用户名: 密码: 验证码:
啁啾光纤光栅的优化设计与光纤光栅模拟软件的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Optimization and Design of Chirped Fiber Gratings and Development of Simulating Software for Fiber Gratings
  • 作者:王国东
  • 论文级别:博士
  • 学科专业名称:微电子学与固体电子学
  • 学位年度:2006
  • 导师:陈维友
  • 学科代码:080903
  • 学位授予单位:吉林大学
  • 论文提交日期:2006-04-01
摘要
本文首先概述了光纤光栅的发展历程和它在许多领域中的广泛应用,并简要介绍了几种用来分析光纤光栅特性的方法。从周期性介质的耦合模理论出发,推导了Bragg光纤光栅和长周期光纤光栅的耦合模方程。在只考虑两个同向或反向模式耦合的情况下,给出了光纤光栅的快速传输矩阵算法。利用耦合模方程和快速传输矩阵算法对几种光纤光栅的特性进行了分析,给出了可用于多通道色散补偿的取样啁啾光纤光栅的优化设计结果。提出了一种光纤包层半径按照分段双曲函数变化的应变梯度结构来提高光纤光栅反射谱的边缘陡峭度,利用这种结构对啁啾光纤光栅进行了优化设计,使光栅的反射谱接近矩形并且具有平滑的时延曲线。提出了一种新的长周期光纤光栅折射率调制类型――梯形折射率调制类型。该调制类型可以有效地降低长周期光纤光栅所需要的折变量,并可以模拟正弦和矩形折射率调制长周期光纤光栅的特性。在完善理论模型的基础上,开发了光纤光栅计算机辅助分析软件,为广大的光纤光栅设计者和制造者提供一个预设计和优化设计的工具,避免设计和实验中的盲目性。
Since 1990 the fiber grating written by ultraviolet light has developed into a criticalcomponent for many applications in fiber-optic communication and sensor systems. Thetechnologies for fabricating fiber grating have a fast development in recent years.Advantages of fiber gratings over competing technologies include small cubage, low cost,good compatibility to fiber system, low insertion loss, simple fabrication and so on. Fibergratings can be used in making fiber laser, semiconductor laser and ring laser etc, whichhave the advantages of wavelength accuracy and power accuracy. Fiber gratings can beused in fiber sensor systems as temperature sensors, strain sensors, pressure sensors,refractive index sensors and so on. Fiber gratings can also be used in fibercommunication system such as in filtering, in dispersion compensation, in gain flatteningof erbium-doped fiber amplifiers and so on.
    In recent years, plenty of communication business continuously emerges which rapidincrease of communication capacity. It is necessary to establish large-capacity andhigh-speed optical fiber communication system.
    In the future the object of fiber communication is to establish large capacity andhigh-speed system and the object of fiber sensor is to establish smart material, smartstructure and smart skin (3S) sensor system. For the above reasons, fiber gratings with
    better performance are demanded. The fiber grating's structure have a lot of kinds, eachkind has its own characteristics. So, for the fiber gratings designer, it is difficult toforecast the characteristics of a fiber grating with the arbitrary structure. On the basis oftheoretic model of fiber gratings, optimizing the parameters of fiber grating and analyzingthe performance of fiber grating is a significative work. This work can deduce a lot ofmanpower and resources.The mainly work of this thesis are focused on character analysis and optimizeddesign of fiber gratings and the development of simulation software for fiber gratings.There are mainly four factions in the thesis and the details are as followed:Firstly, we summarize the applications of fiber gratings in the fields of fibercommunication system and sensor systems. We introduce the development of UV writtenfiber gratings technology and the fabrication methods which are usually used now. Wededuced wave-guide modes of step-index fiber by use of optical fiber wave-guide theory.We deduced strictly couple mode theory of fiber gratings using weak wave-guideapproximation and introduce the transfer matrix method of fiber gratings. By using thecouple mode functions and transfer matrix method, we analyzed the characteristics offiber gratings when the grating parameters, such as index change, grating period, gratinglength, apodization function etc., have different values.Secondly, we studied the properties of the chirped fiber gratings. The linearlychirped fiber Bragg gratings are usually used as dispersion compensator in fibercommunication system. But the edges of reflection spectrum of linearly chirped fiberBragg grating are not steep. The reason is that the Bragg wave length of fiber gratings iflinearly with the grating period. For the linearly chirped fiber Bragg grating, themaximum and minimal values of grating period locate in the jumping-off point andend-point in all grating length. In these two points the coupled coefficient is lowest, so thecouple effect in edge wavelength is weakly compared with that in center wavelength. Thefinal result is that the edges of reflection spectrum of linearly chirped fiber Bragg grating
    are not steep. We introduced a new grating structure to improve their performance. In thenew grating structure the fiber claddings are etched as hyperbolic function along thegrating length. The fiber grating exhibits a flattop spectrum with steep edges and highreflectivity and smoothly delay curve when tension is applied to it.Thirdly, we study the theory model of long period fiber gratings (LPGs). There is arefractive index modulation for LPGs. Based on the perturbation theory, the refractiveindex modulation can be considered as a perturbation of the fiber core refractive index. Inthe initially theoretical model of the grating, the perturbation can be regarded as asinusoidal function. For the LPGs fabricated by the amplitude mask method, theperturbation is a rectangular index modulation (RIM). Some errors would appear if wecompute the spectrum property of LPG with RIM by the sinusoidal model. Therefore, aLPGs model with RIM was proposed for avoiding the mistakes caused by the initiallymodel. In this paper we compared these two models of LPGs and indicated that the RIMmodel include the sinusoidal index modulation. Based on the RIM model, a novel modelof LPG is presented, which has a trapezoid index modulation (TIM). The advantage ofthe LPG with a TIM is that it can deduce the refractive index change. When the ofTIM is equal to zero, the LPG with TIM is transformed to the LPG with RIM. In this case,the LPG with TIM model can be used to simulate the LPG with RIM.dFinally, on the basis of the work above, we have developed a set of simulationsoftware, which can optimize parameters and analyze characteristics of fiber gratings.The simulation precision and function can compare beauty with the software developedby some other corporations. We give some recommendation of some modules of thesoftware by using a simple uniform Bragg grating. We also introduce the other functionsof this software, such as strain analysis, chirped fiber Bragg gratings analysis andapodization fiber gratings analysis etc. This software can be used as a tool of optimizedand pre-design for fiber gratings.The fiber gratings are mainly written in step-index fiber previously and so the
    theoretic analysis of fiber grating is focused on this type fiber. In recent years, some newtype fibers have been fabricated, such as liquid crystal fiber, polymer fiber and photoniccrystal fibers. The fiber gratings written on these new type fibers are also reported. In thefuture, we will study the characteristic of the fiber gratings based on these new type fiberand improve the functions of our simulation software for fiber gratings.
引文
[1] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication.” Appl. Phys. Lett., 1978, Vol. 32(10), pp: 647-649.
    [2] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method.” Optics Letters, 1989, Vol. 14, pp: 823-825.
    [3] P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “ High pressure H loading as a technique for achieving ultrahigh sensitivity and thermal sensitivity in GeO doped optical fibers.” Electron. Lett., 1993, Vol. 29 (13), pp: 1191-1193.
    [4] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask.” Applied Physics Letters, 1993, Vol. 62(10), pp: 1035-1037.
    [5] D. Z. Anderdon, V. Mizrahi, T. Erdogan, and A. E. White, “Proceedings of the conference on optical fiber communication.” OFC'93, 1993, Technical Digest, p.68, Postdeadline Paper PD16.
    [6] L. Dong, J. L. Archambanlt, L. Reckie, P. St. J. Russell, and D. N. Paync, “Single pulse Bragg gratings written during fiber drawing.” Electr. Lett. 1993, Vol. 29(17), pp: 1577-1578.
    [7] Bruce A. Furgusion, and Richard A. Yong, “A new method for making fiber optical Bragg grating.” SPIE,1997, SPIE pp:3180.
    [8] Fujimaki M.,Ohki Y., Brebner J. L., et al., “Fabrication of long-period optical fiber gratings by use of ion implantation.” Journal of Optics letters, 2000, Vol. 25(2), pp: 88-89.
    [9] I. K. Hwang, S. H. Yun, B. Y. Kim, “Long-period fiber gratings based on periodic microbends.” Journal of Optics Letters, 1999, Vol. 24(18), pp: 1263-1265.
    [10] E. M. Dianov, V. L. Karpov, A. S. Kurkov, et al., “Long-period fiber gratings and mode field converters fabricated by thermodiffusion in phosphosilicate fibers.” ECOC'98, 1998, pp: 395-396.
    [11] Liu S. Y.,Tam H. Y.,and Du W. C., “Effective fabrication of long-period gratings by the use of micro-lens array.” The 1998 International Conference on Applications of Photonic Technology, Ottawa, 1999, T266: 79-81.
    [12] Putman M. A., Williams G. M.,and Friebele E. J., “Fabrication of tapered strain gradient chirped fiber Bragg gratings.” Electron. Lett., 1995, Vol. 31(4) pp: 309-310.
    [13] Kerry Hinton, “Ramped, unchirped fiber gratings for dispersion compensation”. Journal of lightwave technology, 1997, Vol. 15(8), pp:1411-1418.
    [14] Tetsuro Komukai, Tetsuro lnui and Masataka Nakazawa. “ The design of dispersion equalizers using chirped fiber Bragg gratings”. IEEE Journal of quantum electronics, 2000, Vol. 36(4),pp:409-417.
    [15] Natalia M. Litchinitser, Benjamin J. Eggleton and David B. Patterson. “Fiber Bragg grating for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression”, Journal of Lightwave Technology, 1997, Vol. 15(8), pp:1303-1314.
    [16] Cheng-Ling Lee and Yinchieh lai, “Optimal narrowband dispersionless fiber Bragg grating filters with short grating length and smooth dispersion profile”. Optics communications. 2004, Vol. 235, pp: 99-106.
    [17] Turan Erdogan, “Fiber grating spectra”. Journal of lightwave technology, 1997, Vol. 15(8), pp: 1277-1294.
    [18] 李春赟,孙成城,曹京,于小宇,刘海涛,周凯明,安贵仁,葛璜, “用于 10Gb/s WDM 系统色散补偿的波长取样啁啾光纤光栅”,《激光与红外》,Vol. 31(5), pp: 318-320.
    [19] Karin Ennser, Mikhail N. Zervas, and Richard I. Laming, “Optimization of apodized linearly Chirped fiber gratings for Optical Communications.” IEEE Journal of Quantum electronics, 1998, Vol. 34(5), pp: 770-778.
    [20] Kevin P. Chen, Peter R. Herman, and Robin Tam, “Strong fiber Bragg grating fabrication by hybrid 157-and 248-nm laser exposure.” IEEE Photonics Technology Letters, 2002, Vol. 14(2), pp: 170-172.
    [21] Wei Zhan-xiong, Qin Li, Wei Xin, Wang Qingya, et al., “Fabrication of chirped fiber gratings using fiber Bragg gratings.” ACTA OPTICA SINICA, 1999, Vol. 19(11), pp: 1563-1566.
    [22] X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie and S. Hu, “Novel flat multi-channel filter based on strongly chirped sampled fiber Bragg grating.” IEEE Photonics Technology letters, 2000, Vol. 12(11), pp: 1501-1503.
    [23] A-Ping Zhang, Bai-Ou Guan, Xiao-Ming Tao and Hwa-Yaw Tam, “Mode couplings in superstructure fiber Bragg gratings.” IEEE Photonics Technology Letters, 2002, Vol. 14(4), pp: 489-491.
    [24] JaeJoong Kwon, SeungWhan Chung, Yoonchan Jeong and Byoungho Lee, “Group Delay Tailored Chirped Fiber Bragg Gratings Using a Tapered Elastic Plate.” IEEE Photonics Technology Letters, 2002, Vol. 14(10), pp: 1433-1435.
    [25] H. Y. Liu, G. D. Peng and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection.” IEEE Photonics Technology Letters, 2002, Vol. 14(7), pp: 935-937.
    [26] Alexander V. Buryak, Kazimir Y. Kolossvski and Dmitrii Yu. Stepanov, “Optimization of refractive index sampling for multi-channel fiber Bragg gratings.” IEEE Journal of Quantum Electronic, 2003, Vol. 39(1), pp: 91-98.
    [27] David M. Meghavoryan and Ara V. Daryan, “Superimposed fiber Bragg grating simulation by the method of single expression for optical CDMA systems.” IEEE Photonics Technology Letters, 2003, Vol. 15(11), pp: 1546-1548.
    [28] Jianliang Yang, Swee Chuan Tjin and Nam Quoc Ngo, “Wideband tunable linear-cavity fiber laser source using strain-induced chirped fiber Bragg grating.” Optics Laser Technology, 2004, Vol. 36, pp: 561-565.
    [29] V. Mizrahi, D.J. DiGiovanni, R. M. Atkins, S.G. Grubb, Yong-Kwan Park and Delavaux, J-M.P. “Stable single-mode erbium fiber-grating laser for digital communication”.
    [30] Christophe Caucheteur, Mare Wuilpart, Sebastien Bette, etal. “Wavelength dependency of degree of polarization for uniform Bragg gratings written into polarization maintaining optical fibers”. Optics Communications. 2005, Vol. 247, pp: 325-333.
    [31] Jacques Morel, Alain Woodtli, and Rene Dandliker, “Coherent coupling of an array of Nd3+-doped single mode fiber lasers by use of an intracavity phase grating”. Optics Letters, 1993, Vol.18(18), pp: 1520-1522.
    [32] G. A. Ball and W. W. Morey, “Compression tuned single-frequency Bragg grating fiber laser”, Optics Letters, 1994, Vol. 19(23), pp: 1979-1981.
    [33] Bai-Ou Guan, Hwa-Yaw Tam, Sien-ting Lau and Helen L. W. Chan, “Ultrasonic hydrophone based on fiber distributed Bragg reflector laser”, IEEE Photonic Technology Letters, 2005, Vol.17(1), pp: 169-171.
    [44] W. H. Chung, H. Y. Tam, M. S. Demokan, P. K. A. Wai and C. Lu, “Frequency stabilization of DBR fiber grating laser using interferometric technique”, IEEE Photonics Technology Letters, 2001, Vol. 13(9), pp: 951-953.
    [35] Mikael Svalgaard, Sarah L. Gilbert, “Stability of short, single-mode erbium doped fiber lasers”, Applied Optics, 1997, Vol. 36(21), pp: 4999-50005.
    [36] I. M. Jauncey, L. Reekie, and R. J. Mears, “Narrow-line width fiber laser operating at 1. 55μm”, Optics Letters, 1987, Vol. 12(3), pp: 164-165.
    [37] L. Dong, W. H. loh, J. E. Caplen, J. D. Minelly, k. Hsu and L. Reekie, “Efficient single frequency fiber lasers with novel photosensitive EryYb optical fibers”, Optics Letters, 1997, Vol. 22(10), pp: 694-696.
    [38] W. H. Loh, B. N. Samson, L. Dong, G. J. Cowle, and K. Hsu, “High performance single frequency fiber grating-based Erbium: Ytterbium-Codoped fiber lasers”, Journal of lightwave technology, 1998, Vol. 16(1), pp: 114-118.
    [39] Ha Huy Thanh and Bui Trung Dzung. “Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters”, International Workshop on Photonics and Applications. Hanoi, Vietnam. 2004, pp: 279-283.
    [40] Ximing xu, Yitang Dai, Xiangfei Chen, Dianjie Jiang and Shizhong Xie, “Chirped and phase-sampled fiber Bragg grating for tunable DBR fiber laser”, Optics Express, 2005, Vol. 13(10), pp: 3877-3882.
    [41] Ibsen, M. Shaif-ul Alam Zervas, M. N. Grudinin, A. B. Payne, D. N. “8-and 16-channel all fiber DFB laser WDM transmitters with integrated pump redundancy”, IEEE Photonics Technology Letters, Vol. 11(9), pp: 1114-1116.
    [42] R. J. Campbell, J. R. Armitage, G. Sherlock, D. L. Williams, etal. “Wavelength stable un-cooled fiber grating semiconductor laser for use in an optical WDM access network”, Electronics Letters, 1996, Vol. 32(2), pp: 119-120.
    [43] D. M. Bird, J. R. Armitage, R. Kashyap, R. M. A. Fatah, K. H. Cameron, “Narrow line semiconductor laser using fibre grating”, Electronics Letters, 1991, Vol. 27(13), pp: 1115-1116.
    [44] K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview”, Journal of Lightwave Technology, 1997, Vol. 18(8), pp:1263-1276.
    [45] 周凯明,葛璜,安贵仁,汪孝杰,王圩,“用光纤光栅作外反馈的可调谐外腔半导体激光器”,《中国激光》,2001,Vol. A28(2), pp: 113-115.
    [46] Zhao Chunlin, Ma Ning, Liu Zhiguo, Dong Xinyong and Liang Longbin, “Tunable wavelength semiconductor laser using a fiber Bragg grating”, Acta Photonica Sinica, 2002, Vol. 31(12), pp: 1514-1517.
    [47] J. Yu, D. Huhse, M. Schell, M. Schulaze, D. Bimberg, et al., “Fourier-transform-limited 2.5 ps light pulses with electrically tunable wavelength (15 nm) by hybridly mode locking a semiconductor laser in a chirped Bragg grating fiber external cavity”, Electronics Letters, 1995, Vol. 31(23), pp: 2008-2009.
    [48] P. A. Morton, V. Mizrahi, S. G. Kosinski, et al., “Hybrid soliton pulse source with fiber external cavity and Bragg reflector”, Electronics Letters, 1992, Vol. 28(6), pp: 561-562.
    [49] B. F. Ventrudo, G. A. Rogers, G. S. Lick, D. Hargreaves, T. N. Demayo, “Wavelength and intensity stabilisation of 980 nm diode laser scoupled to fiber Bragg gratings”, Electronics Letters, 1994, Vol. 30(25), pp: 2147-2149.
    [50] Mugino, A. Kimura, T. Irie, Y. Shimizu, T., “Realization of high power and wavelength stabilized 980 nm-pumplaser diode module with Fiber-Bragg-Grating by optimizing the effective reflectivity with Spatial-Hole-Burning effect”, Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. Technical Digest, 1999, Vol. 1, pp: 29-31.
    [51] Achtenhagen Martin, Mohrdiek Stefan, Pliska Tomas, Matuschek Nicolai, et al., “L-I characteristics of fiber Bragg grating stabilized 980-nm pumplasers”, IEEE Photonics Technology Letters, 2001, Vol. 13(5), pp: 415-417.
    [52] V. I. Karpov, E. M. Dianov, V. M. Paramonov, O. I. Medvedkov, M. M. BubNov, S. L. Semyonov, et al., “Laser-diode-pumped phosphosilicate fiber Raman laser with an out-put power of 1 W at 1.48 μm ”, Optics Letters, 1999, Vol. 24(13), pp: 887-889.
    [53] Young-Geun Han, Chang-Seok Kim, Jin U. Kang, et al., “Multiwavelength Raman Fiber Ring Laser Based on Tunable Cascaded Long-Period Fiber Gratings”, IEEE Photonics Technology Letters, 2003, Vol. 15(3), pp: 383-385.
    [54] Donghui Zhao, Kam Tai Chan, Y. Liu, L. Zhang, I. Bennion, “Wavelength-switched optical pulse generation in a fiber ring laser with a Fabry-Perot semiconductor modulator and a sampled fiber Bragg grating”, IEEE Photonics Technology Letters, 2001,Vol.13(3), pp: 191-193.
    [55] Y. W. Song, S. A. Havstad, D. Starodubov, et al., “40nm Wide Tunable Fiber Ring Laser With Single-Mode Operation Using a Highly Stretchable FBG”, IEEE Photonics Techn- ology Letters, 2001, Vol. 13(11), pp: 1167-1169.
    [56] 秦莉,“紫外写入长周期光纤光栅制作技术及特性研究”,博士学位论文,1999。
    [57] Michael Fokine, “Thermal stability of oxygen-modulated chemical composition gratings in standard telecommunication fiber”, Optics letters, 2004, Vol. 29(11), pp:1185-1187.
    [58] Yun-Jiang Rao, D. J. Webb, D. A. Jackson, et al., “In-fiber Bragg grating temperature sensor system for medical applications”, Journal of Lightwave Technology, 1997, Vol. 15(5), pp: 779-785.
    [59] D. W. Kim, F. Shen, X. Chen, A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry Perot interferometer sensor.”, Optics Letters, 2005, Vol.30(22), pp: 3000-3002.
    [60] Y. G. Han, T. V. Tran, S. H. Kim, S. B. Lee, “Multi-wavelength Raman fiber laser based long distance sensor for simultaneous measurement of strain and temperature”, Optics Letters, 2005, Vol. 30(11), pp: 1282-1284.
    [61] Xu, M.G.;Geiger, H. and Dakin, J.P., “Fibre grating pressure sensor with enhanced sensitivity using aglass-bubble housing”, Electronics Letters, 1996, Vol. 32(2), pp: 128-129.
    [62] 张东升“光纤光栅的谱型控制及其应用研究”,南开大学博士学位论文,2004。
    [63] H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination” Photonics Technology Letters, 1996, Vol. 8(9), pp: 1223-1225.
    [64] I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “Uv-written in-fiber Bragg gratings”, Optical and Quantum Electronics, 1996, Vol. 28(2), pp:93-135.
    [65] 李智红,盛秋琴,董孝义,“长周期光纤光栅的原理与应用”,《光通信技术》1998,Vol. 22(2), pp: 143-148.
    [66] 何万讯,施文康,叶爱伦,“长周期光纤光栅及其在通讯传感领域的新应用”,《光学精密工程》, 2001,Vol. 9(2), pp: 104-108.
    [67] Vengsarkar A M, Lemaire P J, Judkins J B, et al. “Long-period fiber grat ings as band rejection filters”, Journal of Lightwave Techno logy, 1996, Vol. 14(1) pp: 58-65.
    [68] Bhatia V., Vengsarkar A. M. “Opticla fiber long period grating sensor”, Optics Letters, 1996, Vol. 21(9), pp: 692-694.
    [69] Vengsarkar A. M., Pedrazzani J. R., Judk ins J. B., et al., “Long period fiber rating-based gain equalizers. Optics Letters”, 1996, Vol. 21(5), pp:336-338.
    [70] Martin Guy and Francois Trepanier, “Chirped fiber Bragg gratings equalize gain”, WDM Solutions, 2001, 3 (3), pp:77-82.
    [71] 赵志勇,于永森,马玉刚,曹英晖,郑 伟,钱 颖,卓仲畅,郑 杰,张玉书。“基于啁啾光纤光栅的增益平坦滤波器”,《吉林大学学报(理学版)》,Vol. 42(2), pp: 255-256.
    [72] Turan Erdogan, “Cladding-mode resonances in short-and long-period fiber grating filters.” J. Opt. Soc. Am. A, 1997, Vol. 14(8), pp: 1760-1773.
    [73] Bai-Ou Guan, A-Ping Zhang, Hwa-Yaw Tam, Helen L. W. Chan, Chung-Loong Choy, Xiao-Ming Tao and Muhtesen Suleyman Demokan, “Step-changed long period fiber gratings.” IEEE Photonics Technology Letters, 2002, Vol. 14(5), pp: 657-659.
    [74] P. A. Krug, T. Stephens, G. Yoffe, F. Ouelette, P. Hill, G. Dhosi, “Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fiber Bragg grating”, Electronics Letters, 1995, Vol. 31(13), pp: 1091-1093.
    [75] R. I. Laming, WH Loh, A. D. Ellis, D. Atkinson,” Dispersion compensation 10Gbit/s transmission over 700km of standard single mode fiber with 10 chirped fiber grating and duobinarary transmitter”, OFC96. 1996,PD30.
    [76] T. Imai, T. Komukai, M. Nakazawa, “Dispersion tuning of a linearly chirped fiber Bragg grating without a center wavelength shift by applying a strain gradient.” IEEE Photonics Technology Letters, 1998, Vol. 10(6), pp: 845-847.
    [77] C. R. Giles, “Lightwave applications of fiber Bragg gratings.” Journal of Lightwave Technology, 1997, Vol. 15(8), pp: 1391-1404.
    [78] F. Bilodeau, D. C. Johnson, S. Theriault, et al., “An all-fiber dense wavelength division multiplexer/de-multiplexer using photo imprinting Bragg gratings.” IEEE Photonics Technology Letters, 1995, Vol.7(4) pp:388-390.
    [79] F. Bilodeay, B. Malo, D. C. Johnson, et al.,OFC'95 Thchnical Digest: W1.
    [80] D. C. Johnson, K. O. Hill, F. Bilodeau et al., “New design concept for a narrowband wavelength-selective optical tap and combiner.” Electronic Letters, 1987, Vol. 23(13) pp:668-669.
    [81] Bethuys S., Lablonde L., Rivoallan L., et al. “Optical ADD/DROP multiplexer based UV-written Bragg gratings in twincore fiber Mach-Zehnder interferometer.” Electron. Letters, 1998, Vol. 34(12), pp: 1250~1252.
    [82] C. R. Giles, and V. Mizrahi, Proc. IOOC'95: ThC-2.
    [83] Okayama H., Ozeki Y., Kunii T., “Dynamic wavelength selective add/drop node comprising tunable grating.” Electronics Letters, 1997, Vol. 33(10) pp: 881~882.
    [84] Kim S., Lee S. B., Kwon S., et al. Electron Lett ,1998 ,34(1) :104~105.
    [85] Quetel L , Rivollan L , Delevaque E , et al. OFC'96 ,Paper WF6.
    [86] B. Ortega, L. Dong, L. Reekie, “All fiber optical add-drop multiplexer based on a selective fused coupler and a single fiber Bragg grating.” Apply Optics , 1998, Vol. 37(33), pp: 7712-7717.
    [87] Gn X J. “Wave-division multiplexing isolation fiber filter andlight source using cascaded long $ period fiber gratin.” Opt Lett, 1998, 23 (7) : 509~511.
    [88] 刘玉敏,俞重远,杨红波,张晓光,杨伯君,“长周期啁啾光纤光栅级联作为波分复用隔离滤波器的数值研究”,《光子学报》,2005,Vol. 34(4), pp: 516-519.
    [89] D. T. K. Tong and M. C. Wu “Programmable dispersion matrix using fiber Bragg grating for optically controlled phase array attennas. ” Electronics Letters, 1996, Vol. 32, pp: 1532-1533.
    [90] H. Zmuda, R. A. Soref, P. Payson, S. Jhons and E. N. Toughlian, “Photonic beam former for phased array antennas using a fiber grating prism.” IEEE Photonics Technology Letters, 1997, Vol. 9 pp: 241-243.
    [91] C. D. Pool, J. M. Wieselfeld, D. J. Di Giovanni and A. M. Vengsarkar, Journal of Lightwave Technology, 1994, Vol. 12 pp: 1746.
    [92] C. M. de Sterke , N. G. R. Broderick , B. J . Eggleton et al . . Nonlinear optics in fiber gratings [ J ] . Opt . Fiber Technol . , 1996 , 2 (3) :253~268.
    [93] A. 亚里夫,P. 叶 著,于荣金,金锋 译。《晶体中的光波-激光的传播与控制》,科学出版社 1991年第一版 pp: 130。
    [94] Russell St. F., "Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback stucturcs," Journal of Modern Optics, VaL38,1991, 1599-1619.
    [95] Eva Peral and Jose Capmany, “Generalized Bloch wave analysis for fiber and waveguide gratings.” Journal of Lightwave Technology, 1997, Vol. 15(8), pp: 1295-1302.
    [96] L. A. Weller-Brophy, “Analysis of waveguide gratings: application of Round's method.” J. Opt. Soc. Amer. A, 1987, Vol. 2(6), pp: 863-871.
    [97] L. A. Weller-Brophy, “Analysis of waveguide gratings: a comparision of Rouard's method and coupled mode theory.” J. Opt. Soc. Amer. A, 1987, Vol. 4(1), pp: 60-65.
    [98] 廖延彪 《光纤光学》,清华大学出版社,2000年第一版,pp: 11-30.
    [99] 马春生,刘式墉,《光波导模式理论》,吉林大学出版社(出版中)。
    [100] Charles Tsao, “Optical Fiber Waveguide Analysis”, Oxford University Press,1992 pp: 243.
    [101]Turan Erdogan. “ Cladding-mode resonances in short-and long-period fiber grating filters.” J. Opt. Soc. Am. A, 1997, Vol.14(8), pp: 1760-1773.
    [102] Turan Erogan. “Fiber grating spectra.” Journal of Lightwave Tecnology, 1997, Vol. 15(8), pp: 1277-1294.
    [103] Yanyu Zhao, “Fiber Bragg grating coherence spectrum modeling simulation and characteristics.” A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy(博士论文)。
    [104] 徐新华,崔一平,“矩形折射率调制型长周期光纤光栅传输谱的理论分析及数值计算。”《物理学报》2003, Vol. 52(1), pp: 96-101.
    [105] C. F. C. Silva, A. J. Seeds, and P. J. Williams, “Terahertz span>60-channel exact frequency dense WDM source using combgeneration and SG-DBR injection-locked laser filtering.” IEEE Photonics Technology Letters, 2001, Vol. 13 pp: 370-372.
    [106] G. Vareille, F. Petel, and J. F. Marceau, “3.65 Tbit/s (365×11.6 Gbits) transmission experiment over 6850km using 22.2Ghz channel spacing in NRZ format.” 27th European Conference on Optical Communications(Institute of Electrical and Electronics Engineer, Amsterdam, 2001), postdeadline paper. Vol. 6, pp: 14-15.
    [107] L. Dong, J. Z. Cruz, L. Reekie, and J. A. Tucknott, “Chirped fiber Bragg gratings fabricated using etched tapers.” Optical Fiber Technology, 1995, pp: 363-368.
    [108] J. Zhang, P. Shum, X. P. Cheng, N. Q. Ngo, and S. Y. Li, “Analysis of linearly tapered fiber Bragg grating for dispersion slope compensation.” IEEE Photonics Technology Letters, 2003, Vol. 15(10), pp: 1389-1391.
    [109] Zhanxiong Wei, Huiping Li, Wei Zheng, Yushu Zhang, “Fabrication of tunable non-linearly chirped fiber gratings using fiber Bragg grating.” Optics Communications, 2001, vol. 187, pp: 369-371.
    [110] M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fiber Bragg gratings for high performance dispersion compensation in DWDM system.” Optical fiber communication conference of OSA technical Digest Series, 2000, Vol. 1, TuH4-1.
    [111] Lin Zhang and Changxi Yang, “Improving the performance of fiber gratings with sinusoidal chirps.” Applied Optics, 2003, Vol. 42(12), pp:2181-2187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700