong, et al. Synthesis, characterization, DNA-binding and photocleavage of complexes [Ru(phen)2(6-OH-dppz)]2+ and [Ru(phen)2(6-NO2-dppz)]2+[J]. J. Inorg. Biochem., 2005, 99(12):2372-2380.
    [139] Ling Liansheng, He Zhike, Chen Fang, et al. Single-mismatch detection using nucleic acid molecular‘light switch’[J]. Talanta, 2003, 59(2):269-275.
    [140] Li Jun, Chen Jincan, Xu Liancai, et al. A DFT/TDDFT study on the structures, trend in DNA-binding and spectral properties of molecular“light switch”complexes [Ru(phen)2(L)]2+(L = dppz, taptp, phehat)[J]. Journal of Organometallic Chemistry, 2007, 692(4,15):831-838.
    [141] Michiko Atsumi, Leticia González and Chantal Daniel. Spectroscopy of Ru(II) polypyridyl complexes used as intercalators in DNA: Towards a theoretical study of the light switch effect[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190(2-3,15):310-320.
    [142] Collin J P, Sauvage J P. Synthesis and study of mononuclear ruthenium(II) complexes of sterically hindering diimine chelates. Implications for the catalytic oxidation of water to molecular oxyge[J]. Inorg. Chem., 1986, 25(2):135-141.
    [143] Xu Hong, Zheng Kangcheng, Cheng Yang, et al. Effects of ligand planarity on the interaction of polypyridyl Ru(II) complexes with DNA[J]. J. Chem. Soc., Dalton Trans., 2003, (11):2260-2268.
    [144] Liu Jingang, Zhang Qianling, Shi Xianfa, et al. Interaction of [Ru(dmp)2(dppz)]2+ and [Ru(dmb)2(dppz)]2+ with DNA: Effects of the Ancillary Ligands on the DNA-Binding Behaviors[J]. Inorg. Chem., 2001, 40(19):5045-5050.
    [145] Kumar C V, Turro N J, Barton J K. Photophysics of ruthenium complexes bound to double helical DNA[J]. J. Am. Chem. Soc., 1985, 107(19):5518-5523.
    [146] Zhen Qixin, Liu Jianhong, Liu Jianzhong, et al. DNA-binding and photoactivated enantiospecific cleavage of chiral polypyridyl ruthenium(II) complexes[J]. J. Inorg. Biochem., 2004, 98(8):1405-1412.
    [147] Yam V W, Lo K K, Cheung K K, et al. Deoxyribonucleic acid binding and photocleavage studies of rhenium(II) dipyridophenazine complexes[J]. J. Chem. Soc. Dalton. Trans., 1997:2067-2072.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700