用户名: 密码: 验证码:
聚丙烯酸酯与有机硅杂化及酞菁功能杂化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由两部分研究工作组成。第一部分是聚丙烯酸酯与有机硅杂化反应研究,第二部分是聚丙烯酸酯与酞菁及其衍生物的功能杂化研究。
     第一部分,首先通过乳液聚合方法,采用壬基酚聚氧乙烯醚(OP-10)和十二烷基苯磺酸钠(SDBS)作为乳化剂,合成了苯乙烯(St)/丙烯酸丁酯(BA)/乙酸乙烯酯(VAc)/丙烯酸-2-乙基己酯(2-EHA)四元共聚物,然后利用聚乙烯醇(PVA)代替SDBS,与OP-10组成低皂乳化剂,再一次合成出四元共聚物。当PVA用量为5%,聚合转化率最大,稳定性最好。同时以硅溶胶和正硅酸乙酯(TEOS)与四元共聚物进行杂化反应,红外分析证明TEOS在体系中经水解缩合参与羟基基团反应而得到有机-无机杂化乳液。当固定二氧化硅(SiO2)含量时,TEOS和硅溶胶的用量比对胶膜抗张强度的影响较大,通过测试证明当用量比TEOS:硅溶胶=1:1时,抗张强度有最大值。
     第二部分,将实验室合成出来的铜酞菁(CuPc)与氯磺酸(HSO3Cl)反应,在酞菁苯环引入取代基团-SO2Cl,使得金属酞菁活化,这样不仅增加了其反应性,而且溶解性实验表明取代基团-SO2Cl的引入改善了其溶解性,将得到的CuPc-SO2Cl与咔唑反应,生成含金属CuPc、咔唑双官能团的化合物,接着采用非激光评估法-溶剂化变色法测定了其二阶非线性光学系数与基态偶极矩复合量βCTμg值是3.71×10-29 esu.D,表明咔唑/CuPc是一类具有潜在二阶非线性光学性能的化合物,最后通过溶液聚合法,合成出St/BA/甲基丙烯酸甲酯(MMA)三元共聚物,同时将合成的CuPc,钛氧酞菁(TiOPc)和咔唑/CuPc与聚丙烯酸酯分别进行功能杂化,通过红外证明CuPc,TiOPc和咔唑/CuPc的结构未发生明显的变化,聚丙烯酸酯可以作为潜在的载体。
This thesis is divided into two parts. The first part focuses on polyacrylate hybridized with organosilicon. The second part is polyacrylate functionally hybridized with phthalocyanine and its derivatives.
     In the first part, using polyoxyethylene(10) nonyl phenyl ether (OP-10), and sodium dodecylbenzene sulfonate (SDBS) as emulsifier, and synthesis of styrene (St) /butyl acrylate(BA)/vinyl acetate (VAc)/2-ethylhexylacrylate(2-EHA) tetrapolymer through the emulsion polymerization. Then SDBS was replaced by PVA, and OP-10 to be the low-soap emulsifier. Tetrapolymer was synthesized again, when 5% PVA, the largest polymerization conversion rate, the best stability. A new kind of hybrid emulsion was synthesized by silica sol, TEOS and the tetrapolymer. Infrared spectrum (IR) proved that hydrolytic condensation polymeric reaction happened among PVA, silica sol and TEOS in the organic-inorganic hybrid emulsion. When fixed the content of silica, the ratio between silica sol and TEOS had strong influence on the tensile strength of membrane, when tested by using TEOS: Silica sol was 1:1, the membrane had a maximum tensile strength.
     In the second part, the copper phthalocyanine (CuPc) reacting with chlorosulfonic acid (HSO3Cl) resulted that -SO2Cl is in the benzene ring, which enhanced reactivity and dissolubility of CuPc. The experiments showed that -SO2Cl group improved its dissolubility. Carbazole/CuPc-SO2Cl was synthesized by reaction between CuPc-SO2Cl and carbazole. Then the values of the nonlinear optical second-order polarizabilities and the ground state permanent dipole moments(βCTμg) was calculated by a non-laser evaluation method-the solvatochromic method. The value ofβCTμg of CuPc/Carbazole compounds was 3.71×10-29μg esu.D, which showed that carbazole/CuPc was a latent second optical compound. Finally, synthesis of styrene (St) / butyl acrylate (BA) /methyl methacrylate (MMA) terpolymer through solution polymerization.and it was functionally hybridized with CuPc, oxotitanium phthalocyanine(TiOPc), and carbazole/CuPc independently. IR could prove that CuPc, TiOPc and carbazole/CuPc had no noticeable change in their structures and polyacrylate would be a potential carrier.
引文
[1]刘安华,温永向,张利利.含硅有机/无机纳米杂化材料.功能材料,2005,36(5): 658-661
    [2]张贻瑞,王建.基础材料与新材料.天津:天津大学出版社,1994.43-56
    [3]李旭华,袁荞龙,王得宁.杂化材料的制备、性能及应用.功能高分子学报,2000,24(6):211-218
    [4] Kojima A Y, Usuki M, Kawasumi A, et al. Synthesis of nylon 6-clay hybrid by montonorillt intercalated withε-caprolactam. J.Polym.Sci., 1993, 15(31): 983-986
    [5] Messersmith P B, Giannelis E P. Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem.Mater., 1994, 11(6): 1719-1726
    [6] Mark J E, Lee C Y C, Bianconi P A. Hybrid organic-inorganic composites. ACS Symp.Ser., 1995, 9(1): 5858-5860
    [7] Shi H, Lan T, Pinnavaia T J. Interfacial effects on the reinforcement properties of polymer-organoclay nanocomposites.Chem.Mater., 1996, 56(8): 1584-1587
    [8] Krishnamoorti R, Vaia R A, Giannelis E P. Structure and dynamics of polymer-layered silicate nancomposites. Chem.Mater., 1996, 56(8): 1728-1734
    [9] Giannelis E P. Polymer layered silicate nanocomposites. Adv.Mater., 1996, 10(8): 29-35
    [10] Novak B M. Hybrid nanocomposite materials-between inorganic glasses and organic polymer. Adv.Mater., 1993, 5(5): 422-427
    [11] Ellsworth M W, Novak B M. Mutually interpenetrating inorganic-organic networks new route into non-shrinking sol-gel composite materials. J.Am.Chem.Soc., 1991, 6(113): 2756-2758
    [12] Novak B M, Davies C.“Inverse”organic-inorganic composite materials 2 free-radical route into non-shrinking sol-gel composites. Macromolecules, 1991, 8(24): 5481-5483
    [13] Novak B M, Ellsworth M W.“Inverse”organic-inorganic composite materials: high glass content non-shrinking sol-gel composite. Mater.Sci.Eng.A, 1993,16(8):257-264
    [14] Ellsworth M W, Novak B M.“Inverse”organic-inorganic composite materials: 3 High glass-content“non-shrinking”sol-gel composites via poly(silica acid esters). Chem.Mater., 1993, 18(5): 839-844
    [15] Huang H H, Wilkes G L, Carlson J G. Structure-properties behavior of hybrid materials incorporating tetraethoxysilane with multifunction poly (tetramethylaneoxide) . Polymer, 1989, 8(30): 2001-2012
    [16] Wei Y, Bakthavatchalam R., Whiteca C K. Synthesis of new organic-inorganic hybrid glasses. Chem.Mater., 1990, 3(2): 337-340
    [17] Huo Q, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem.Mater., 1994, 8(6): 1176-1185
    [18] Loy D A, Shea K J. Bridged polysilsesquioxenes highly process hybrid organic-inorganic materials. Chem.Rev., 1995, 8(95): 1431-1442
    [19] Schubert U, Husing N, Lorenz A. Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides. Chem.Mater., 1995, 11(7): 2010-2027
    [20] Loy D A, Jamison G M, Baugher B M, et al. Sol-gel synthesis of hybrid organic-inorganic material: hexylene and phenylene bridged polysiloxanes. Chem. Mater., 1996, 25(8): 656-663
    [21] Jackson C L, Bauer B J, Nakatani A I, et al. Synthesis of hybrid organic-inorganic materials from interpenetrating polymer network chemistry. Chem.Mater., 1996, 14(8): 727-733
    [22] Wen J, Wikes G L. Organic-inorganic hybrid materials by the sol-gel approach. Chem.Mater., 1996, 15(8): 1667-1681
    [23] Hobson S T, Shea K J. Bridged bisimide polysilsequioxaance xerogels: new hybrid organic-inorganic materials. Chem.Mater., 1997,18(9): 616-623
    [24] Judeinstein P, Sanchez C. Hybrid organic-inorganic materials: a land of multidisciplinarity. J.Mater.Chem., 1996, 13(6): 511-526
    [25] Lakshmi B B, Dorhout P K, Martin C R. Sol-gel template synthesis of semiconductor nanostructures. Chem.Mater., 1997, 18(7): 857-862
    [26] Tassoni R, Schrock R R. Synthesis of PbS nanoclusters within microphase-separated diblock copolymer films. Chem.Mater., 1994, 9(6): 744-750
    [27] Antonietti M, Wenz E, Bronstein L, et al. Synthesis and characterization of noble-metal colloids in block-copolymer micelles. Adv.Mater., 1995, 10(7): 1000-1004
    [28] Mark J E. Ceramic-reinforced polymers and polymer-modified ceramics. Polymer Engineering and Science, 1996, 24(2): 2905-2920
    [29] Tamami B, Betrabet C, Wilkes G L. New creamer high optical abrasion resistant transparent coating materials based on functionalized melamine and a tris(m-aminophenyl)phosphine oxide compound. Polymer Bulletin, 1993, 30(5): 39-45
    [30]刘晓蕾,何毅,李赛等.聚ε-己内酯/SiO,2杂化材料的制备.四川大学学报(工程科学版),2003,35(1):59-62
    [31]王世敏,吴崇浩,赵雷等.聚二甲基硅氧烷/SiO2杂化材料的制备与性能研究.材料科学与工程学报,2003,21( 2):205-207
    [32]袁坚,刘明志,程金树等.溶胶凝胶法聚醋酸乙烯酯/二氧化硅有机无机杂化材料的制备及表征.武汉理工大学学报,2001,23( 2):1-3
    [33]田春蓉,王建华,顾远.PDMS/SiO2杂化材料的合成与性能研究.化工新型材料,2006,34( 7):17-20
    [34]石智强,刘孝波.PU/SiO2杂化材料的制备与表征.合成树脂及塑料,2004,21( 2):48-51
    [35]陆绍荣,张海良,王霞瑜.环氧树脂/二氧化硅杂化材料的制备与性能.高分子材料科学与工程,2005,21( 6):261-265
    [36]陶华锋,张林,王金凤.溶胶凝胶法制备PMMA/SiO2杂化材料.强激光与粒子束,2006,18( 2):223-226
    [37]毋登辉,高子伟,高玲香.溶胶凝胶法制备β-环糊精聚合物/二氧化钛有机-无机杂化材料.化学学报,2006,64( 8):716-720
    [38]张隽,罗胜成,桂琳琳等.PMMA-TiO2有机无机杂化玻璃的制备与表征.物理化学学报,1996,9(12):289-292
    [39]解廷秀,周重光,冯圣玉.溶胶-凝胶法制备PVC/SiO2杂化材料及其性能研究.应用基础与工程科学学报,1999,7(2):158-162
    [40]张晔,周贵恩,李磊等.纳米TiO2-甲基丙烯酸甲酯聚合物均匀分散系的制备和结构.材料研究学报,1998,12(3):291-294
    [41] Liu Jing, Gao Yan. Preparation and characteristic of a new class of silica/polyimide nanocomposites. Journal of Materials Science, 2002, 18(37): 3085-3088
    [42]崔冬梅,宋昌颖,金晶.聚酰亚胺/二氧化硅纳米杂化材料制备.吉林工学院学报,2001,22(4):20-23
    [43] Harreld J H, Dunn B, Nazar L F. Design and synthesis of inorganic–organic hybrid microstructures. International Journal of Inorganic Materials, 1999, 16(1): 135-146
    [44] Genevie`ve Cerveau, Robert J P Corriu, Eric Framery, et al. Auto-organization of nanostructured organic-inorganic hybrid xerogels prepared by sol-gel processing: the case of a“twisted”allenic precursor. Chem.Mater., 2004, 118(16): 3794-3799
    [45] Francüois Rullens, Andre′Laschewsky, Michel Devillers. Bulk and thin films of bismuth vanadates prepared from hybrid materials made from an organic polymer and inorganic salts. Chem.Mater., 2006, 118(14): 771-777
    [46]陈莲英,章文贡.纳米铜/聚苯乙烯-丁二烯(SBS)杂化材料研究.福建林学院学报,2006,26(1):26-30
    [47]柯昌美,汪厚植,赵惠忠.纳米纯丙胶乳制备TiO2-SiO2杂化材料的研究.高分子材料科学与工程,2005,21(5):282-285
    [48]倪克钒,单国荣,翁志学.有机-无机杂化核壳型乳胶粒的制备.化工学报,2006,56(2):352-357
    [49]张玲,曾兆华,杨建文等.光固化聚氨酯丙烯酸酯杂化材料的核磁共振谱.应用化学,2004,21( 3):291-295
    [50] Xiong Mingna, Zhou Shuxue, You Bo, et al. Trialkoxysilane-capped acrylic resin/titania organic–inorganic hybrid optical films prepared by the sol–gel process. Journal of Polymer Science: Part B: Polymer Physics, 2005, 43(5): 637–649
    [51]熊明娜,陈辉,周树学等.丙烯酸树脂/TiO2有机-无机杂化材料的表面性质研究.上海化工,2004,14(5):21-24
    [52]王胜杰,李强,漆宗能等.硅橡胶/蒙脱土复合材料的制备、结构与性能.高分子学报,1998,42(2):149-153
    [53]胡平,范守善,万建伟.碳纳米管/UHMWPE复合材料的研究.工程塑料应用,1998,26(1):1-3
    [54]吴莹,闻荻江,鞠金梅.二茂铁衍生物-钼磷酸杂化材料的合成与性质.材料科学与工程学报,2004,22(6):820-822
    [55]耿丽娜,王淑荣,李鹏.聚吡咯/二氧化锡杂化材料的制备及气敏性研究.无机化学学报,2005,21(7):977-981
    [56] Caruso F, Lichtenfeld H, Giersig M, et al. Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles. J.Am. Chem.Soc., 1998, 120(33): 8523-8524
    [57] Gao Mingyuan, Zhang Xi, Yang Bai, et al. Assembly of modified CdS particles/cationic polymer based on electrostatic interactions. Thin Solid Films, 1996, 284(15): 242-245
    [58]刘华蓉,葛学武,倪永红等.无机/有机纳米复合材料的研究进展.化学进展,2001,13(5):403-409
    [59] Hyoryoon Jo, Frank D B. Hydrolysis adsorption and its structure of 3-acryloxypropyltrimethoxysilane. Polymer, 1996, 37(1): 737-738
    [60] Hyoryoon Jo, Frank D B. Charaterization of the interface in polymer-silica composites containing an acrylic silane coupling agent. Chem.Mater., 1999, 78(11): 2548-2553
    [61]张志毅,赵宁,魏伟.SiO2/PBA/PMMA和CaCO3/PBA/PMMA核壳结构纳米材料的制备与表征.精细化工,2005,22(2):149-152
    [62]董秀芳.制备有机-无机纳米复合材料方法研讨.华北工学院学报,2004,25(4):293-296
    [63] Frank Dietsche, Yi Thomann, Ralf Thomann, et al. Translucent acrylic nanocomposites containing anisotropic laminated nanoparticles derived from intercalated layered silicates. Journal of Applied Polymer Science, 2000, 75(5):究.上海化工,2004,14(5):21-24
    [52]王胜杰,李强,漆宗能等.硅橡胶/蒙脱土复合材料的制备、结构与性能.高分子学报,1998,42(2):149-153
    [53]胡平,范守善,万建伟.碳纳米管/UHMWPE复合材料的研究.工程塑料应用,1998,26(1):1-3
    [54]吴莹,闻荻江,鞠金梅.二茂铁衍生物-钼磷酸杂化材料的合成与性质.材料科学与工程学报,2004,22(6):820-822
    [55]耿丽娜,王淑荣,李鹏.聚吡咯/二氧化锡杂化材料的制备及气敏性研究.无机化学学报,2005,21(7):977-981
    [56] Caruso F, Lichtenfeld H, Giersig M, et al. Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles. J.Am. Chem.Soc., 1998, 120(33): 8523-8524
    [57] Gao Mingyuan, Zhang Xi, Yang Bai, et al. Assembly of modified CdS particles/cationic polymer based on electrostatic interactions. Thin Solid Films, 1996, 284(15): 242-245
    [58]刘华蓉,葛学武,倪永红等.无机/有机纳米复合材料的研究进展.化学进展,2001,13(5):403-409
    [59] Hyoryoon Jo, Frank D B. Hydrolysis adsorption and its structure of 3-acryloxypropyltrimethoxysilane. Polymer, 1996, 37(1): 737-738
    [60] Hyoryoon Jo, Frank D B. Charaterization of the interface in polymer-silica composites containing an acrylic silane coupling agent. Chem.Mater., 1999, 78(11): 2548-2553
    [61]张志毅,赵宁,魏伟.SiO2/PBA/PMMA和CaCO3/PBA/PMMA核壳结构纳米材料的制备与表征.精细化工,2005,22(2):149-152
    [62]董秀芳.制备有机-无机纳米复合材料方法研讨.华北工学院学报,2004,25(4):293-296
    [63] Frank Dietsche, Yi Thomann, Ralf Thomann, et al. Translucent acrylic nanocomposites containing anisotropic laminated nanoparticles derived from intercalated layered silicates. Journal of Applied Polymer Science, 2000, 75(5):materials with Eu(III) complexes role of ligand, coligand, anion, and matrix. Chem.Mater., 2003, 15(3): 656-663
    [77] Strek W, Sokolnicki J, Legendziewicz J, et al. Optical properties of Eu(III) chelates trapped in gel glasses. Opt.Mater., 1999, 13(1): 41-48
    [78] Driesen K, Gorller-Walrand C, Binnemans K. Spectroscopic properties for monolithic sol-gel glasses doped with lanthanide bipyridyl complexes. Mater.Sci. Eng.C-Bio., 2001, 18(1-2): 255-258
    [79] Franville A C, Zambon D, Mahiou R. Luminescence behavior of sol-gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes. Chem.Mater., 2000, 111(12): 428-435
    [80] Franville A C, Zambon D, Mahiou R., et al. Synthesis and optical features of an europium organic-inorganic silicate hybrid. J.Alloys.Compd., 1998, 277(10): 831-834
    [81]董相廷,何颖,洪广言等.纳米AgBr/PMMA光致变色杂化材料制备与表征.物理化学学报,2003,19(12):1159-1162
    [82] Xiao S, Nguyen M, Gong X, et al. Stabilization of semiconducting polymers with silsesquioxane. Advanced Functional Materials, 2003, 13(1): 25-29
    [83] Zhu Wenwei, Xiao Steven, Ishiang Shih. Field-effect mobilities of polyhedral oligomeric silsesquioxanes anchored semiconducting polymers. Applied Surface Science, 2004, 221(15): 358-363
    [84] Joanna Kukulka, Walkiewicz, Marcin Opallo. Transport of redox active probes in silica sol–gel glass with embedded organic electrolyte. Solid State Ionics, 2003, 157(7): 263-267
    [85] Raghavan S R, Riley M W, Fedkiw P S, et al. Composite polymer electrolytes based on poly(ethylene glycol) and hydrophobic fumed silica: dynamic rheology and microstructure. Chem.Mater., 1998, 10(1): 244-251
    [86]范浩军,石碧,段镇基.蛋白质-无机纳米杂化制备新型胶原蛋白材料.功能材料,2004,35(3):373-380
    [87]王华林,李延红,翟林峰.可降解聚乳酸羟基磷灰石杂化材料Ⅲ.聚乳酸羟基磷灰石杂化材料的制备及降解.高分子材料科学与工程,2006,22(3):247-249
    [88] Wang Yuchi, Lin Meichao, Wang Daming, et al. Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials, 2003, 24(6): 1047-1057
    [89] Akiko Ide, Masataka Sakane, Chen Guopin, et al. Collagen hybridization with poly( -lactic acid) braid promotes ligament cell migration. Material Science and Engineering C, 2001, 17(5): 95-99
    [90] Chen Guoping, Takashi Ushida, Tetsuya Tateishi. Scaffold design for tissue engineering. Macromolecule Bioscience, 2002, 14(2): 67-77
    [91] Salem A K, Cannizzaro S M, Davies M C, et al. Synthesis and characterisation of a degradable poly(lactic acid)-poly(ethylene glycol) copolymer with biotinylated end groups. Biomacromolecules, 2001, 2(2): 575-580
    [92]张军丽,王汉雄,叶文玉.新型壳聚糖/纳米二氧化硅杂化材料的制备与性能.石油化工,2006,35(1):74-78
    [93]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用.北京:化学工业出版社,1997.381-387
    [94]邓宝祥,于瑞香,赵梅仙.聚丙烯酸酯乳液的合成及其性能研究.天津工业大学学报,2005,24(3):31-34
    [95]利帕托夫.聚合物物理化学手册:第三卷聚合物的红外光谱和核磁共振.北京:中国石化出版社,1995.117-119
    [96]张国伟,黄福明,胡春圃等.含3nm硅溶胶的苯丙杂化乳液的制备与性能研究.胶体与聚合物,2005,23(1):1-4
    [97]朱道本,王佛松.有机固体.上海:上海科学技术出版社,1999.196-215
    [98] Zyss J. Photoinduced multipolar symmetry breaking in multipolar nonlinear media: from molecular to photonic engineering. J.Appl.Phys., 1979, 7(5): 3333-3339
    [99] Paley M S, Harris J M, Looser H, et al. A solvationchromic method for determining second-order polarizabilities of organic molecules. J.Org.Chem., 1989, 14(10): 3774-3778
    [100] Suppan P. Electronic transitions: experimental observations and applications to srtructural problems of excited molecules. J.Chem.Soc.(A), 1968, 2(1): 3125
    [101]汪和睦.物理常数与单位.天津:天津科学技术出版社.1986.215
    [102] Lyman W L, Reehl W F, Rosenblatt D.化学性质估算方法手册:有机化合物的环境性质.许志宏译.北京:化学工业出版社.1991.666
    [103] Rojo, Gema, García-Ruiz, et al. Novel unsymmetrically substituted push–pull phthalocyanines for second-order nonlinear optics. Chemical Physics, 1998, 245(12): 27-34
    [104]田禾,苏建华,孟凡顺.功能性色素在高新技术中的应用.北京:化学工业出版社,2000.164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700