用户名: 密码: 验证码:
镧基钙钛矿型催化剂的NO氧化催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀燃技术凭借其良好的高效节能性,赢得了人们的青睐,同时使得稀燃发动机技术得到了快速发展。应用于稀燃发动机尾气控制的技术便应运而生,其中主要包括NSR、SCR、DOC以及DPF等技术,而NO氧化步骤又是上述诸多控制技术中的关键环节,而钙钛矿型氧化物催化剂材料以其优异的催化性能、稳定的晶体结构以及低廉的价格,被认为是潜在的最具应用于机动车尾气净化处理技术前景的新型催化剂。
     本论文采用溶胶凝胶法,制备了镧基钙钛矿型氧化物LaMeO3(Me=Mn, Fe,Co)催化剂,用于NO氧化反应的研究,发现制备的样品均得到了单一晶相的钙钛矿结构。实验结果表明,LaCoO3的NO氧化性能最高,而LaFeO3的活性最差,LaMnO3的催化活性和结构稳定性均居中。钙钛矿表面吸附NO的能力以及催化剂自身的的氧化还原性能是控制NO氧化反应的关键因素。高温水热老化后,催化剂颗粒聚集长大,烧结现象明显,比表面积下降,催化活性也随之明显下降。
     考察了Co的掺杂改性对LaFeO3钙钛矿催化剂的NO氧化催化活性以及结构稳定性的影响。结果表明,Co的掺杂并未改变LaFeO3钙钛矿的晶体结构,同时提高了催化剂的NO氧化催化活性,且随着Co掺杂量的提高,催化剂的NO氧化活性逐渐增大。
     研究了非化学计量比La0.95Fe1-yCoyO3(y=0.1,0.2,0.3)钙钛矿的NO氧化催化性能,随着Co掺杂量的增大,催化剂的活性先增大后减小,La0.95Fe0.8Co0.2O3催化剂的NO氧化活性最高,非化学计量比使得低Co掺杂量的LaFeCoO3钙钛矿的表面出现Co离子富集现象,催化剂自身的氧化还原能力增强。水热老化后催化剂的颗粒聚集长大,烧结现象明显,比表面积下降。
     考察了非化学计量比对LaMnO3钙钛矿的NO氧化催化性能的影响,实验结果表明,非化学计量比明显提高了LaMnO3钙钛矿的催化活性,且随着La/Mn比例的增大,催化剂活性逐渐减小,B位产生更多的Mn4+离子,LaMnO3钙钛矿的催化活性与Mn4+及其与之配位的氧含量呈正相关性。由动力学实验测得LaxMnO3(x=0.9,0.95,1,1.05,1.11)系列钙钛矿的NO氧化反应活化能为44.8±2.7kJ/mol。水热老化后,催化剂出现烧结、颗粒长大现象,比表面积下降,催化活性降低。
Lean combustion technology with high efficiency and energy saving have drawattention of many people. Lean burn engine exhaust aftertreatment technology hasbeen rapidly developed. Therefore, the new method applied to control the lean-burnengine exhaust is required, including NSR, SCR and DPF technology. NO oxidationis always play key role in those technologies. Perovskite materials with manyadvantages, such as the crystal structure, excellent stability and low cost advantage,are considered to be the potential catalysts applied to the motor vehicle exhaust aftertreatment.
     Lanthanum based perovskite-type catalyst LaMeO3(Me=Mn, Fe, Co) wasprepared by sol-gel method. The single crystal perovskite phase was obtained for allthe samples. The NO oxidation activity of LaCoO3is the highest, and the activity ofLaFeO3was the worst. The activity and structure stability of LaMnO3are middle ofthem. The surface adsorption ability and the reducibility of the catalyst is the keyfactor to control the NO oxidation reaction. At the same time, after hydrothermalaging, catalyst particle growed and the specific surface area decreased. The catalyticactivity decreased obviously, but LaCoO3perovskite still maintained a relatively highcatalytic performance.
     The effects of Co doping on the catalytic activity of LaFeO3perovskite andstructural stability were studied. The results show that, the doping of Co did notchange the crystal structure of LaFeO3, and improves the NO oxidation activity of thecatalyst. With the increased amount of Co doping, NO oxidation activity of thecatalyst increases. The doping of Co increased the content of active oxygen LaFeO3perovskite, also makes the catalyst surface adsorption ability enhancement NO.
     Study on the stoichiometric La0.95Fe1-yCoyO3(x=0.1,0.2,0.3) the catalyticperformance of perovskite. Experimental results show that, the nonstoichiometrysignificantly increases the NO oxidation activity of LaFeCoO3perovskite, especiallylow temperature activity. With the increase of the doping amount of Co, the activityof the catalyst increases first and then decreases, the La0.95Fe0.8Co0.2O3catalyst in NOoxidation activity was the highest, higher activity in250oC above2wt.%Pt/Al2O3catalyst. Non-stoichiometric makes LaFeCoO3perovskite surface low amount of Co doping Co ion concentration, enhance the oxidation catalyst surface reducing power,A La ion deficiency reduced stability of perovskite structure, while increasing theactivity of the catalyst. After hydrothermal aging catalyst particles were aggregatedsintering and specific surface area decreased.
     Finally, the catalytic properties of nonstoichiometric LaMnO3perovskite wereinvestigated. The experimental results show that, the non-stoichiometry significantlyimproved the catalytic activity of LaMnO3perovskite, and with the X value increases,catalyst activity decreases gradually. A La make LaMnO3Mn4+defect perovskite ionmore to maintain the price balance by B. More Mn4+ions content reduces thestructure stability of the catalyst, valence of Mn4+/Mn3+ion instability is the innerreason of catalyst with NO oxidation capacity. From the kinetic experiments ofLaxMnO3(x=0.9,0.95,1,1.05,1.11) perovskite for NO oxidation reaction, theactivation energy was44.8±2.7kJ/mol. After hydrothermal aging, the catalystsintering, grain growth phenomenon, the catalytic activity decreased.
引文
[1]郭笑盈,城市机动车尾气污染与控制措施,物流工程与管理,2009,31(7):130-132
    [2]姚文生,镧钴钙钛矿催化剂制备及去除氮氧化物和碳烟性能研究:[博士学位论文],天津;天津大学,2009
    [3]郭丽红,Ba-Mn基钙钛矿及其负载型Ba/Mn/TiO2-x(x=Al2O3/SiO2/ZrO2)NOx储存还原催化剂研究:[硕士学位论文],天津;天津大学,2009
    [4]朴春梅,机动车尾气排放的危害及控制建议,企业科技与发展,2011,23:86-88
    [5]高婕,王禹,张蓓,我国大气氮氧化物污染控制对策,环境保护科学,2004,30(125):1-3
    [6]李桂军,机动车尾气排放污染及其危害和防治,矿业安全与环,2003,30(4):19-20
    [7]陈秋安,汽车尾气污染及检测技术,科技天地,2011,22:51-51
    [8]赵真,Ca掺杂对锰酸镧钙钛矿材料NO氧化催化活性影响的研究:[硕士学位论文],天津;天津大学,2012
    [9]汪卫东,现代汽油车排放及其控制技术综述,内燃机,2004,5:1-4
    [10] Benjamin S F, Roberts C A, Warm up of an automotive catalyst substrate bypulsating flow: a single channel modelling approach, International Journal of Heatand Fluid Flow,2000,21(6):717-726
    [11]赵敏伟,Pd-CZ-Al2O3模型催化剂的动态储放氧与三效催化性能研究:[博士学位论文],天津;天津大学,2008
    [12]贾莉伟,乙醇汽油机动车排放特性与尾气净化催化剂研究:[博士学位论文],天津;天津大学,2006
    [13]王建强,过渡金属掺杂铈基氧化物固溶度、空燃比窗口特性及反应网络的研究:[博士学位论文],天津;天津大学,2009
    [14] Takahashi N, Shinjoh H, Tlijima T, et al. The new concept3-way catalystautomotive lean-burn engine: NOxstorage and reduction catalyst, Catalysis Today,1996,27:63-69
    [15] Liu Z M, Woo S I, Recent advances in catalytic DeNOxscience and technology,Catalysis Reviews-Science and Engineering,2006,48(1):43-89
    [16]卢雯婷,陈敬超,冯晶等,贵金属催化剂的应用研究进展,稀有金属材料与工程,2012,41(1):184-188
    [17] Schmitz P J, Kudla R J, Drews A E, et al. NO oxidation over supported Pt:Impact of precursor, support, loading and processing conditions evaluated via highthroughput experimentation, Applied Catalysis B: Environmental,2006,67(3-4):246-256
    [18] Xue E, Seshan K, Ross J, Roles of supports Pt loading and Pt dispersion in theoxidation of NO to NO2and of SO2to SO3, Applied Catalysis B: Environmental,1996,11(l):65-79
    [19]鲁文质,赵秀阁,王辉等,NO的催化氧化,催化学报,2000,21(5):423-427
    [20] Xue E, Seshan K, Mercera P D L, et a1. Pt-ZrO2catalysts for the oxidation ofNO and SO2effect of sulfate, Environmetal Catalysis,1994,20(2):250-267
    [21] Xue E, Seshan K, Van Ommen J G, Catalytic control of diesel engine particulateemission: studies on model reactions over a EuroPt-1(Pt/SiO2)catalyst, AppliedCatalysis B: Environmental,1993,2(2-3):183-197
    [22]王录平,杨锡尧,庞礼,担体酸性对铂催化剂的表面性质和催化性能的电子调变效应,物理化学学报,1986,2(5):424-427
    [23]庞新梅,安立敦,马军,载体酸性对负载型贵金属催化剂抗硫性能的影响,化学通报,1990,11:42-44
    [24] Dawody J, Skoglundh M, Fridel E, The effect of metal oxide additives (WO3,MoO3, V2O5, Ga2O3) on the oxidation of NO and SO2over Pt/A12O3andPt/BaO/A12O3catalysts, Journal of Molecular Catalysis A: Chemical,2004,209(1-2):215-225
    [25] Auvray X, Pingel T, Olsson E, et al. The effect gas composition during thermalaging on the dispersion and NO oxidation activity over Pt/Al2O3catalysts, AppliedCatalysis B: Environmental,2013,129:517-527
    [26] Boubnov A, Johnson E, Molina A, et al. Structure-activity relationships ofPt/Al2O3catalysts for CO and NO oxidation at diesel exhaust conditions, AppliedCatalysis B: Environmental,2012,126:315-325
    [27] Liu S, Wu X D, Weng D, et al. NOx-assisted soot oxidation on Pt Mg/Al2O3catalysts: Magnesium precursor, Pt particle size, and Pt Mg interaction, Industrialand Engineering Chemistry Research,2012,51:2271-2279
    [28] Villani, K, Vermandel W, Smets K, et al. Platinum particle size and supporteffects in NOxmediated carbon oxidation over Platinum catalysts, Environmentalscience&technology,2006,40:2727-2733
    [29]王辉,NO选择催化氧化的催化剂和反应机理研究:[硕士学位论文],上海;华东理工大学,1999
    [30] Desprs J, Elsener M, Koebel M, et a1. Catalytic oxidation of nitrogen monoxideover Pt/SiO2, Applied Catalysis B: Environmental,2004,50(2):73-82
    [31] Bhatia D, McCabe R W, Harold M P, et al. Experimental and kinetic study ofNO oxidation on model Pt catalysts, Journal of Catalysis,2009,266:106-119
    [32] Adams K M, Graham G W, Impact of redox conditions on thermal deactivationof NOxtraps for diesel, Applied Catalysis B: Environmental,2008,80:343-352
    [33]高安正躬,安念芳昭,神崎恭一等,金属氧化物催化剂上NO的氧化及CO对反应的影响,燃料协会志,1975,54(577):314-318
    [34]唐晓龙,李华,易红宏等,过渡金属氧化物催化氧化NO实验研究,环境工程学,2010,4(3):639-643
    [35]鲁文质,饶薇薇,铜钒复合氧化物的NO催化氧化活性和抗硫性,宁夏大学学报(自然科学版),21301,22(2):172-174
    [36] Jang B, Spivey J, Low-temperature NO removal for flue gas cleanup, EnergyFuels,1997,11(2):299-306
    [37] Shiba K, Hinode H, Wakihara M, Catalytic oxidation of NO to NO2over Cr/TiO2and Cu/TiO2under oxidizing atmosphere, Reaction Kinetics and Catalysis Letters,1996,58(1):133-137
    [38] Yung M M, Holmgreen E M, Ozkan U S, Cobalt-based catalysts supported ontitania and zirconia for the oxidation of nitric oxide to nitrogen dioxide, Journal ofCatalysis,2007,247:356-367
    [39] Machida M, Uto M, Kurogi D, et al. MnOx-CeO2binary oxides for catalytic NOxsorption at low temperatures: Sorptive removal of NOx, Chemisty of Materials,2000,12:3158-3164
    [40] Tikhomirov K, Kr cher O, Elsener M, et al. MnOx-CeO2mixed oxides for thelow-temperature oxidation of diesel soot, Applied Catalysis B: Environmental,2006,64:72-78
    [41] Li H, Tang X L, Yi H H, et al. Low-temperature catalytic oxidation of NO overMn-Ce-Oxcatalyst, Journal of Rare Earth,2010,28(1):64-68
    [42] Wen Y X, Zhang C B, He H, et al. Catalytic oxidation of nitrogen monoxide overLa1-xCexCoO3perovskites, Catalysis Today,2007,126:400-405
    [43] Ueda A, Yamada Y, Katsuki M, et al. Perovskite catalyst (La, Ba)(Fe, Nb, Pd)O3applicable to NOxstorage and reduction system, Catalysis Communications,2009,11:34-37
    [44] López-Suárez F E, Illán-Gómez M J, Bueno-López A, et al. NOxstorage andreduction on a SrTiCuO3perovskite catalyst studied by operando DRIFTS, AppliedCatalysis B: Environmental,2011,104:261-267
    [45] Kim C H, Qi G X, Dahlberg K, et al. Strontium-doped perovskites rival platinumcatalysts for treating NOxin simulated diesel exhaust, Science,2010,327:1624-1627
    [46] Wang W, McCool G, Kapur N, et al. Mixed-phase oxide catalyst based onMn-mullite (Sm, Gd)Mn2O5for NO oxidation in diesel exhaust, Science,2010,337:832-835
    [47]李兵,张立强,蒋海涛等,活性炭孔隙结构和表面化学性质对吸附氧化NO的影响,煤炭学报,2011,36(11):1906-1910
    [48] Guo Z C, Xie Y S, Hong L, et al. Catalytic oxidation of NO to NO2on activatedcarbon, Energy Conversion and Management,2001,42(15-17):2005-2018
    [49] Adapa S, Gaur V, Verma N, Catalytic oxidation of NO by activated carbon fiber(ACF), Chemical Engineering Journal,2006,116(l):25-37
    [50] Mochida L, Kawabuehi Y, Kawano S, et al. High catalytic activity of Pitch-basedactivated carbon fibers of moderate surface area for oxidation of NO to NO2at roomtemperature, Fuel,1997,76(6):543-548
    [51]康东娟,活性炭基复合催化剂低温定量催化氧化NO研究:[硕士学位论文],昆明;昆明理工大学,2012
    [52]刘鹤年,活性炭纤维及改性活性炭纤维对常温下NO的催化氧化研究:[硕士学位论文],北京;清华大学,2010
    [53]林陪琰,唐靓,陈伟等,Cu,Pd-ZSM-5上NO分解和CO氧化的催化作用,分子催化,1996,10(4):245-250
    [54] Krishna K, Makkee M, Preparation of Fe-ZSM-5with enhanced activity andstability for SCR of NOx, Catalysis Today,2006,114(l):23-30
    [55] Qi G S, Gatt J E, Yang R T, et al. Selective catalytic oxidation (SCO) ofammonia to nitrogen over Fe-exchanged zeolites Prepared by sublimation of FeC13,Journal of Catalysis,2004,226(l):120-128
    [56]陈忠伟,余爱萍,饶薇薇,SO2对Y型分子筛选择性催化氧化NO的影响,河南化工,2002,3:13-15
    [57] Brandin J G M, Andersson L A H, Ingemar Odenbrand C U, Catalytic oxidationof NO to NO2over a H-mordenite catalyst, Acta Chemica Scandinavica,1990,44(8):784-788
    [58] Ingemar Odenbrand C U, Andersson L A H, Brandin J G M, et al. Dealuminatedmordenites as catalysts in the Oxidation and decomposition of nitric oxide and in thedecomposition of nitrogen dioxide: Characterization and activities, Catalysis Today,1989,4(2):155-172
    [59] Masakazu I, Hernandez A M, Zengyo T, Oxidation of NO to NO2on a Pt-MFIzeolite and subsequent reduction of NOxby C2H4on an In-MFI zeolite: a novelde-NO: strategy in excess oxygen, Chemical Communications,1997,0:37-38
    [60] Halasz I, Brenner A, Simon Ng K Y, Active sites of H-ZSM5catalysts for theoxidation of nitric oxide by oxygen, Catalysis Letters,1995,34(l-2):151-161
    [61]朱世勇主编,环境与工业气体净化技术,北京:化学工业出版社,2001
    [62]刘华彦,NO的常温催化氧化及碱液吸收脱除NOx过程研究:[博士学位论文],浙江;浙江大学,2011
    [63]王辉,赵秀阁,肖文德等,NO在负载型金属氧化物催化剂上的氧化反应机理,华东理工大学学报,2001,27(l):6-10
    [64]赵迎宪,危凤,张艳辉等,NO在Pt/γ-Al2O3上催化氧化反应机理和动力学,化工学报,2008,59(5):1156-1164
    [65]韩德刚,高盘良编著,北京大学物理化学丛书—化学动力学基础,北京:北京大学出版社,2001
    [66] Olsson L, Westerberg B, Persson H, et al. A kinetic study of oxygenadsorption/desorption and NO oxidation over Pt/Al2O3catalysts, Journal of PhysicalChemistry B,1999,103:10433-10439
    [67] Olsson L, Persson H, Fridell B E, et al. A kinetic study of NO oxidation and NOxstorage on Pt/Al2O3and Pt/BaO/Al2O3, Journal of Physical Chemistry B,2001,105:6895-6906
    [68] Olsson L, Karlsson H, The beneficial effect of SO2on platinum migration andNO oxidation over Pt containing monolith catalysts, Catal Today,2009,147:290-294
    [69] Mulla S S, Chen N, Cumaranatunge L, et al. Reaction of NO and O2to NO2on Pt:kinetics and catalyst deactivation, Journal of Catalysis,2006,241:389-399
    [70] Mulla S S, Chen N, NO2inhibits the catalytic reaction of NO and O2over Pt,Catalysis Letters,2005,100:3-4
    [71] Li L D, Shen Q, Cheng J, et al. Catalytic oxidation of NO over TiO2supportedplatinum clusters. II: Mechanism study by in situ FTIR spectra, Catalysis Today,2010,158:361-369
    [72] Weiss B M, Iglesia E, Mechanism and site requirements for NO oxidation on Pdcatalysts, Journal of Catalysis,2010,272:74-81
    [73]张鹏宇,杨巧云,许绿丝等,活性炭纤维低温吸附氧化NO的试验研究,电力环境保护,2004,20(2):25-2
    [74] Mochida I, Shiraham N, NO oxidation over activated carbon fiber (ACF). Part1.Extended kinetics over a pitch based ACF of very large surface area, Fuel,2000,79:1713-1723
    [75] Iwamoto M, Yoda Y, Yamazoe N, et al. Study of metal oxide catalysts bytemperature p rogrammed desorption4. Oxygen adsorption on various metal oxides,Journal of Physical Chemistry,1978,82(24):552-564
    [76] Macleod N, Lambert R M, Selective NOxreduction during the H2+NO+O2reaction under oxygen-rich conditions over Pd/V2O5/Al2O3: evidence for in situammonia generation, Catalysis Letters,2003,90(3-4):111-115
    [77] Baik J H, Yim S D, Nam I S, et al. Control of NOxemissions from diesel engineby selective catalytic reduction (SCR) with urea, Topics in Catalysis,2004,30(1-4):37-41
    [78] Pyzik A J, Li C G, New design of a ceramic filter for diesel emission controlapplications, International Journal of Applied Ceramic Technology,2005,2(6):440-451
    [79]吴晓东,翁端,陈华鹏等,柴油车微粒捕集器过滤材料研究进展,材料导报,2002,16(6):28-31
    [80] Ntziachristos L, Samaras Z, Zervas E, et al. Effects of a catalysed and anadditized particle filter on the emissions of a diesel passenger car operating on lowsulphur fuels, Atmospheric Environment,2005,39(27):4925-4936
    [81] Kaliaguine S, Van Neste A, Szabo V, et al. Perovskite-type oxides synthesized byreactive grinding Part I: Preparation and characterization, Applied Catalysis A:General,2001,209(1-2):345-358
    [82] Tanaka Y, Hihara T, Nagata M, et al. Modeling of diesel oxidation catalyst,Industrial&Engineering Chemistry Research,2005,44(22):8205-8212
    [83] Choi B C, Yoon Y B, Kang H Y, Oxidation characteristics of particulate matter ondiesel warm-up catalytic converter, International Journal of Automotive Technology,2006,7(5):527-534
    [84] Anderson M T, Vaughey J T, Poeppelmeier K R, Structural sim ilarities amongoxygen deficient perovsk ites, Chemisty Materials,1993,5(2):151-165
    [85] Batis N H, Delichere P, Batis H, Physicochemical and catalytic properties inmethane combustion of La1-xCaxMnO3+y(0    [86] Rida K, Benabbas A, Bouremmad F, et al. Effect of strontium and cerium dopingon the structural characteristics and catalytic activity for C3H6combustion ofperovskite LaCrO3prepared by sol–gel, Applied Catalysis B: Environmental,2008,84:457-467
    [87] Pecchi G, Jiliberto M G, Buljan A, et al. Relation between defects and catalyticactivity of calcium doped LaFeO3perovskite, Solid State Ionics,2011,187:27-32
    [88] Wang H, Liu J, Zhao Z, et al. Comparative study of nanometric Co-, Mn-andFe-based perovskite-type complex oxide catalysts for the simultaneous elimination ofsoot and NOxfrom diesel engine exhaust, Catalysis Today,2012,184:288-300
    [89] Xiang X P, Zhao L H, Teng B T, et al. Catalytic combustion of methane onLa1xCexFeO3oxides, Applied Surface Science (2013), http://dx.doi.org/10.1016/j.apsusc.2013.03.091
    [90] Belessi V C, T rikalitis P N, Ladavos A K, et al. Structure and catalytic activityof La1-xFeO3system (x=0.100,0.105,0.110,0.115,0.120,0.125,0.135) for the NO+CO reaction, Applied Catalysis A: General,1999,177(1):53-68
    [91] De Teresa J M, Ibarra M R, Algarabel P A, et al. Evidence for magnetic polaronsin the magnetoresistive perovskites, Nature,1997,386:256-259
    [92] Zwinkels M F M, Menon P G, et al. Catalytic materials for high temperaturecombustion, Catalysis Reviews-Science and Engineering,1993,35(3):319-326
    [93] Saracco G, Geobaldo F, Baldi G, Methane combustion on Mg-doped LaMnO3perovskite catalysts, Applied Catalysis B: Environmental,1999,20:277-288
    [94] Abdel S H, Butt D P, Environmentally compliant silica conversion coatingsprepared by sol-gel method for aluminum alloys, Surface and Coatings Technology,2006,201(1-2):401-407
    [95] Shi C, Zhang Z S, Crocker M, et al. Non-thermal plasma-assisted NOxstorageand reduction on a LaMn0.9Fe0.1O3perovskite catalyst, Catalysis Today (2013),http://dx.doi.org/10.1016/j.cattod.2013.03.008
    [96] Li Z Q, Meng M, Li Q, et al. Fe-substituted nanometric La0.9K0.1Co1xFexO3perovskite catalysts used for soot combustion, NOxstorage and simultaneous catalyticremoval of soot and NOx, Chemical Engineering Journal,2010,164:98-105
    [97] Tien-Thaoa N, Alamdarib H, Kaliaguine S, Characterization and reactivity ofnanoscale La(Co,Cu)O3perovskite catalyst precursors for CO hydrogenation, Journalof Solid State Chemistry,2008,181:2006-2019
    [98] He H, Dai H X, Au C T, et al. An investigation on the utilization ofperovskite-type oxides La1xSrxMO3(M=Co0.77Bi0.20Pd0.03) as three-way catalysts,Applied Catalysis B: Environmental,2001,33:65-80
    [99] Ishihara T, Ando M, Sada K, et al. Direct decomposition of NO into N2and O2over La(Ba)Mn(In)O3perovskite oxide, Journal of Catalysis,2003,220:104-114
    [100] Kuhn J N, Ozkan U S, Surface properties of Sr-and Co-doped LaFeO3, Journalof Catalysis,2008,253:200-211
    [101] Li Z Q, Meng M, Dai F F, et al. Performance of K and Ni substitutedLa1-xKxCo1-yNiyO3-perovskite catalysts used for soot combustion, NOxstorage andsimultaneous NOx-soot removal, Fuel,2012,93:606-610
    [102] Belessi V C, Trikalitis P N, Ladavos A K, et al. Structure and catalytic activityof La1-xFeO3system (x=0.00,0.05,0.10,0.15,0.20,0.25,0.35) for the NO+COreaction, Applied Catalysis A: General,1999,177:53-68
    [103] Spinicci R, Delmastro A, Ronchetti S, et al. Catalytic behaviour ofstoichiometric and non-stoichiometric LaMnO3perovskite towards methanecombustion, Materials Chemistry and Physics,2002,78:393-399
    [104] Wu Y, Ni X, Beaurain A, et al. Stoichiometric and non-stoichiometricperovskite-based catalysts: Consequences on surface properties and on catalyticperformances in the decomposition of N2O from nitric acid plants, Applied CatalysisB: Environmental,2012,125:149-157
    [105] Bedel L, Roger A C, Rehspringer J L, et al. La(1y)Co0.4Fe0.6O3perovskiteoxides as catalysts for Fischer–Tropsch synthesis, Journal of Catalysis,2005,235:279-294
    [106]崔大伟,钙钛矿型稀土氧化物汽车尾气净化催化剂的研究进展,潍坊学院学报,2010,10(4):9-12
    [107] Tanka H, Misono M, Advances in designing perovskite catalysts, CurrentOpinion in Solid State&Materials Science,2001,5:381-387
    [108] Voorhoeve R J, Advanced Materials in Catalysis, New York: Academic Press,1977:173-216
    [109] Arai H, Yamada T, Eguchi K, et al. Catalytic combustion of methane overvarious various perovskite-type oxides, Applied Catalysis,1986,26:265-276
    [110] Tanaka H, Uenishi M, Taniguchi M, et al. The intelligent catalyst having theself-regenerative function of Pd, Rh and Pt for automotive emissions control,Catalysis Today,2006,117(1-3):321-328
    [111] Chang Y F, McCarty J G, Novel oxygen storage components for advancedcatalysts for emission control in natural gas fueled vehicles, Catalysis Today,1996,30:163-170
    [112] Melo D M A, Borges F M, Ambrosio R C, et al. XAFS characterization ofLa1-xSrxMnO3catalysts prepared by Pechini′s method. Chemical Physics,2006,322:477-484
    [113]刘源,秦永宁,钙钛矿型复合氧化物用作深度氧化催化剂,天然气化工,1997,22(6):47-51
    [114]秦永宁,田辉平,钙钛矿型催化氧化性能与d电子构型关系的研究,化学学报,1993,15(4):319-324
    [115] Valderrama G, Goldwasser M R, Navarro C U, et al. Dry reforming of methaneover Ni perovskite type oxides, Catalysis Today,2005,107-108:785-791
    [116] Nakamura K, Ogawa K, Excess Oxygen in LaMnO3+, Journal of Solid StateChemisty,2002,163:65-76
    [117] Tofield B C, Scott W R, Oxidative nonstoichiometry in perovskites, anexperimental survey: the defect structure of an oxidized lanthanum manganite bypowder neutron diffraction, Journal of Solid State Chemisty,1974,10:183-194
    [118] Marchetti L, Forni L, Catalytic combustion of methane over perovskites,Applied Catalysis B: Environmental,1998,15:179-187
    [119]程继夏,边耀璋,三元催化剂催化机理分析,长安大学学报(自然科学版),2002,2:80
    [120] Kharton V V, Yaremchenko A A, Valente A A, et al. Methane oxidation over Fe-,Co-, Ni-and V-containing mixed conductors, Solid State Ionics,2005,176:781-791
    [121] Ran R, Wu X D, Weng D, Effect of complexing species in a sol–gel synthesison the physicochemical properties of La0.7Sr0.3Mn0.7Cu0.3O3+λcatalyst, Journal ofAlloys and Compounds,2006,414:169-174
    [122] Levasseur B, Kaliaguine S, Methanol oxidation on LaBO3(B=Co, Mn, Fe)perovskite-type catalysts prepared by reactive grinding, Applied Catalysis A: General,2008,343:29-38
    [123] Wang H, Liu J, Zhao Z, et al. Comparative study of nanometric Co-, Mn-andFe-based perovskite-type complex oxide catalysts for the simultaneous elimination ofsoot and NOxfrom diesel engine exhaust, Catalsis Today,2012,184:288-300
    [124] Isupova L A, Sutormina E F, Kulikovskaya N A, et al. Honeycomb supportedperovskite catalysts for ammonia oxidation processes, Catalysis, Today,2005,105:429-435
    [125] Lei C, Shen M Q, Yang M, et al. Modified textures and redox activities inPt/Al2O3+BaO/CexZr1xO2model NSR catalysts, Applied Catalysis B: Environmental,2011,101:355-365
    [126] Boubnov A, Dahl S, Johnson E, et al. Structure–activity relationships ofPt/Al2O3catalysts for CO and NO oxidation at diesel exhaust conditions, AppliedCatalysis B: Environmental,2012,126:315-325
    [127] Hauptmann W, Votsmeier M, Gieshoff J, et al. Inverse hysteresis during the NOoxidation on Pt under lean conditions, Applied Catalysis B: Environmental,2009,93:22-29
    [128] Pazmi J H, Miller J T, Mulla S S, et al. Kinetic studies of the stability of Pt forNO oxidation: Effect of sulfur and long-term aging, Journal of Catalysis,2011,282:13-24
    [129] Wang Q, Park S Y, Choi J S, et al. Co/KxTi2O5catalysts prepared by ionexchange method for NO oxidation to NO2, Applied Catalysis B: Environmental,2008,79:101-107
    [30] Després J, Elsener M, Koebel M, et al. Catalytic oxidation of nitrogen monoxideover Pt/SiO2, Applied Catalysis B: Environmental,2004,50:73-82
    [130] Capek L, Vradman L, Sazama P, et al. Kinetic experiments and modeling of NOoxidation and SCR of NOxwith decane over Cu-and Fe-MFI catalysts, AppliedCatalysis B: Environmental,2007,70:53-57
    [131] Yang M, Li Y P, Wang J, et al. Effects of CO2and steam on Ba/Ce-based NOxstorage reduction catalysts during lean aging, Journal of Catalysis,2010,271:228-238
    [132] Spinicci R, Faticanti M, Marini P, et al. Catalytic activity of LaMnO3andLaCoO3perovskites towards VOCs combustion, Journal of Molecule Catalysis: A,2003,197:147-155
    [133] Aruna S T, Muthuraman M, Patil K C, Studies on combustion synthesizedLaMnO3–LaCoO3solid solutions, Materials Research Bulletin,2000,35:289-296
    [134] Daturi M, Busca G, Surface and structure characterization of someperovskite-type powders to be used as combustion catalysts, Chemisty Materials,1995,7:2115-2126
    [135] Ponce S, Pe a M A, Fierro J L G, Surface properties and catalytic performancein methane combustion of Sr-substituted lanthanum manganites, Applied Catalysis B:Environmental,2000,24:193-205
    [136] Merino N A, Barbero B P, Ruiz P, et al. Synthesis, characterisation, catalyticactivity and structural stability of LaCo1-yFeyO3λperovskite catalysts for combustionof ethanol and propane, Journal Catalysis,2006,240:245-257
    [137] Barbero B P, Gamboa J A, Cadús L E, Synthesis and characterisation ofLa1-xCaxFeO3perovskite-type oxide catalysts for total oxidation of volatile organiccompounds, Applied Catalysis B: Environmental,2006,65(1-2):21-30
    [138] Campagnoli E, Tavares A, Fabbrini L, et al. Effect of preparation method onactivity and stability of LaMnO3and LaCoO3catalysts for the flameless combustionof methane, Applied Catalysis B: Environmental,2005,55:133-139
    [139] Alvarez-Galvan M C, De la Pena OShea V A, Arzamendi G, et al. Methyl ethylketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites, AppliedCatalysis B: Environmental,2009,92:445-453
    [140] Zhu J J, Thomas A, Perovskite-type mixed oxides as catalytic material for NOremoval, Applied Catalysis B: Environmental,2009,92:225-233
    [141] Berry F J, Ren X, Marco J M, Reduction properties of perovskite-related rareearth orthoferrites, Journal of Physics,2005,55:771-780
    [142] Berry F J, Gancedo J R, Marco J F, et al. Synthesis and characterization of thereduction properties of cobalt-substituted lanthanum orthoferrites, Journal of SolidState Chemisty,2004,177:2101-2114
    [143] De Lima R K C, Batista M S, Wallau M, et al. Bimetallic catalysts supported onactivated carbon for the nitrate reduction in water: Optimization of catalystscomposition, Applied Catalysis B: Environmental,2009,90:441-448
    [144] Escalona N, Fuentealba S, Pecchi G, Fischer–Tropsch synthesis overLaFe1xCoxO3perovskites from a simulated biosyngas feed, Applied Catalysis A:General,2010,381:253-260
    [145] Goldwasser M R, Rivas M E, Lugo M L, et al. Combined methane reforming inpresence of CO2and O2over LaFe1xCoxO3mixed-oxide perovskites as catalystsprecursors, Catalysis Today,2005,107–108:106-113
    [146] Zhong Z Y, Chen K D, Ji Y, et al. Methane combustion over B-site partiallysubstituted perovskite-type LaFeO3prepared by sol-gel method, Applied Catalysis A:General,1997,156:29-41
    [147] Thirumalairajan S, Girija K, Ganesh V, et al. Novel Synthesis of LaFeO3nanostructure dendrites: A systematic investigation of growth mechanism, properties,and biosensing for highly selective determination of neurotransmitter compounds,Crystal Growth&Design,2013,13:291-302
    [148] Bedel L, Roger A C, Estournes C, et al. Co0from partial reduction of La(Co,Fe)O3perovskites for Fischer–Tropsch synthesis, Catalysis Today,2003,85(2-4):207-218
    [149] Deng J G, Dai H X, Jiang H Y, et al. Hydrothermal fabrication and catalyticproperties of La1-xSrxM1-yFeyO3(M=Mn, Co) that Are highly active for the removalof toluene, Environmental Science and Technology,2010,44:2618-2623
    [150] Zhang R D, Alamdari H S, Kaliaguine S, Fe-based perovskites substituted bycopper and palladium for NO+CO reaction, Journal of Catalysis,2006,242:241-253
    [151] Berry F J, Gancedo J R, Marco J F, et al. Journal of Solid State Chemisty,2004,177:2101-2110
    [152] Guo Y M, Ran R, Shao Z P, et al. Effect of Ba nonstoichiometry on the phasestructure, sintering, electrical conductivity and phase stability ofBa1±xCe0.4Zr0.4Y0.2O3(0x0.20) proton conductors, International Journal ofHydrogen Energy,2011,36:8450-8460
    [153] Hansen K K, Hansen K V, A-site deficient (La0.6Sr0.4)1sFe0.8Co0.2O3perovskites as SOFC cathodes, Solid State Ionics,2007,178:1379-1384
    [154] Zhou W, Ran R, Shao Z P, et al. Evaluation of A-site cation-deficient(Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-d(x>0) perovskite as a solid oxide fuel cell, Journal ofPower Sources2008,182:24-31
    [155] Zhou W, Ran R, Shao Z P, et al. Barium-and strontium-enriched(Ba0.5Sr0.5)1+xCo0.8Fe0.2O3oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells, Acta Materialia,2008,56:2687-2698
    [156] Bedel L, Roger A C, Rehspringer J L, et al. La(1y)Co0.4Fe0.6O3perovskiteoxides as catalysts for Fischer–Tropsch synthesis, Journal of Catalysis,2005,235:279-294
    [157] Bedel L, Roger A C, Estournes C, et al. Co0from partial reduction ofLa(Co,Fe)O3perovskites for Fischer–Tropsch synthesis, Catalysis Today,2003,85:207-218
    [158] Dacquin J P, Lancelot C, Dujardin C, et al. Influence of preparation methods ofLaCoO3on the catalytic performances in the decomposition of N2O, AppliedCatalysis B: Environmental,2009,91:596-604
    [159] Zhang R D, Alamdari H S, Kaliaguine S, Fe-based perovskites substituted bycopper and palladium for NO+CO reaction, Journal of Catalysis,2006,242:241-253
    [160] Fernandes D M, Scofield C F, Neto A A, et al. Thermal deactivation of Pt/Rhcommercial automotive catalysts, Chemical Engineering Journal,2010,160:85-92
    [161] Kim D H, Chin Y H, Muntean G G, et al. Relationship of Pt Particle Size to theNOxStorage Performance of Thermally Aged Pt/BaO/Al2O3Lean NOxTrap Catalysts,Industrial and Engineering Chemistry Research,2006,45:8815-8821
    [162] Azad H Z, Khodadadi A, Ahranjani P E, et al. Effects of Pd on enhancement ofoxidation activity of LaBO3(B=Mn, Fe, Co and Ni) pervoskite catalysts forpollution abatement from natural gas fueled vehicles, Applied Catalysis B:Environmental,2011,102:62-70
    [163] Steenwinkel Y Z, Van der Zande LM, Castricum H L, et al. Step response andtransient isotopic labelling studies into the mechanism of CO oxidation overLa0.8Ce0.2MnO3perovskite, Applied Catalysis B: Environmental,2004,54:93-103
    [164] Kucharczyk B, Tylus W, Partial substitution of lanthanum with silver in theLaMnO3perovskite: Effect of the modification on the activity of monolithic catalystsin the reactions of methane and carbon oxide oxidation, Applied Catalysis A: General,2008,335:28-36
    [165] Ahranjani P E, Khodadadi A, Azad H Z, et al. Effects of excess manganese inlanthanum manganite perovskite on lowering oxidation light-off temperature forautomotive exhaust gas pollutants, Chemical Engineering Journal,2011,169:282-289
    [166] Cimino S, Lisi L, De Rossi S, et al. Methane combustion and CO oxidation onLaAl1xMnxO3perovskite-type oxide solid solutions, Applied Catalysis B:Environmental,2003,43:397-406
    [167] Zhang R D, Villanueva A, Alamdari H, et al. Reduction of NO by CO overnanoscale LaCo1xCuxO3and LaMn1xCuxO3perovskites, Journal of MolecularCatalysis A-Chemical,2006,258:22-34
    [168] Vincent H, Audier M, Pignard S, et al. Crystal structure transformations of amagnetoresistive La0.8MnO3–thin film, Journal of Solid State Chemisty,2002,164:177-187
    [169] Spinicci R, Delmastro A, Ronchetti S, et al. Catalytic behaviour ofstoichiometric and non-stoichiometric LaMnO3perovskite towards methanecombustion, Materials Chemistry and Physics,2002,78:393-399
    [170] Wolcyrz M, Horyn R, Boure F, et al. Structural defects in LaMnO3phasestudied by neutron diffraction, Journal of Alloys and Compounds,2003,353:170-174
    [171] Alonso J A, Martínez-Lope M J, Casais M T, et al. Non-stoichiometry,structural defects and properties of LaMnO3+with high values (0.110.29),Journal of Materials Chemistry,1997,7:2139-2144
    [172] Dezanneau G, Sin A, Roussel H, et al. Magnetic properties related to structureand complete composition analyses of nanocrystalline La1-xMn1-yO3powders, Journalof Solid State Chemisty,2003,173:216-226
    [173] Arendt E, Maione A, Klisinska A, et al. Structuration of LaMnO3perovskitecatalysts on ceramic and metallic monoliths: Physico-chemical characterization andcatalytic activity in methane combustion, Applied Catalysis A: General,2008,339:1-14
    [174] Bellakki M B, Shivakumara C, Vasanthacharya N Y, et al. Rapid synthesis ofroom temperature ferromagnetic Ag-doped LaMnO3perovskite phases by the solutioncombustion method, Materials Research Bulletin,2010,45:1685-1691
    [175] Van Roosmalen J M A, Van Vlaanderen P, Cordfunke E H P, et al. Phases inthe perovskite-type LaMnO3+solid solution and the La2O3-Mn2O3phase diagram,Journal of Solid State Chemisty,1995,114:516-523
    [176] Miyoshi S, Kaimai A, Matsumoto H, et al. In situ XRD study on oxygen-excessLaMnO3, Solid State Ionics,2004,175:383-386
    [177] Lee Y N, Lago R M, Fierro J L G, et al. Hydrogen peroxide decomposition overLn1xAxMnO3(Ln=La or Nd and A=K or Sr) perovskites, Applied Catalysis A:General,2001,215:245-256
    [178] Ferris V, Goglio G, Brohan L, et al. Transport properties and magnetic behaviorin the polycrystalline lanthanum-deficient manganate perovskites (≈Lal-xMnO3),Materials Research Bulletin,1997,32:763-777
    [179] Najjar H, Lamonier J F, Mentre O, et al. Optimization of the combustionsynthesis towards efficient LaMnO3+ycatalysts in methane oxidation, AppliedCatalysis B: Environmental,2011,106:149-159
    [180] Li T, Li Y D, Effect of magnesium substitution into LaMnAl11O19hexaaluminate on the activity of methane catalytic cmbustion, Industrial andEngineering Chemistry Research,2008,47:1404-1408
    [181] Stoyanova R, Gorova M, Zhecheva E, EPR monitoring of Mn4+distribution inLi4Mn5O12spinels, Journal of Physics and Chemistry of Solids,2000,61:615-620
    [182] Huber D L, Alejandro G, Caneiro A, et al. EPR linewidths in La1-xCaxMnO3:0    [183] Giannakas A E, Ladavos A K, Pomonis P J, Preparation, characterization andinvestigation of catalytic activity for NO+CO reaction of LaMnO3and LaFeO3perovskites prepared via microemulsion method, Applied Catalysis B: Environmental,2004,49:147-158
    [184] Zhang C H, Wang C, Zhan W C, et al. Catalytic oxidation of vinyl chlorideemission over LaMnO3and LaB0.2Mn0.8O3(B=Co, Ni, Fe) catalysts, AppliedCatalysis B: Environmental,2013,129:509-516
    [185] Mazur M, Kleinova M, Moncol J, et al. Time evolution of a sol–gel processmonitored by Mn2+EPR spectroscopy, Journal of Non-Crystalline Solids,2006,352:3158-3165
    [186] Deng J G, Zhang L, Dai H X, et al. Hydrothermally fabricated single-crystallinestrontium-substituted lanthanum manganite microcubes for the catalytic combustionof toluene, Journal of Molecular Catalysis A-Chemical,2009,299:60-67
    [187] Teng F, Han W, Liang S H, et al. Catalytic behavior of hydrothermallysynthesized La0.5Sr0.5MnO3single-crystal cubes in the oxidation of CO and CH4,Journal of Catalysis,2007,250:1-11
    [188] Lakshminarayanan N, Choi H, Kuhn J N, et al. Effect of additional B-sitetransition metal doping on oxygen transport and activation characteristics inLa0.6Sr0.4(Co0.18Fe0.72X0.1)O3(where X=Zn, Ni or Cu) perovskite oxides, AppliedCatalysis B: Environmental,2011,103:318-325
    [189] Pyykk P, Understanding the eighteen-electron rule, Journal of OrganometallicChemistry,2006,691:4336-4340
    [190] Zhou G J, in: L. He, X. Zhao (Eds.), Advanced Inorganic Chemistry, SciencePress, Beijing,2011, pp.257-263(Ch.7)
    [191] Ali A M, Emanuelsson E A C, Patterson D A, Photocatalysis withnanostructured zinc oxide thin films: The relationship between morphology andphotocatalytic activity under oxygen limited and oxygen rich conditions and evidencefor a Mars Van Krevelen mechanism, Applied Catalysis B: Environmental,2010,97:168-181
    [192] Royer S, Alamdari H, Duprez D, et al. Oxygen storage capacity of La1-xáxBO3perovskites (with á=Sr, Ce; B=Co, Mn)—relation with catalytic activity in the CH4oxidation reaction, Applied Catalysis B: Environmental,2005,58:273-288
    [193] Ramesh K, Chen LW, Chen F X, et al. Re-investigating the CO oxidationmechanism over unsupported MnO, Mn2O3and MnO2catalysts, Catalysis Today,2008,131:477-482

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700