用户名: 密码: 验证码:
拟南芥AtCPK30基因的表达模式和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙是真核生物信号转导中普遍存在的第二信使。植物中各种各样的信号都调节细胞内钙离子的水平,如激素、光、协迫等。关于钙离子介导的信号是如何特异地传递是一个重要的生物学问题,目前研究表明,似乎是不同的刺激引起不同的钙识别物,而钙信号中的传递因子能够识别这些特异的钙识别物,并将这种信号传递到下游从而发挥作用,包括改变蛋白的磷酸化作用和基因的表达模式。
     钙依赖蛋白激酶(CDPKs)广泛存在于植物体内,目前发现,大多的钙信号传递都与钙依赖蛋白激酶有关。作为钙信号途径中一个传递因子,它参与了包括激素信号转导途径在内的很多传递过程。本工作在前人研究的基础上,对拟南芥的一个钙依赖蛋白激酶基因(AtCPK30)进行了深入的研究。具体研究结果如下:
     为了便于实验中T-DNA插入突变体的筛选,首先制作了一种简易可行的拟南芥水培装置。这套装置主要由两部分组成:播放种子的塑料管和作为支撑物的不锈钢丝网,盛溶液的容器。实验表明:T-DNA插入突变体在这种水培装置中生长良好,且培养的费用低,易于管理等。由于有钢丝网作支撑,植株能够顺利完成整个生长周期并且结实饱满,种子萌发率高。并采用“双引物法”筛选到了多个T-DNA插入突变体纯合子,为进行下一步实验做好准备。
     接下来进行了AtCPK30基因的表达模式研究。收集野生型拟南芥根、茎、叶、花、果,通用半定量RT-PCR分析组织表达特异性。结果表明:AtCPK30在植物根中有很高的表达量,而在其它组织表达较低。将生长三周的野生型幼苗分别用植物激素脱落酸(ABA)、吲哚乙酸(IAA)、2,4-二氯苯氧乙苯酸(2,4-D)、赤霉素(GA3)和6-苄氨基嘌呤(BA)处理,然后采用半定量RT-PCR(逆转录PCR)分析AtCPK30基因在幼苗中的转录水平的变化情况。实验发现AtCPK30基因的表达受ABA、IAA、2,4-D、GA3和BA等激素的诱导。
     又通过基因克隆构建了AtCPK30基因的植物超表达载体。并将此质粒利用基因枪法转入洋葱表皮细胞中,进行瞬时表达实验,了解AtCPK30基因的亚细胞定位情况。结果证明AtCPK30蛋白定位在细胞壁和细胞膜上。
     同时将超表达载体通过浸花蕾法转入野生型拟南芥中,得到了AtCPK30基因超表达的转基因株系纯合子。测量在同一MS培养基上生长的野生型和转基因植株幼苗主根长,结果表明转基因植株主根在幼苗生长前期比野生型的长,但在第11天时,这种差异不明显。同时发现转基因植株幼苗的根在缺钙的MS培养基上长势较野生型植株好,表明缺钙对转基因幼苗影响较小。以野生型为对照,用植物激素ABA和IAA、GA3、BA处理转基因植株时,结果发现转基因植株幼苗的根对激素更敏感,具体表型为:ABA对转基因植株根的抑制更强烈,IAA和GA3、BA三种激素在低浓度时更能促进转基因植株根的生长。而当野生型和转基因植株生长在含有生长素抑制剂萘丙酸(NPA)的MS培养基上时,NPA对转基因植株侧根的抑制比对野生型弱。综合以上实验结果,AtCPK30蛋白可能作为一个正调节因子参与了植物激素信号途径。
Calcium is a ubiquitous second messenger in eukaryotic signal transduction cascades. In plants, intracellular Ca2+ levels are modulated in response to various signals, including hormones, light, and abiotic stress. How response specificity is regulated during Ca2+-mediated signal transduction is an important biological issue. It appears that different stimuli elicit specific calcium signatures, different calcium sensors recognize specific calcium signatures and transduce them into downstream effects, including altered protein phosphorylation and gene expression patterns. CDPKs, calcium-dependent protein kinases, are wildly distributed in plants and algae, and also in some protistas. Currently, most of the known calcium-stimulated protein kinase activities in plants are associated with CDPKs. As calcium sensors, CDPKs mediate numerous responses including hormone signaling. Basing on previous studies, we made additional functional analysis of the gene AtCPK30 encoding a calcium-dependent protein kinase in Arabidopsis. The results of this study were listed as follows:
     In order to screen homozygous seedlings of T-DNA insertion, we had prepared a simple and feasible hydroponic device. This device is made up of two parts: some seed-holders and stainless steel net as support, a tank with fit cover. Results showed that T-DNA insertion of AtCPK30 grew well in this hydroponic system. Furthermore, this system has the advantage of its low cost of planting and easy maintenance. Owing to the support of steel net, Arabidopsis Plants can finish their whole life cycle successfully and can bear lots of normal seeds with characteristic of high germination rate. Moreover, multi-homozygous of T-DNA insertion was identified by PCR through double primer.
     Next, Expression pattern of AtCPK30 had been studied under different conditions. Results of semi-quantitative reverse transcription PCR (RT-PCR) analysis indicated that AtCPK30 was highly expressed in root and induced by ABA, IAA, 2,4-D, GA and BA treatment.
     Then cDNA of AtCPK30 was subcloned into the pEGAD binary vector with a GFP gene and a Bar gene under the cauliflower mosaic virus (CaMV) 35S promoter, and the recombinant was transformed into onion epidermis cells by gene gun. GFP-CPK30 fusion gene transient transformation of onion epidermis cells revealed the localization of CPK30 in cell wall and cell membrane.
     The physiological roles of AtCPK30 were studied using a gain-of-function approach. Seedlings of AtCPK30 transgenic lines had longer primary roots than those plants of wild-type at the early stages. Interestingly, when these plants grew on MS lack of Ca2+ including wild-type and transgenic lines, the roots of transgenic line were more sensitive to calcium, lack of Ca2+ had less effect on roots of transgenic lines than those of wild-type. Treated with several plant hormones, such as ABA, IAA, GA and BA, the roots of seedlings of transgenic line developed abnormally because they were more sensitive to hormones. Furthermore, NPA relatively less inhibited emergency of lateral roots of transgenic line than those of the wild-type. These results suggest that AtCPK30, as a positive regulator, involved in the hormone-signaling pathways.
引文
[1] Kauss H. Some aspects of calcium-dependent regulation in plant metabolism[J]. Annual Review of Plant Physiology, 1987, 38(6): 47?71
    [2] Saunders M J, Hepler P K. Calcium ionophore A23187 stimulates cytokinin-like mitosis in Funaria[J]. Science, 1982, 217(9): 943?945
    [3] Hepler P K, Wayne R O. Calcium and Plant Development[J]. Annual Review of Plant Physiology, 1985, 36(6): 397?439
    [4] Ferguson I B, Watkins C B, Jane E. H. Inhibition by Calcium of Senescence of Detached Cucumber Cotyledons: Effect on Ethylene and Hydroperoxide Production[J]. Plant Physiol, 1993, 71(1): 182?186
    [5] Wayne R, Hepler P K. The role of calcium ions in phytochrome-mediated germination of spores of Onoclea sensibilis L[J]. Planta, 1984, 160(9): 12?20
    [6] Haya F, Eliezer E G, Abraham H. Halevy involvement of calcium in the photoperiodic flower induction process of Pharbitis nil[J]. Plant Physiol, 1989, 89(2): 530?534
    [7] Ferreira P C G. The Arabidopsis functional homolog of the P34cdc2 protein kinase[J]. Plant Cell, 1991, 3(5): 531?540
    [8] 张承才,彭玲. 蛋白激酶在植物生长及发育中作用[M]. 许智宏,刘春明主编. 植物发育的分子生理. 北京:科学出版社,1998, 172?192.
    [9] 刘小丽. 植物蛋白质激酶和 MAPK 信号传递系统[J]. 河北师范大学学报自然科学版, 2001, 25(3): 385?388
    [10] Hanks S K, Quinn A M. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members[J]. Meth Eezymol, 1991, 200(7): 38?62
    [11] Walker J C. Structure and function of the receptor-like protein kinases of higher plants[J]. Plant Mol Biol, 1994, 26(5): 1599?1609
    [12] Stone J M, Walker J C. Plant protein kinase families and signal transduction[J]. Plant Physiol, 1995, 108(2): 451?457
    [13] Hanks S K, Quinn A M and Hunter T. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains[J]. Science, 1988, 241(4861): 42?52
    [14] Hanks S K, Quinn A M. Protein kinase catalytic domain sequence database:identification of conserved features of primary structure and classification of family members[J]. Meth, 1991, 200(4): 38?62
    [15] Lin X, et al., Differential accumulation of transcripts encoding protein kinase homologs in greening pea seedlings[J]. Prot. Natl. Acad. Sci., 1991, 88(16): 6951?6955
    [16] Cheung W Y. Calmodulin plays a pivotal role in cellular regulation[J]. Science, 1980, 207(4426): 19?26
    [17] Liu J, Zu J K. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance [J]. Proc Nail Acad Sci, l997, 94(26): l4960? l4964
    [18] Knlukisaoglu U W S, Blazevic D, el a1. Calcium sensors and their interacting protein kinases: genomies of the Arabidopsis and rice CBL-CIPK signaling nelworks[J]. Plant Physiol, 2004, 134(1): 43?58
    [19] Hetherington A M, Trewavas A. Calcium-dependent protein kinase in pea shoot membranes. FEBS Lett, 1982, 145(10): 67?71
    [20] Harmon A C, Putnam-Evans C, Cormier M J. A Calcium-dependent but calmodulin-independent protein kinase from soybean[J]. Plant Physiol, 1987, 83(4): 830–837
    [21] Harper J F, Binder B M, Sussman M R. Calcium and lipid regulation of an Arabidopsis protein kinase expressed in Escherichia coli[J]. Biochemistry, 1993, 32(8): 3282–3290
    [22] Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana[J]. Mol Gen Genet, 1994, 244(12): 331–340
    [23] Schulman H, Lou L L. Multifunctional Ca2+/calmodulin-dependent protein kinase: domain structure and regulation[J]. Trends Biochem Sci, 1989, 14(8): 62–66
    [24] Hong Y, Takano M, Liu C M, Gasch A, Chye M L, Chua N H. Expression of three members of the calcium-dependent protein kinase gene family in Arabidopsis thaliana[J]. Plant Mol Biol, 1996, 30(13): 1259–1275
    [25] Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants[J]. Science, 1996, 274(12): 1900?1902
    [26] Lu S X, Hrabak E M. An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum[J]. Plant Physiol, 2002, 128(10):1008–1021
    [27] Dammann C, Ichida A, Hong B, Romanowsky S M., et al Subcellular Targeting of Nine Calcium-Dependent Protein Kinase Isoforms from Arabidopsis[J]. Plant Physiol, 2003, 132(4): 1840-1848
    [28] Putnam-Evans C, Harmon A C, Palevitz B A, Fechheimer M, Cormier M J. Calcium-dependent protein kinase is localized with F-actin in plant cells[J]. Cell Motil Cytoskelet, 1989, 12(7): 12–22
    [29] Schaller G E, Harmon A C, Sussman M R. Characterization of a calcium-and lipid-dependent protein kinase associated with the plasma membrane of oat[J]. Biochemistry, 1992, 31(6): 1721–1727
    [30] Martin M, Busconi L. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation[J]. Plant J, 2000, 24(4): 429–435
    [31] Patharkar O R, Cushman J C. A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator[J]. Plant Cell, 2000, 24(5): 679–691
    [32] Malhó R, Moutinho A, van der Luit A, Trewavas AJ. Spatial characteristics of calcium signalling: the calcium wave as a basic unit in plant cell calcium signalling[J]. Philos Trans R Soc Lond B, 1998, 353(9): 1463–1473
    [33] Rudd J J, Franklin-Tong V E. Unravelling responsespecificity in Ca2+ signalling pathways in plant cells[J]. New Phytol, 2001, 151(11): 7–33
    [34] Saha P, Singh M. Characterization of a winged bean (Psophocarpus tetragonolobus) protein-kinase with calmodulin-like domain regulation by autophosphorylation[J]. Biochem J, 1995, 305(Pt 1): 205–210
    [35] Chaudhuri S, Seal A, Gupta M D. Autophosphorylation-dependent activation of a calcium-dependent protein kinase from groundnut[J]. Plant Physiol, 1999, 120(3): 859–866
    [36] Farmer P K, Choi J H. Calcium and phospholipid activation of a recombinant calcium-dependent protein kinase (DcCPK1) from carrot (Daucus carota L.) [J]. Biochim Biophys Acta, 1999, 1434(1): 6–17
    [37] Abo-el-Saad M, Wu R. A rice membrane calcium-dependent protein kinase is induced by gibberellin[J]. Plant Physiol, 1995, 108(2): 787–793
    [38] Van der H P C J, Siderius M, Korthout H A A J, Drabkin A V, De Boer A H. A calcium and free fatty acid-modulated protein kinase as putative effector of the fusicoccin 14-3-3 receptor[J]. Plant Physiol, 1996, 111(3): 857–865
    [39] Lino B, Baizabal-Aguirre V M, Gonzalez de la Vara L E. The plasma-membrane H-ATPase from beet root is inhibited by a calcium-dependent phosphorylation[J]. Planta, 1998, 204(2): 352–359
    [40] Camoni L, Harper J F, Palmgren M G. 14-3-3 proteins activate a plant calcium-dependent protein kinase (CDPK) [J]. FEBS Lett, 1998, 430(11): 381–384
    [41] Harmon A C, Gribskov M, Harper J F. CDPKs-a kinase for every Ca2+ signal[J]. Trends Plant Sci, 2005, 5(6): 154?159
    [42] Sharma A, Komatsu S. Involvement of a Ca2+-dependent protein kinase component downstream to the gibberellin-binding phosphoprotein, RuBisCO activase, in rice[J]. Biochem Biophy Res Corem, 2002, 18(6): 690?695
    [43] Ullanat R, Jayabaskaran C. Distinct light-, cytokinin- and tissue- specific regulation of calcium dependent protein kinase gene expression in cucumber (Cucumis sativus) [J]. Plant Science, 2002, 162(10): 533-563
    [44] 陈武, 陈珈. 盐胁迫对玉米根尖质膜受钙激活蛋白激酶的影响[J].植物生理学报, 1998, 24(4): 367?372
    [45] Patharkar O R, Cushman J C. A stress-induced calcium-dependent protein kinase from Mesombryanthemum crystallinum phosphorylates a two-component pesudo-response regulator[J]. Plant J, 2000, 24(4): 679?691
    [46] Anil V S, Rao K S. Purification and characterization of a Ca2+-dependent protein kinase from sandalwood (Santalum album L.): evidence for Ca2+-induced conformational changes[J]. Phytochemistr, 2001, 58(5): 203?212
    [47] Frattini M, Morello L, Breviario D. Rice calcium-dependent protein kinase isoforms OsCDPK2 and OsCDPK11 show different responses to light and different expression patterns during seed development[J]. Plant Mol Biol, 1999, 41(3): 753?764
    [48] Putnam-Evans C, Harmon AC, Palevitz BA, Fechheimer M, Cormier MJ. Calcium dependent protein kinase is localized with F-actin in plant cells[J]. Cell Motil Cytoskelet, 1989, 12(4): 12?22
    [49] Moutinho A , Trewavas A J , Malho R. Relocation of a Ca2+-dependent protein kinase activity during pollen tube reorientation[J]. Plant Cell, 1998, 10(9): 1499?1509
    [50] Grabski S, Arnoys E, Busch B, Schindler M. Regulation of actin tension in plant cells by kinases and phosphatases[J]. Plant Physiol, 1998, 116(1): 279?290
    [51] Chung H J, Sehnke P C, Ferl R J. The 14-3-3 proteins: cellular regulators ofplant metabolism[J]. Trends Plant Sci, 1999, 4(9): 367?371
    [52] Toroser D, Huber S C. Protein phosphorylation as a mechanism for osmotic- stress activation of sucrose-phosphate synthase in spinach leaves[J]. Plant Physiol, 1997, 114(3): 947?955
    [53] Hwang I, Sze H, Harper J F. A calcium-dependent protein kinase can inhibit a calmodulin- stimulated Ca2+ pupm (ACA2) lo2 cated in the endoplasmic reticulum of Arabodopsis[J]. Proc Natl Acad Sci, 2000, 97(11): 6224?6229
    [54] Huang J Z, Hardin S C, Huber S C. Identification of a novel phosphorylation motif for CDPKs: phosphorylation of synthetic peptides lacking basic residues at P-3/ P-4[J]. Arch Biochem Biophys, 2001, 393(2): 61?66
    [55] Li J, Lee YRJ, Assmann SM. Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel [J]. Plant Physiol, 1998, 116(2): 785?795
    [56] Berkowitz G, Zhang X, Mercier R, Leng Q, Lawton M. Co-expression of calcium-dependent protein kinase with the inward rectified guard cell K+ channel KAT1 alters current parameters in Xenopus laevis oocytes[J]. Plant Cell Physiol, 2000, 41(7): 785?790
    [57] Allwood E G, Davies D R, Gerrish C et al. Regulation of CDPKs including identification of PAL kinase, in bioticaily stressed cells of French bean. Plant Mol Biol, 2002, 49(6): 533?544
    [58] Bachmann M, Shiraishi N, Campbell W H, Yoo B C, Harmon A C, Huber S C. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase[J]. Plant Cell, 1996, 8(3): 505–517
    [59] Tocquin P, Corbesier L, Havelange A, et al. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana[J]. BMC Plant Biology, 2003, 3(2): 1471-1480
    [60] 韩 玉 珍 , 李 睿 , 孟 繁 静 . 拟 南 芥 开 花 的 光 周 期 调 节 [J]. 植 物 生 理 学 通 迅 , 1998,34(5): 401?406
    [61] Murashige T and Skoog F. A revised medium for rapid growth and bio-assays with tobacco tissue cultures[J]. Physiol. Plant, 1962, 15(7): 473?497
    [62] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual[M]. NY: Cold Spring Harbor Laboratory Press, 1989: 897-905
    [63] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium- mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16(6): 735?743
    [64] Mundy J, Shinozaki K Y, Chua N. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene[J]. Proc Natl Acad Sci, 1990, 87(4): 1406?1410
    [65] Marcotte W R, Russell S H, and Quatrano R S. Abscisic acid-responsive sequences from the em gene of wheat[J]. Plant Cell, 1989, 1(10): 969?976
    [66] Yoon G M, Cho H S, Ha H J, Liu J R, Lee H P. Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein[J]. Plant Mol Biol, 1999, 39(9): 991–1001
    [67] Reed R C, Brady S R, Muday G K. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis[J]. Plant Physiol, 1998, 118(4): 1369?1378
    [68] McCourt P. Genetic analysis of hormone signaling[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50(9): 219?243
    [69] Showalter A M. Introduction: plant cell wall proteins[J]. Cell Mol Life Sci, 2001, 58(10): 1361–1362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700