用户名: 密码: 验证码:
中国三个牛种遗传多样性和分子系统进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用PCR产物,Sanger双脱氧链终止法自动测序技术,测定了我国饲养的14个黄牛品种(其中两个引进品种)84个个体和5个牦牛品种(类群)33个个体的线粒体DNA控制区(D-loop)全序列,分析结果表明:
     我国饲养的黄牛D—loop全序列长度为910bp、911bp和912bp,检测到83个多态位点,占分析位点总数的9.10%,其中单一多态位点19个,简约信息位点64个;核苷酸位点突变类型有五种,即转换、颠换、插入/缺失及转换与颠换共存。确定了45种单倍型,其中单倍型H10和H6为中国黄牛的主体单倍型,中国本地黄牛品种38种单倍型,其中32种单倍型为相应品种所特有。各单倍型在品种间和品种内的分布和频率均不平衡,所测定的14个黄牛品种单倍型平均多样度为0.9593±0.0126,各单倍型间的平均遗传距离为0.016(0.000—0.055),说明我国黄牛D-loop单倍型类型丰富。黄牛品种内各序列平均核苷酸差异数19.675,核苷酸多样度2.164%,黄牛品种间核苷酸分歧度(Dxy)从0.292%—4.571%;品种间双参数距离范围较大(0.000—0.053)。结果表明我国黄牛具有非常丰富的遗传多样性。群体核苷酸不配对分布曲线是一条不规则的多峰波浪型曲线,所有序列Tajima's D中性检验结果不显著(p>0.01),表明中国黄牛在过去没有出现群体扩张。分子方差分析表明,品种间的方差组分占总变异的26.5%,品种内的方差组分为73.50%,经检验差异极显著(p<0.01),进一步分析各品种间的Fst P值,大部分品种间差异不显著,部分品种间差异显著或极显著。表明我国黄牛品种间出现了显著的遗传分化。
     本研究在国际上首次测定了牦牛线粒体DNA控制区(D-loop)全序列,并采用了克隆测序,反向测序进行验证,表明结果是准确可靠的。牦牛线粒体DNA控制区全序列长度为891 bp至895 bp。T、C、A、G四种核苷酸的含量分别为28.5%、25.3%、32.5%、13.7%。检测到47个变异位点,约占分析位点总数的5.23%,其中简约信息位点36个,单一多态位点11个;核甘酸变异类型有转换、颠换、插入/缺失四种。确定了24种单倍型,单倍型H6和H4为中国牦牛的主体单倍型,各单倍型在品种间分布不平衡,所测定的5个牦牛品种(类群)单倍型平均多样度为0.9697±0.0180,各单倍型间的平均遗传距离0.014(0.000—0.037),说明我国牦牛D—loop单倍型类型丰富。牦牛的品种内各序列平均核苷酸差异数10.936,核苷
    
    酸多样度1.231%;耗牛品种间核昔酸分歧度(Dxy)从0.760%一2.155%,品种间双
    参数距离范围为0.003一0.029。结果表明我国耗牛遗传多样性丰富。
     我国耗牛控制区全序列核营酸数量比我国黄牛少巧一21 bp,核昔酸变异率耗牛
     (5.23%)较黄牛(9.10%)低,核营酸多样度黄牛(2.164%)较耗牛(1.231%)高
    约一倍。表明我国黄牛遗传多样性较耗牛丰富。
     试验测定了我国饲养的黄牛13个品种82个个体、耗牛5个品种(类群)31个
    个体和水牛4个地方类群18个个体的线粒体DNA细胞色素b部分(420 bp)序列,
    分析结果表明:
     黄牛中发现11个多态位点,单一信息位点6个,简约信息位点5个,确认了
    13种单倍型,单倍型核营酸平均差异数为2.331,核营酸多样度为0.555%,品种间
    核普酸分歧度(Dxy)从0.048%一1 .23%,双参数距离从0.000一0.012;在10、17、
    78、81四个位置检测到氨基酸序列变异,黄牛各品种间在cys、Leu、Ala、ne、Thu、.
    Val、Tyr七种氨基酸组成含量有差异。耗牛中发现9个变异位点,单一信息位点4
    个,简约信息位点5个,确定了6种单倍型,单倍型核营酸平均差异数1,798,核营
    酸多样度为0.428%,在69、118两个位置检测到氨基酸变异,耗牛各品种间在Ile,Thr
    两种氨基酸组成含量存在差异。水牛中发现5个多态位点,单一信息位点2个,简
    约信息位点3个,确定了5种单倍型,单倍型核普酸平均差异数为1.065,核昔酸多
    样度为0.254%,没有发现氨基酸变异。结果表明,中国黄牛遗传多样性较耗牛丰富,
    中国水牛遗传多样性贫乏;线粒体DNAD一loop区遗传多样性较Cyth基因遗传多
    样性丰富。
     Cytb基因核昔酸的变异类型在黄牛中为转换和颠换,在水牛和耗牛中只有转
    换,三种牛均以转换为主,没有缺失/插入;核昔酸的替换三种牛均发生在密码子的
    第三位,三种牛均以同义替换为主,黄牛各品种仅在安西黄牛中检测到非同义替换,
    耗牛和水牛中没有检测到非同义替换,同义替换的速率(ds)高于非同义替换的速率
    (ka)。
     黄牛、耗牛和水牛3种牛的Cytb序列中,不同位点碱基含量不同,3种牛均为
    密码子的第一位点和第三位点富含碱基A,第二位点富含碱基T。同一碱基在不同
    的密码子位点和不同的牛种中含量不同,黄牛中T、A在第2位点最高,G在第一
    位点最高,C在第三位点最高;耗牛和水牛中T在第二位点最高,G在第一位点最
    
    高,C、A在第三位点最高。可见,在不同位点和不同牛种间密码子的碱基组成存
    在较大偏倚。比较黄牛、水牛、耗牛密码子的使用频率,不同的密码子在同一牛种
    使用频率不同,同一密码子在不同的牛种中使用不同;同义密码子在牛种内和牛种
    间使用频率不平衡,结果表明,密码子使用频率存在偏倚性。
     采用黄牛和耗牛mtDNA控制区全序列单倍型,黄牛、耗牛和水牛m
The mitochondrial DNA control region complete sequence of 84 individuals from 14 yellow cattle breeds or strains (including two foreign breeds) and 33 individuals from 5 Chinese yak breeds were individually determined. The results showed:
    The complete sequence of mtDNA D-loop of Chinese yellow cattle was 910 bp, 911bp and912 bp. 83 sites were polymorphic (9.10% in 910) with 19 singleton polymorphic sites and 64 parsimony informative polymorphic sites. There were five types of mutation of nucleotide. They were transition, transversion, insertion/deletion and the coexistence of transition and transversion. This research defined 45 haplotypes, in which haplotype H10 and H6 are major haplotypes of Chinese yellow cattle. Chinese native yellow cattle breeds include 38 haplotypes in which 32 haplotypes were the characteristic of their corresponding breeds. The distribution and frequency of all the haplotypes either within the breeds or between the breeds were unbalance. The average haplotypes diversity of the 14 yellow cattle breeds was 0.9593 ?.0126. The average genetic distance of haplotypes was 0.016(0.000-0.055). That indicated the abundance of D-loop haplotypes in Chinese yellow cattle. Average nucleotide differences and the nucleotide diversi
    ty in yellow cattle breeds were 19.675 and 2.164% respectively. Nucleotide divergence and Kimura 2-parameter distance between yellow cattle breeds were 0.292%~4.57% and 0.000~0.053 respectively. It indicated that genetic diversity of Chinese yellow cattle was very abundant. The curve of nucleotide mismatch distributions in yellow cattle population took on unimodal and wavilness. Tajima's test of selective neutrality was not significant (P>0.10). It revealed that yellow cattle population did not undergo expansions. The AMOVA results revealed that variance component among the breeds took 26.5% while within the breeds it took 73.5%. The results revealed that there were very significant differences(P>0.01). Further research on the Fst P value among the breeds revealed that there were not significant differences among most breeds while significant or very significant differences among a few breeds. It indicated that there was very significant divergence among Chinese yellow cattle breeds.
    This research had first time in the world determined yak's complete sequence of
    
    
    
    mitochondrial DNA control region. It also adopted clone sequencing and reverse sequencing to testify the accuracy and credibility of the results. The length of yak's mitochondrial DNA complete sequence of control region was 891bp~895bp. Content of nucleotide T, C, A, G were 28.5%, 25.3%, 32.5% and 13.7% respectively. There were 47 polymorphic sites (5.23% in total analysed sites) with 11 singleton polymorphic sites and 36 parsimony informative polymorphic sites. They were transition, transversion and insertion/deletion. This research defined 24 haplotypes , in which haplotype H4 and H6 were major haplotypes of Chinese yak. The distribution of all the haplotypes among the breeds was disequilibration. The average diversity and genetic distance of haplotypes were 0.9687 ?0.0180 and 0.014(0.000-0.037) respectively, which indicated the abundance of haplotypes of yak's D-loop. The average nucleotide difference and the nucleotide diversity in Chinese yak breeds were 10.936 and 1.231% respectively. Nucleotide divergence and Kimura 2-parameter distance between yak breeds were 0.760-2.155%, and 0.003-0.029 respectively. It indicated that the genetic diversity of Chinese yak was very abundant.
    The nucleotide number of Chinese yak's control region complete sequence was 5-12bp less than that of Chinese yellow cattle. Yak's nucleotide variation rate (5.23%) was lower than yellow cattle's (9.10%). Yellow cattle's nucleotide diversity (2.164%) was higher than yak's (1.231%). It revealed that the genetic diversity was more abundant in Chinese yellow cattle than in Chinese yak.
    The partial sequence (420bp) of mitochondrial DNA cytochrome b (Cytb) had determined among 82 individuals from 13 yellow cattle breeds or strains (includi
引文
1.陈灵芝.中国的生物多样性-现状及其保护对策.北京:科学出版社,1993:1-9,100-106.
    2.陈灵芝.生物多样性保护现状及其对策.生物多样性研究的原理与方法.北京科技出版社.1994:13—35.
    3.施立明.遗传多样性及其保护层,生命科学信息,1990,2:158-164.
    4.吴常信.对“畜禽遗传资源保护和利用”立研研究的建议.第九次全国畜禽学术讨论会论文集,1999:1-5.
    5.陈幼春等.中国畜禽多样性保护的意义.生物多样性,1995,3(3):143—146.
    6.陈幼春,王毓英等.中国黄牛生态种特征及其利用方向.北京:农业出版社,1990:1-54,195—230.
    7.陈幼春,曹红鹤.中国黄牛品种多样性及其保护.生物多样性,2001.9(3):275—283.
    8.陈幼春,常洪.编制中国牛种体型外貌调查提纲的探讨.中国黄牛,1987,3:75-77.
    9.葛颂,洪德元.遗传多样性及其检测方法,生物多样性研究的原理和方法.北京:中国科学技术出版社,1994.
    10.常洪.家畜遗传资源学纲要.北京:中国农业出版社,1995:3-14,42—44.
    11.冯维祺等.中国家养动物品种资源浅析.畜牧兽医学报,1997,28(4):300-303.
    12.马月辉.中国家养动物多样性概论.生物多样性,1999,5:394-399.
    13.马月辉,陈幼春等.中国家养动物种质资源及其保护.中国农业科技导报,2002,4(3):37-42.
    14.马月辉,吴常信.畜禽遗传资源受威胁程度评价.家畜生态,2001.22(2):8-13.
    15.张芳,米志勇.动物线粒体DNA分子生物学研究进展.生物工程进展,1998,18(3):25—31.
    16.r,r,高泽.线粒体DNA.北京:科学出版社,1982,1-4.
    17.廖顺尧,鲁成.动物线粒体基因组研究进展.生物化学与生物物理进展,2000,27(5):508-511.
    18.马克平等.生物多样性研究的现状及发展趋势.生物多样性研究的原理与方法.北京:中国科技出版社.1994:1-13.
    19.季维智主编.遗传多样性研究的原理与方法.杭州:浙江科学技术出版社,1999.
    20.陈宏等.家畜线粒体(mtDNA)的研究.黄牛杂志,1995,2l(2):7-13.
    21.陈青松著,郭荣昌译.动物染色体.哈尔滨:黑龙江人民出版社,1988:116-169.
    
    
    22.张亚平,王文等.大熊猫微卫星DNA的筛选及其应用.动物学研究,1995,16:301—306.
    23.宿兵等.中国黑冠长臂猿的分子系统学研究.中国科学,1996,26:414-419.
    24.丁波.DNA指纹技术及其在畜禽遗传育种中的应用.青海畜牧兽医杂志,1994,(4):42-44.
    25.魏彩虹.动物mtDNA遗传研究进展.甘肃畜牧兽医,1997,1:23—55.
    26.张沅.生物技术在动物育种中应用的现状与前景.遗传,1991,13(4):39—42.
    27.《中国牛品种志》编写组.中国牛品种志.上海:上海科学出版社,1986.
    28.刘振湘,唐晓玲.我国家养动物多样性与畜牧业的持续发展.畜牧与兽医,1997,177—180.
    29.涂正超,邱怀.牛的遗传多样性及种间遗传分化研究进展.遗传育种,1998,24(11):1-3.
    30.涂正超.中国黄牛六个毛色座位的遗传分化.西北农业学报,1996,5(2):43—46.
    31.涂正超.血液蛋白多态性在牛种质特征研究中的应用.黄牛杂志,1993,19(4):42-43.
    32.涂正超,邱怀等.临夏黄牛某些种质特征的研究报告.黄牛杂志,1994,20(2):34—38.
    33.涂正超.家牛mtDNA多态性研究进展.黄牛杂志,1997,23(1):11-12.
    34.孙超,雷引莲.家畜遗传多样性的表达水平及其检测技术.黄牛杂忠,2000,26(4):53—56.
    35.常洪,耿社民等.中国黄牛考源-中国黄牛源流之一(下).黄牛杂志,1991,17(1):3—9,3-6.
    36.常洪,苗泽荣.黄牛育种.北京:中国环境科学出版社,1988,1-35.
    37.耿社民等.陕西黄牛群体血液蛋白位点的遗传分化.西北农业大学学报,1995,23(2):19-23.
    38.李福岭,郝思英等.渤海黑牛调查报告.黄牛杂志,1995,(增刊):126—127.
    39.张文举.甘肃省徽成盆地黄牛种质特征的研究.黄牛杂志,1995,(增刊):172.
    40.根井正利著,王家玉译.分子群体遗传学与进化论.北京:农业出版社,1983.
    41.扬关福,吴显华等.海南黄牛的毛色特征.黄牛杂志,1990,16(1):49—50.
    42.门正明,韩建林.四个品种黄牛染色体组型及其Y染色体多态性的研究.甘肃农大学报,1988,(2):39-44.
    43.雷初朝.中国四个畜种mtDNA遗传多样性研究,西北农林科技大学博士学位论文(2002).
    44.雷初朝,陈宏,杨公社等.蒙古荷斯坦牛线粒体DNA D-Loop高变区序列分析.黄牛杂志,2002,28(3):6—7.
    45.雷初朝,陈宏,杨公社等.秦川牛线粒体DNA高变区序列分析.黄牛杂志,2002,28(2):5—6.
    46.陈宏等.家畜mtDNh的研究,黄牛杂志,1995,21(1):7—12.
    
    
    47.赖松家,史荣仙,郑维明等.中国水牛血清运铁蛋白多态性研究.四川畜牧兽医,1994(3)2—5.
    48.史荣仙,赖松家,郑维明等.中国水牛血红蛋白多态性及命名研究.南京农业大学学报,1995,18(3),94-99.
    49.赖松家,史荣仙,郑维明.中国水牛血清淀粉酶多态性及命名研究.四川农业大学学报,1995,13(2):203-207.
    50.郑立明.线粒体和叶绿体的双重遗传控制.生物学通报.1988,(8):5—7.
    51.黄右军,刘业基.广西本地水牛与么拉牛染色体组型的差异.畜牧兽医学报,1988,19(4),231-236.
    52.李丽娜,陆师义.mtDNA概述.生物学通报.1987,(11):5—7.
    53.孙光云,陈文元,王子淑等.德昌水牛染色体G带研究.遗传,1991,13(4)13-16.
    54.于汝梁,陈琳等.峨边花牛的染色体分析.黄牛杂志,1989,15(1):10—12.
    55.于汝梁,辛彩云.鲁西牛的染色体研究.黄牛杂志,1991,17(2):11-14.
    56.于汝梁,陈琳等.中原地区黄牛的Y染色体多态性及其在黄牛品种分类中的意义.畜牧兽
    57.蔡立.中国牦牛.北京:中国农业出版社,1992,45—47.
    58.中国农业科学院兰州畜牧研究所.牦牛科学研究论文集.甘肃民族出版社,1990,27—30.
    59.钟金城.牦牛遗传与育种.成都:四川科学技术出版社,1996,11-17.
    60.《中国牦牛学》编写委员会.中国牦牛学.成都:四川科学技术出版社,1989,36—83.
    61.钟金城,张成忠,蔡立.牦牛染色体高分析G带带型的研究.西南民族学院学报(自然科学版),1992,18(1):20—28.
    62.钟金城,钟光辉,刘成烈等.九龙牦牛C带银染核仁组织区(Ag-NORs)的研究.西南名组学院学报(自然科学版),1994,20(1),38-41.
    63.钟金城,陈智华,胡欧明等.牦牛、普通牛及其杂交犏牛精母细胞联合复合体的比较研究.中国动物遗传育种研究进展,2001,578—581.
    64.郭爱朴.牦牛及其亲本染色体的比较研究.遗传学报,1983,2:137-143.
    65.李孔亮,刘汗英,许玉德等.犏牛及其亲本(牦牛、黄牛)体细胞染色体研究.中国牦牛,1984,14(2),42-46.
    66.钟金城等.西藏牦牛和黄牛遗传多态性的研究.西南民族学院学报(自然科学版),1999,25(3):274—277.
    67.陈文元,王子淑,张顺蓉等.牦牛及其染色体的研究.中国牦牛,1990,35(1):23—29.
    
    
    68.钟金城,陈智华,烈错等。西藏牦牛血清脂酶淀粉酶同工酶多态性的研究.四川畜牧畜牧兽医,1996,87(2):2—3.
    69.陈智华,钟金城,邓晓莹等.西藏牦牛染色体的研究.西南民族学院学报(自然科学版),1996,22(1):30—32.
    70.张成忠,钟金城.中国牦牛(含野牦牛)的染色体特征.西南民族学院学报(自然科学版),1995,21(2):205-208.
    71.陈智华,钟金城,拉尼等.西藏牦牛血液蛋白多态性的研究.西南民族学院学报(自然科学版),1995,21(4):414-417.
    72.单祥年等.我国五个黄牛品种染色体的比较研究.动物学研究,1981,1(1):75—80.
    73.张才骏,方之励,李清军等.犏牛及其亲本β-乳球蛋白多态性的研究.中国牦牛,1991,69(1):18-22.
    74.张才骏,魏雅萍.大通家牦牛乳蛋白的多态性.青海畜牧兽医,2000,30(1):3—5.
    75.赵兴波,钟光辉,蔡立.牦牛乳蛋白多态性的研究.西南民族学院学报(自然科学版),1995,21(1):54-55.
    76.郑玉才,韩正康.麦洼牦牛和犏牛乳蛋白的遗传多态性.西南民族学院学报(自然科学版),1995,22(4):421-424.
    77.张容旭.中国牦牛.甘肃科学技术出版社,1989,75—123.
    78.秦国庆,常洪.畜禽DNA指纹的研究与应用.黄牛杂志,1997,(23):13—15.
    79.黄勇富,张亚平等.猪线粒体DNA多态性与中国地方猪种起源分化的关系.遗传学报,1998,25(4):322—329.
    80.兰宏,熊司昆等.云南黄牛和大额牛的DNA多态性研究.遗传学报,1993,20(15):419—425.
    81.陈宜峰,等,哺乳动物染色体.北京.科学出版社,1986.
    82.沈长江,从我国畜禽品种资源特点出发的保种战略.自然资源学报,1992,7(4):289—296.
    83.根井正利,王家玉译.分子群体遗传学与进化论.北京:农业出版社,1983.
    84.田克华,杨公社,家畜分子育种研究进展,黄牛杂志,2001,27(1):33—37.
    85.吴登俊,马丁·费尔斯特.主要家畜种基因组连锁图现状和展望.国外畜牧科学,1999,26(6):21-25.
    86.徐宁迎,H.Thomsen,N Reinsch等.利用微卫星进行奶牛数量性状基因位点定位的研究.遗传学报,2000,27(9):772—776.
    87.涂正超,张亚平,邱怀.中国牦牛线粒体DNA多态性及遗传分化.遗传学报,1998,25
    
    (3):205-212.
    88.涂正超,邱怀,等.动物线粒体mtDNA多态性及其在畜牧科学中的应用.黑龙江畜牧兽医,1994,12:38-40.
    89.涂正超,邱怀.家牛mtDNA多态性研究进展.黄牛杂志,1997,23(1):11—12.
    95.涂正超, 邱怀,张亚平.牦牛mtDNA限制性类型及其与其它牛种分化研究.黄牛杂志,1997,23(3):8—10.
    91.涂正超,张亚平.中国地方黄牛的遗传多样性.生物多样性,1997,5(2):90—94.
    92.何正权,张亚平,简承松等.贵州黄牛品种间mtDNA限制性片段长度多态性研究.动物学研究,1999,20(1):7-11.
    93.胡文平,张亚平,连林生等.中国水牛的遗传多态性.内蒙古畜牧杂志,1998,(2):1-3.
    94.黄原著.分子系统学—原理方法及应用.北京:中国农业出版社,1998,63-67.
    95.黄右军,刘业基.三品种杂交水牛及其亲代、子代染色体的研究.畜牧兽医学报,1989,20(2):123-128.
    96.李祥龙,张亚平,陈圣偶.山羊mtDNA多态性及其起源分化研究.畜牧兽医学报,1999,30(4):313-319.
    97.李祥龙,张亚平,陈圣偶等.山羊品种间线粒体DNA限制性片段长度多态性研究.动物学研究,1997,18(4):421-428.
    98.聂龙,陈永久,刘瑞清.海南黄牛和徐闻黄牛线粒体DNA的多态性及其品种分化关系.动物学研究,1996,17(3):269-274.
    99.牛屹东,李明,魏辅文等.线粒体DNA用作分子标记的可靠性和研究前景.遗传,2001,23(6):463-466.
    100.宿兵,P.Kressirer,K.Monda,等.中国黑冠长臂猿的遗传多样性及其分子系统学研究—非损伤取样DNA序列分析.中国科学(C辑),1996,26(5):414-419.
    101.谭远德,颜亨梅.mtDNA基因树拓扑距离比较和基因分群.动物分类学报,2002,27(2):23-27.
    102.王静波,徐宏发,胡长龙.线粒体DNA(mtDNA)多态性在动物保护生物学中的应用.生物多样性,2001 9(2):112-115.
    103.文际坤,俞英,赵开典等.云南文山牛和迪庆牛mtDNA的多态性研究.畜牧兽医学报,1996,27(1):94-96.
    104.杨关福,吴显华,丘陵等.海南黄牛毛色的遗传.(中国黄牛生态特征及其利用方向).中
    
    国农业出版社,1990,136-139.
    105.于汝梁.中国黄牛的Y染色体多态性与品种类型.(中国黄牛生态种特征及其利用方向).中国农业出版社,1990,136-139.
    106.俞英,聂龙,何正权等.中国南方黄牛的mtDNA变异研究—起源及渐渗现象。云南大学学报,1999,增刊:317—232.
    107.樊宝良,李宁.牦牛Kappa—酪蛋白基因第四外显子的克隆测序及多态性研究,自然科学进展,2000,10(9):853-857.
    108.张红平.采用mtDNA序列研究中国家养山羊的遗传多样性与起源分化.四川农业大学博士学位论文,中国雅安,2003.
    109.张才骏、马凤莲等.互助白牦牛血液蛋白质多态性的研究.青海畜牧兽医杂志,1993,(3):9—11.
    110.门正明等.天祝牦牛血清蛋白多态性的研究.中国牦牛,1989,4:3—5.
    111.钟金城,字向东,张成忠等.牦牛群体血清运铁蛋白位点遗传分化的探讨.西南民族学院学报,自然科学版.1995,21(4):418-422.
    112.张沅主编.家畜育种学.北京:中国农业出版社,2002,6—10,56—60.
    113.钟金城,陈智华.分子遗传学与动物育种.成都:四川大学出版社,2001,183-212.
    114. Allard M.D., Ellsworth L.D, and Honeycutt R.L..The production single-stranded DNA suitable for sequencing using the polymerase chain reaction. Biotechniques. 1991, 10:24-26.
    115. Amano T., Miyakoshi Y., Takada T., et al. Genetic variants of ribosomal DNA and mitochondrial DNA between swamp and river buffaloes. Animal Genetics, 1994, 25 (Supl) :29-30
    116. Amason U., Gullberg A., Janke A.. Phylogenetic analysis of mitochondrial DNA suggest a sister group relationship between Xenarthra (Edentata) and Ferungulates. Mol Biol Evol, 1997, 14: 762-768
    117. Amason U., Gullburg A..Comparison between the complete hybridize in nature. J Mol Evol, 1993, 37:312-322
    118. Anderson G.L.H.. Aasustem to maximize the maintenance of genetic variability in small populations. In Anderson L and abodo I,Genetic conservation of domestic livetock. CAB International, 1992.2.2:18-29
    
    
    119. Anderson S.,etal. Sequence and organization of the human mitochondrial genome , Nature 1981,290:457-465
    120. Anderson S., de Bruijn M.H., Coulson A.R., Eperon I.C., Sanger F. and Young I.G. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 1982.156 (4): 683-717.
    121. Anderson S.,Bankier A.T.,Barrell B.G.,de Bruijn M. H. L.,Coulson A.R, Drouin J, Eperon I.C, Sequence and organization of the human mitochondrial genome, Nature, 1981, 290:457-465.
    122. Anderson S., de Bruijn M. H. L, Coulson A. B. et al. Complete sequence of bovine mitochondrial DNA conserved features of the mammalian mitochondrial genome. J. Mol. Biol., 1982, 156: 683-717.
    123. Anderson. L et al. Associations between blood groups, blood protein polymorphisms and breeding values for production traits in Swedish red and white Dairy balls, Anim Genet 1990:21(4):361-366
    124. Anderson. L et al. Associations breeding values for disease traits and genetic markers in dairy cattle estimated with a mixed model, journal of dairy science, 1993 ,76(12):3785-3791
    125. Andreu A.L, Bruno C.,Hadjigeorgiou G.M, et al .Polymorphic variants in the human mitochondrisl cytochrome b gene, molecular genetics and metabolism, 1999, 67:49-52.
    126. Andrews P. A phylogenetic analysis of the primates Pp. 1988.143-175 in M. J. Benton, ed. The phylogeny and classification of the tetrapods. Clarendon Press, Oxford.
    127. Andrews T. D., L. S. Jermiin, and S. Easteal. Accelerated evolution of cytochrome b in simian primates: adaptive evolution in concert with other mitochondrial proteins? J. Mol. Evol. 1998.47:249-257.
    128. Aqadro C F, Greenberg B D. Human mitochondrial DNA variation and evolution: analysis of nucleotede sequences from seven individuals. Genetics, 1983, 103:211-220
    129. Aranson E, Rand D M. Heteroplasmy of short tandem repeats in mitchondrial DNA of Atlant cod, Gadus morhua. Genetics, 1992, 132:211-220
    130. Arnason U, Gullberg A. Cytochrome b nucleotide sequence and the identifiction of five primary lineages of extant cetaceans. Mol Biol Evol. 1996. 13:407-417.
    
    
    131. Ashwell M.S, Roxroad C.Z, Miller R.H, et al. Mapping economic trait loic for somatic cell in Holstein cattle using microsatellite marker and selecting genotype, Animal Genetics, 1996,27:235-242.
    132. Avise J.C, Amold J, Ball R.M, et al. Intraspecific phylogeogrphy: the mitochondrial DNA bridge between population genetics and systematics. Anu Rev Ecol Syst, 1987, 18:489-522
    133. Avise J. C.. Mitochondrial DNA and evolutionary genetics of higher animals. Philos. Trans. R. Soc. London, B , 1986, 312:328-334.
    134. Arise J. C., Lansman R. A.. Polymorphism of mitochondrial DNA in populations of high animals, in "Evolution of Genes and Proteins", Nei M. and R. K. Koehn (eds.), Sunderland. 1983.
    135. Avise, J.C. et al. The use of restriclion endonuclease to measure mtDNA sequnence relatedness in natural population, Gennetics, 1979, 92:279-295
    136. Bailey J. F., Richards M. B., Macaulay V. A., Colson I.B., James I.T., Bradley D. G., Hedges R.E., Sykes B.C.. Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species. Proc R Soc Lond B Biol Sci. 1996. 263(1376):1467-73.
    137. Baker C.S ,Perry A ,Bannister J. L, Weinrich M.T, Abernethy R. B, Calambokidis J, Lien J, Lambertsen R.H, Ramirez J.U. Vasquez L, Clapham P.J..Alling a, o' brien sj, palumbi sr, abundant mitochiondrial DNA variation and world-wide population structure in humpback whsles ,proc natl acad sci USA, 1993,90:8239-8243.
    138. Bandelt H.J., Forster P., SYKES B.C. and RICHARUS M. B..Mitochondrial portraits of human populations using median networks, Genetics 1995, 141:743-753
    139. Barendse W, Armitage S. M, Kossarek L. M, et al. genetic linkage map of the bovine genome. Nature Genetics, 1994,6:227-235.
    140. Barendse W, Vaiman D, Kemp S.J, et al. Amedium density genetic linkage map of the bovine genome. Mammalian Genome, 1997,8:21-28.
    141. Barker J.S.F..Conservation of livestock breed diversity. Animal genetic resouses information. 1999.25:33-43
    142. Bell B R, et al. Effects of cytoplasmic in heritance on procuction traits of dairy
    
    cattle. J Dairy Sci, 1985, 68:2028-2052
    143. Bernadi G., Mounchiround D., Gautier C. and G. Bernardi. Compositional patterns in vertebrate genomes:Conservation and change in evolution. J. Mol. Evol. 1988.28:7-18.
    144. Bhat P P, Mishra B. P, Bhat P. N. Polymorphism of mitochondrial DNA (mtDNA) in cattle and buffalo. Biocheical Genetics, 1990, 28:311-317
    145. Bhat P. P., et al. Polymorphism of mitochondrial DNA (mtDNA) in cattle and buffaloes. Biochem. Genet. 1990. 28(7/8):311-318.
    146. Bishop M.D, Keppas S. M, keele J, et al.. genetic linkage map of cattle, genetics, 1994,136:823-827.
    147. Boettcher P.J, Freeman A.E, Johnston S.D, et al. Relationship between polymorphism for mitochondrial deoxyribonucleic acid and yield traits of Holstein cow. Journal of Dairy Science, 1996a, 79:647-654
    148. Boettcher P.J, Kuhn M.T, freeman A .E. Impct of cytoplasmic inheritance on genetic evaluaton. Journal of Dairy Science, 1996b, 79:663-675
    149. Bradley D.G, Mac Hugh D. E, Cunningham P, et al. Mitochodrial diversity and the origins of African and European cattle. Proc Natl Acad Sci USA, 1996, 93:5131-5135.
    150. Broughton R.E, Dowling T.E. Length variation in mitochondrial DNA of the Minnow cyprinella spiloptera. Genetics, 1994, 138:179-190
    151. Brown .W.M. et al. Rapid evolution of animal mitochondrial DNA. PN AS USA, 1979,76:1967-1971
    152. Brown D .R, Koehler C.M, Linberg G.L, et al. Molecular analysis of cytoplasmic genetic evaluation in Holstein cows. J. Anim. Sci., 1989, 67:1926-32
    153. Brown D.R. et al. Mitochondrial respiratory metabolism and performance of cattle. J. Anim. Sci..1988, 66:1347-1354.
    154. Brown G .G, Gadaleta G, pepe G, et al. Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J Mol Biol, 1986, 192:503-11
    155. Brown J.R, Beckenbach A.T, et al. Length variation heteroplaxmy and sequence divergence in the mitochondrial DNA of four species of sturgeon. Genetics, 1996,
    
    142:552-535
    156. Brown W. M, Prager E. M, Wilson A. C.. Mitochondrial DNA sequences of primates: tempo and mode of evolution. Journal of Molecular Evolution, 1982, 18:225-39
    157. Brown W.M. polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. Proc Nat. Acad. Sci. USA 1980.77,3605-3609
    158. Brown W.M..Mechanisms of evolution in animal mitochondrial DNA, Ann, NY Acad. Sci. 1981, 361,119-134
    159. Brown, W.M..The mitochondrial DNA genome os animals IN:Maclntype, R.J. Molecular Evolutionary Genetics, New york, 1983,318
    160. Brown.,W.N. et al. Rapid Evolution of Animals Mitochondrial DNA. PROC. Natl. Acad. Sci. U.S.A 1979.76(4):1967-1971
    161. Canatore R., Roberti M., Pesole G., Ludovico A., Milella F., Gadaleta M. N., and Saccone C.. Evolutionary analysis of cytochrome b sequences in some Perciformes: evidence for a slower rate of evolution than in mammals. J. Mol. Evol. 1994, 39:589-597.
    162. Cann R., Stoneking M. and Wilson A. C.. 1987. Mitochondrial DNA and human evolution. Nature 325: 31-36.
    163. Cann R.L, Brown W. M, Wilson A.C..Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. genetics, 1984,106:479-499.
    164. Castresana J.. Cytochrome b phylogeny and the taxonomy of great apes and mammals. Mol. Bio. Evol. 2001.18: 465-471.
    165. Chapman. R.W&D.A.. method for the rapid isolation of mitochondrial DNA from fishes 1984. Maryland Sea Grant College, University of Maryalnd.
    166. Chen H. and Leibenguth F.. Restriction endanuclease analysis of mitochondrial DNA of three farm animal species, cattle, sheep and goat. Comp. Biochem. Physiol., 1995, 111B: 643-649.
    167. Chen Z.P, Zhang Y.P, Shi L.M, et al . studies on the chromosomes of genus nycticebus ,Primates, 1993,34:47-53.
    168. Chen. H. and leibenguth, F..Restriction endonuclease analysis of mitochondrial DNA of three farm animal species:cattle, sheep, dan goat. (in preparation),1994.
    
    
    169. Cheng Y, Wang Y, Cao H, Pang Z and Yang G. Black-ear gene and blood polymorphism in four southern Chinese cattle groups. Animal Genetics, 1(Supplement): 1994,89-90
    170. Clayton D.A.. Replication and transcription of vertebrate mitochondrial DNA. Annual Review of Cell Biology, 1991, 7:453-78
    171. Clayton D.A.. Replication of animal mitochondrial DNA. Cell, 1982, 28:693-705
    172. Collura R, Stewart V. C.. Insertions and duplications of mtDNA in the nuclear genomes of old world monkeys and hominoids. Nature , 1995,378:485-489.
    173. Colman A..Production of protein transgenic livestock:problem, solution and success. Am.J. Clin. Nutr.,1996, 63:639-645.
    174. Croft J.H, Kevei F, Hamari Z, Varga J, Kozakiewicz Z. Molecular and phenotypic characterization of Aspergillsa japonicus and Aspergillus aculeatus strains with special regard to their mitochondrial DNA polymorphisms, Antonie Van Leeuwenhoek, 1997,72(4):337-347.
    175. Cronin A.O. M, Mitochondrial DNA phylogeny of deer. (cervide). J, Mamm , 1991, 72(37):553-566.
    176. Dairaghi D.J, Clayton D.A. Boxine RNase MRP cleaxes the divergent bovine mitochonrial RNA sequence at the displacement-loop region. J Mol Evol, 1993, 37: 338-46
    177. Daniel Bradley G.,DAVIDMachugh E. et al. Mitochondrial diversity and the origins of African and European cattle, Proc. Natl. Acad. Sci. USA, 1996,93:5231-5135
    178. David E.Machugh, Ronant T. Loftus et al,Microsatellite DNA Variation within and among European cattle breeds, Proc. R. sot. land. B 1994, 256:25-31
    179. DE MacHugh, Loftus R.T, et al, Genetic structure of seveb European cattle breeds assessed 20 microsatellite markers, Animal Genetics, 1998, 29:333-340
    180. Di Rienzo A, Wilson A.C. Branching pattern in the evolutionary tree for human mitochondrial DNA. Proc Natl Acad of Sci USA, 1991, 88:1597-1601
    181. Dietrich W.F, Copeland N.G, Gilbert D.J, et al.Mapping the mouse genome:current status and future prospects. Proc Natl Acad Sci U S A, 1995,92(24):10849-10853
    182. Doad J.N, Wright C.T, Clayton D.A. Elongation of displacement-loop strands in
    
    human and mouse mitochondrial DNA is arrested near specific template sequences, Proc Natl Acad Sci USA, 1981, 78:6116-6120
    183. Dobzhansky T. Genetics and the origin of species. Columbia University Press, New York. 1987.
    184. Dove W.L. Physiology of horn growth. J. Exp. Zool. 1985. 69: 347-404.
    185. Edwards, Gaillard C.J et al, Y-specific microsatellite polymorphisms in a range of bovid species, Animal Genetics, 2000,31:127-130
    186. Efemov G.,Braend M. Proc 9th Conf Anim Blood Grps. Prague, 1984, 313-320.
    187. Eldridge F. E..Cytogenetics of livestock. AVI publishing company ,INC. 1985, 189-209.
    188. Ellerman J.R, Morrison-scott T.C.S. CHECKLIST OF PALAEARCTIC AND INDIAN MAMMALS Tonbridge, Kent, UK:Tonbridge printers LTD. 1980, 353-354.
    189. Epstein H., and Mason I. L.. Cattle, pp. 6-27 in Evolution of Domesticated Animals, edited by Mason I. L. Longman, New York. 1984.
    190. Epstein H. The origin of the Domestic Animals of Afirica, Vol, L. PP. 1971, 185-555. Africana Publishing Corporation, New York.
    191. Epstein H.,and Mason I.L., Cattle, pp. 1984,6-27 in Evolution of Domesticated Animals, edited by I.L. MASON. Longman. New York
    192. Excoffier L.,and Smouse P.. Using allele frequencies and geographic subdivision to reconstruct gene genealogies within a species. Molecular variance parsimony. Genetics. 1994.136:343-359.
    193. Excoffier L.,Smouse P.,and QuattroJ. Analysis of molecular variance inferred from metric distances among DNA haplotypes:Application to human mitochondrial DNA restriction data. Genetics. 1992.131:479-491.
    194. Felsenstein J. Confidence limits on phylogenies:An approach using the bootstrap. Evolution 1985.39:783-791.
    195. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol, 1981,17:368-376
    196. Felsenstein J. Phylogenies from molecular sequences: Inference and reliability. Annu. Rev. Genet. 1988. 22:521-565.
    
    
    197. Fitch W.M. and Margoliash E.. Construction of phylogenetic trees. Science 1967.155:279-284.
    198. Forster H,Oudemans P and Coffy M.D. Mitochondrial and nuclear DNA diversty within six species of phytophthora, experimental mycology, 1990, 14:18-31.
    199. Fu Y. X. and Li W. H .. Statistical tests of neutrality of mutations. Genetics 1993.133:693-709.
    200. Fu Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics1997.147:915-925.
    201. Gah M.H, Brown W.M. Characteristics and distribution of large tandem duplication in brook stickleback (Gulaea inconstans). Genetics, 1997,145:383-394
    202. Georges M, Dietz A.B, Mishra A, et al.. Proceding Nature Academic Science USA, 1993,90: 1058-1062.
    203. Georges M, Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing, Genetics, 1995,139:907-920.
    204. Ghivizzani S. C, Mackay S.L.D, Maddsen C.S, et al. Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region. J Mol Evol, 1993, 37:36-47
    205. Ghivizzani S.C, Madsen C.S, Hauswirth W.W. In: organello footprinting. Analysis of protein bindig at regulatory rigions in bovine mitochondrial DNA. J Bio Chem, 1993, 268:8675-8682
    206. Gilbert T.L, Brown J. R, OHara P.J, et al. Sequence of tRNAthr and tRNApro from white sturgeon (Acipenser transmontanus) mitochondria. Nucl Acid Res, 1988, 16 (24): 11825-11825
    207. Glenn C. Johns and John C. Arise. A Comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol. Biol. Evol. 1998.15(11):1481-1490.
    208. Golding G. B. Estimates of DNA and protein sequence divergence: an examination of some assumptions. Mol. Biol. Evol. 1983.1:125-142.
    209. Graziano P. et al. Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol. 1999. 48:427-434
    
    
    210. Greenberg B.D.,Newbold J.E. and Sugino A. intraspecific nucleotide sequnence variability ,surrounding The origin of replication in human mitochondrial DNA. Gene, 1983.21,33-49
    211. H. Bovenhuis, Weller J.I. Mapping and analysis of dairy cattle quantitative trait loci by maximum likelihood methodology using milk protein genes as genetic marker, Genetics, 1994,137:267-280.
    212. H. Manne, Kojima T. etal. Effect of Mitochoncrial DNA Variation on Carcass Traits of Japanese Black Cattle. J. Anim. Sci, 1998,76:36-41.
    213. Halanych K.M., and Robinson T. J. The utility of cytochrome b and 12S rDNA data for phylogeny reconstruction of heporid (Lagomorpha) genera. J. Mol. Evol. 1999.48: 369-379.
    214. Harikrishnavaj et al, blood protein polymorphism in Kangayam cattle, The Indian journal of animal science, 2001, 71(6)545-546
    215. Harlward T. M. Use of single primer DNA amplification in genetic studies of peanut(Arachis hypoaea L.) .Plant molecular biology, 1992.18:315-325.
    216. Harrison R. G. Animal mitochondrial DNA as a genetic makers in population and evolutionary biology. Trends Ecol. Evol. 1989.4:6-11.
    217. Hartl G.B., et al. On the biochemical systematics of the Bovini. Biochemical systematics and ecology, 1988, 16:575-579
    218. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol, 1985, 22:160-174
    219. Hassanin A., Lecointre G. and Tillier S. The 'evolutionary signal' of homoplasy in protein-coding gene sequences and its consequences for a priori weighting in phylogeny. C. R. Acad. Sci. Ⅲ, Sci. Vie 1998.321 (7): 611-620.
    220. Hassanin A., Pasquet E. and Vigne J.D. Molecular systematics of the subfamily Caprinae (Artiodactyla, Bovidae) as determined from cytochrome b sequences. J. Mammal, Evol. 1998.5(3): 217-236.
    221. Hauswirth W.W,Laipis P.J. Mitochondrial DNA Polymorphism in a Maternal DNA D-loop Sequnens in bovine Tissue. Cell, 1984,37:1001-1007
    222. Hauswirth W.W. and Laipis P. J. Mitochondriat DNA polymorphism in a maternal
    
    lineage of Holstein cows. Proc. Natl. Acad. Sci. USA 1982.79 (15): 4686-4690.
    223. Hecht W. Studies on mitochondrial DNA in farm animals. In: Genome Analysis in Domestic Animals., 1990, 259-268.
    224. HeimannS, KlughammerC, and SchreiberU. two distinct states of the thylakoid complex. FEBS Lett. 1998, 126-130.
    225. Hiendleder S, Hecht W, Wassmuth R. Characterization of ovine mitochondrial DNA and possible association of polymorphisms with phenotypic traits. Animal Genetics, 1990,22: (Suppl), 68
    226. Hiendleder S. Length variations and heteroplasmy in ovine mitochondrial DNA are due to repeated sequences in the D-loop region. Animal Genet, 1994, 25:32
    227. Hiendleder S. Genome analysis and gene transfer in livestock: Molecular charecterization of the sheep mitochondrial genome. Journal of Animal Breeding and Genetics, 1996, 113:293-302
    228. Hiendleder S. A low rate of replacement substitutions in two major Ovis aries mitochondrial genomes. Anim. Genet. 1998. 29 (2): 116-122 .
    229. Hill E .W, Bradley D. G, Al-Barody M .et al. History and integrity of thoroughbred dam lines revealed in equine mtDNA variation. Animal Genetics, 2002, 33:287-294
    230. Hoelzdl A.R, Halley J,O' Brien S.J, Campagna C, Arnbom T,Le Boeuf B, Ralls k, Dover G A. Elephant seal genetic variation and use of simulation models to investigate historical population bottlenecks, journal of heredity, 1993,84:443-449.
    231. Hoeschele I. Association of genetic defect with yield and type traits—The Weaver Locus has a major effect on yield. J. Dairy Sci, 1990,73:503-515.
    232. Hoeschele I. Genetic evaluation with data presenting evidence of mixed major gene and polygenic inheritance. Theor. Appl. Genet.,1988,76:81-92.
    233. Holmes E.C, Pesole G, Saccone C. Stochastic models of molecular evolution and the estimation of phylogeny and rates of nucleotide substitution in the hominoid primates. J Hum Evol, 1989, 18:775-794
    234. Honeycutt R. L., Nedbal M. A., Adkins R. M., and Janecek L. L. Mammalian mitochondrial DNA evolution: a comparison of the cytochrome b and cytochrome c oxi-dase Ⅱ genes. J. Mol. Evol. 1995.40:260-272.
    
    
    235. Horai S, Hayasaka K. Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. American Journal of Human Genetics, 1990, 46:828-842
    236. Hu Wenping, Xu Baoming, Lian Linsheng. Polymorphism of mitochondrial .DNAs of Yunnan domestic water buffaloes, Bubalus bubalus, in China, based on restriction endonuclease cleavage patterns. Biochemical Genetics, 1997, 35: 225-231.
    237. Hutchinson C.A. et al. Maternal inheritance of mammalian mitochondrial DNA. Nature, 1980.251:536-538.
    238. Hutchison C. A., Newbold J. E., Potter S. S., and Edgell, M. H. Maternal inheritance of mammalian mitochondrial DNA. Nature, 1974,251: 531-538.
    239. Ikemura T. and S. Aota..Global variation in G+C content along vertebrate genome DNA. Possible correlation with chromosome band structure. J. Mol. Bio. 1998, 203:1-13.
    240. Ina Y. New methods for estimating the number of synonymous and nonsynonymous substitution. J. Mol. Evol1995..40:190-226.
    241. Irene T.B, Kilpatrick C.M.,Schmidly D. J, et al. Molecular phyogenetics of the peromyscus boylii species group(rodentia:muridae)based on mitochondrial cytochrome b sequences. Molecular phylogenetigs and evolution, 2000, 16:366-378.
    242. Irwin D. M., Kocher T. D. and Wilson A. C. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 1991.32: 128-144.
    243. ISCNDA. International system for cytogenetics nomenclature of domestic animals. Cytogenet. Cell Genet. 1990.53: 65-79.
    244. Ishida N, et al. Polymorphic sequence in the D-loop region of equine mitochondrial DNA. Animal Genetics, 1994, 25: 215-221.
    245. Janke A, Feldmaier-Fuchs G, Thomes W. K, et al. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics, 1994, 137:243-256
    246. Jenuth J.P, Peterson A.C, Shoubredge E. A. Tissue specific selection for different mtDNA genotypes in heterplasmic mice. Nature Genetics, 1997, 16:93-5
    247. Jermiin L. S., Graur D., Lowe R. M. and Crozier R. H. Analysis of directional mutation pressure and nucleotide content in mitochondrial cytochrome b genes. J.
    
    Mol. Evol. 1994.39: 160-173.
    248. Jin L.,and Nei M..Relative efficiencies of the maximum-parsimony and distance-matrix methods of phylogeny construction for restriction data. Mol. Bid Evol. 1991, 8(3):356-365.
    249. Jin L., and Nei M.. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol. Biol. Evol. 1990. 7:82-102.
    250. Johns G. C., and Arise J. C.. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b. Mol. Biol. Evol. 1998. 15:1481-1490.
    251. Johnson J.B and Jordan S. Phylogenetic divergence in leatherside chub (gila copei)inferred from mitochondreal cytochrome b sequences, Molecular Ecology, 2000,9:1029-1035.
    252. Jost B, Vilotte J, Duluc I, et al. Production of low-lactase milk by ectopic expression of intestinal lactase in the mouse mammary gland, Nature Biotechnology, 1999,17:160-164.
    253. Jukes T. and Cantor C..Evolution of protein molecules. In:Mammalian Protein Metabolism, edited by Munro HN, New York:Academic press, 1969,21-132.
    254. Kappes SM, Keele J.W, Rtone R.T, et al. A second generation linkage map of the bovine genome, Research, 1997,7:235-249.
    255. Kennedy. B.W. A future look at evidence for cytoplasmic inheritance of production traits in dairy cattle. J. Dairy Sci. 1986.69:3100-3106
    256. Kikkawa Y, Amano T, Suzuki H, et al. Analysis of genetic diversity of domestic cattle in East and Southeast Asia in terms of variation in restriction sites and sequences of mitochondrial DNA. Biochem Genet, 1995, 33:51-60
    257. Kikkawa Y, Yonekawa H, Suzuki H, et al. Analysis of genetic diversity of domestic water buffaloes and anoas based on variations in the mitochondrial gene for cytochrome b. Animal Genetics, 1997, 28:195-210
    258. Kikkawa Y., Amano T., Suzuki H. Analysis of genetic diversity of domestic cattle in east and Southeast Asia in terms of variations in restriction sites and sequences of mitochondrial DNA. Biochem Genet. 1995. 33(1-2):51-60.
    
    
    259. Kim K I, Lee J H, Li K, et al. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Animal Genetics, 2002,33:19-25
    260. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J, Mol, Evol, 1980,16:111-120.
    261. Kimura M. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, U.K. 1983.
    262. Kimura M. The neutral theory of molecular evolution, CU.K;Cambridge University Press, 1983, 34-50
    263. King T .C, Low R. L. Mapping of control elements in the displaement loop region of bovine mitochondrial DNA. Biochem Genet, 1995, 262:6204-6213
    264. Kocher T .D, Thomas W. K, Myers A, et al. Dynamics of mitochondrial DNA evolution in animals: amplified and sequences with conserved primers. Pro. Natl. Acal Sci USA, 1989, 86:6196-6200
    265. Kocher T. D., and Wilson A. C..Sequence evolution of mitochondrial DNA in humans and chimpanzees: control region and protein-coding regions, pp. 391-413 in Evolution of Life: Fossils, Molecules and Culture, edited by S. Osawa and T. Honio. Springer Verlag, Tokyo。1991..
    266. Kocher T. D., Thomas R. K., Meyer A., Edwards S. V., Pbo S., Viliablanca F. X., and Wilson A.C. Dynamics of mitochondrial DNA evolution in animals: ampli-fication and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 1989. 86:6196-6200.
    267. KOCHER, T.D., and Wilson A.C. Swquence evolution of mitochdrial DNA in human and chimpanzees:control region and protein coding region, pp. 1991,391-413 in Evolution of life:Fossils Molecules and Culture, edited by S.OSA WA and T. honjo. Springger Verlag,Tokyo.
    268. Koike K., Kobayashi M., Yaginuma K., Taira M., Yoshida E., and Imai M.. Nucleotide sequence and evolution of the rat mitochondrial cytochrome b gene containing the ochre termination codon. Gene 1982. 20: 177-185.
    269. Kraus E. and Miyamoto M.. Rapid cladogenesis among the pecoran ruminants: evidence
    
    from mitochondrial DNA sequences. Syst. Zool. 1991. 40:117-130.
    270. KROEMER G, REED J.C. Mitochondrial control of cell death. Nat Med, 2000, (6):513-519
    271. Kuma K. and inomato H..Studies on mathemoglobin reductase .J Biol Chem, 1972,247,550
    272. Kumar S, Tamura K, Nei M. MEGA:molecular evolutionary genetics analysis. Version 1.0. the Pennsylvania state university ,university park, PA 1993,16802.
    273. Kumar S. A stepwise algorithm for finding minimum evolution trees. Mol. Biol. Evol. 1996.13:584-593.
    274. Kumar S. Pattern of nucleotide substitution in mitochondrial protein coding genes of vertebrates. Genetics 1996.143:537-548.
    275. Kumar S., K. Tamura and Nei M.. MEGA: Molecular evolutionary genetics analysis software for microcomputers. Comput. Appl. Biosci. 1994. 10: 189-191.
    276. Kumar S., Tamura K., Jakobsen I. and M. Nei. MEGA: Molecular evolutionary genetics analysis, ver. 2. Pennsylvania State University, University Park, and Arizona State University, Tempe. 2000.
    277. Kumar S.,andHedges S.B. A molecular timescale for vertebrate evolution. Nature 1998.392:917-919.
    278. Laipis J. P., Wilcox C. J. und Hauswirth W. W. Nucleotide sequence variation in mitochondrial DNA from bovine liver. J. Dairy Sci. 1982, 65, 1655.
    279. Lan H, shi L.M. The origin and genetic differentiation of native brees of pigs in southwest China: An approach from mitochondrial DNA polymorphism. Biochemical Genetics, 1993, 31:51-60
    280. Lan H, Xiao X.K, Lin S.Y, Liu A. H and Shi L. M..Mitochondrial DNA polymorphism of cattle (B. taurus) and mithum (B. frontalis) in Yunnan province. Acta Genetica Sinica, 1993, 20 (5): 419
    281. Lansman R. A, Shade R. O, Shapiro J. F, et al. The use of restriction endonucleases to measure DNA sequences relatedness in national populations:Ⅲ. Techniques and potential applications. J Mol Evol, 1981, 17:214-226
    282. Lau, C. H., Drinkwater, R. D., Yusoff, K., Tan, S. G., Hetzel, D. J. & Barker, J.S. Genetic diversity of Asian water buffalo (Bubalus bubalis): mitochondrial
    
    DNA D-loop and cytochrome b sequence variation .Anim. Genet. 1998. 29:253-264.
    283. Leagates J. E. Everett J W. Breesing and improvement of farm animals. 8th edition. New York:McGRAW-Hill Publishing Company, 1990
    284. Li W.H, Ellesworth D .L, Krushkal J, et al. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phul Evol, 1996, 5:182-187
    285. Li W.H, Tanimura M, Sharp P.M. Ann evalution of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol, 1987, 25:330-343
    286. Li W.H, Molecular evolution, Sinauer Associates, Inc, sunder massachuserts 01375 USA. 1997,
    287. Lindberg, G.L. Koehler, C.M. Mayfield, J.E. Recovery of mitochondrial DNA from blood leukocytes using detergent lysis. Biochemical genetics. 1992. 30 (1/2): 27-33.
    288. Loftus R.T, MacHugh D.E, Ngere L.O, et al. Mitochondrial geetic vareation in European African and Indian cattle populations. Anim Genet, 1994, 25:165-171
    289. Loftus R.T., MacHugh D.E., Ngere L.O., Balain D.S., Badi A.M., Bradley D.G., Cunningham E.P. Mitochondrial genetic variation in European, African and Indian cattle populations. Anim Genet. 1994. 25(4):265-271.
    290. Loftus R. T., Ertugrul O., Harba A. H., El-Barody M. A., MacHugh D. E., Park S. D. & Bradley D. G..A microsatellite survey of cattle from a centre of origin: the Near East . Mol. Ecol. 1999, 8: 2015-2022.
    291. Loftus R. T., MacHugh D. E., Bradley D. G., Sharp P. M. & Cunningham P. Evidence for two independent domestication of cattle. Proc. Natl. Acad. Sci. USA. 1994. 91: 2757-2761.
    292. Lou C.H., DrinKwater R.D, et al. Genetic diversity of Asian water buffalo(Bubalus bubalis): mitochondrial DNA D-loop and cytochrome b sequence Variation, Animal Genetics, 1998, 29,253-264
    293. M. Lindersson, Andersson L.,Eklund, et al. Mapping of serum amylase-1 and quantitative trait loci for milk production traits to cattle chromosome 4, The Journal of Dairy Science, 1998,81(5):1454-1461.
    
    
    294. Ma D.P, Zharkikh A, Graur D, et al. Structure and evolution of opossum, guinea pi, and porcupine cytochrome b genes, J Mol Evol, 1996, 36:327-220
    295. Ma R.Z, Beever J.E, Da Y, et al.A male linkage map of the cattle genome, The Journal of heredity, 1996, 87:261-271.
    296. MacHugh D.E., Troy C.S., McCormick F., Olsaker I., Eythorsdottir E., Bradley D.G. Early medieval cattle remains from a Scandinavian settlement in Dublin: genetic analysis and comparison with extant breeds. Philos Trans R Soc Lond B Biol Sci. 1999.354(1379):99-108;
    297. MacHugh D. E., Shriver M. D., Loftus R. T., Cunningham P. & Bradley D. G. Microsatellite DNA Variation and the Evolution, Domestication and Phylogeography of Taurine and Zebu Cattle (Bos taurus and Bos indicus).Genetics 1997.146: 1071-1086.
    298. Madsen C.S, Ghivizazani S.C, Hauswirth W.W. rotein binding to a sigle termination-association sequence in the mitochondrial DNA D-loop region. Mol Cell Biol, 1993, 13:2167-2172
    299. Mannen H, Kojima T, Ojama K, et al. Effect of mitochonrial DNA variation on carcass traits of Japanese Black cattle. J Anim Sci, 1998, 76:36-41
    300. Mannen H., Tsuji S., Loftus R. T. & Bradley D. G. Mitochondrial DNA Variation and Evolution of Japanese Black Cattle (Bos taurus). Genetics. 1998. 150:1169-1175.
    301. Mannen I.I.,Kojima T.,Oyama K.,Mukai F.,IshidaT.,and Tsuji S. Effect of mitochondrial DNA variation on carcass traits of Japanese cattle. J. Anim. Sci. USA 1998.91:2757.
    302. Mason I.L. Evolution of domesticated animal. Longman, London. 1984.
    303. McEcoy T.G and Sreenan J.M. The efficiency of production centrifugation. micro-injection and transfer of one-and two-cell bovine ova in a gene transfer program, Theriogenology, 1990,33:819-828.
    304. Meadow A. Animal domestication in the Middle East: a revised view from the Eastern margin, pp. 1993 .295-320 in Harappar Civilization, edited by G. Possehl. Oxfird abd IBH, New Dehli.
    305. Meng Shijie, Wang Pingzhong. Mitochondrial DNA polymorphsms for taken, cattle and sheep in Boriedae, Proceedings of international conference of animal
    
    biotechnology, 1997, 174-177
    306. Mercier J., Vilotte J., and Provot C.. Structure and function of milk protein genes. Pp. 1990. 233-258 in H. Gelderman and E. Ellendorf, eds. Genome analysis in domestic animals. Weinheim, New York.
    307. Meyer A.. Shortcomings of the cytochrome b gene as a molecular marker. Treads Ecol. Evol. 1994, 9:278-280.
    308. Mikkel H. Schierup and Jotun Hein. Consequences of recombination on traditional phylogenetic analysis. Genetics 2000.156: 879-891.
    309. Miyamoto M.M, et al. Systematic relationships in the artiodacyl tribe Bovini (Family Bovidae), as determined from mitochondrial DNA sequence. Syst. Zool., 1989, 38(2): 342
    310. Moore S.S., Sargeant L., King T. J., Mattick J.S., Georges M. & Hetzel D.J.S. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics 1991.10: 654-660.
    311. Moore W. S., and Defilippis V. R.. The window of taxonomic resolution for phylogenies based on mitochondrial cytochrome b. Pp. 1997. 83-119 in D. P. MINDELL, ed. Avian molecular evolution and systematics. Academic Press, New York.
    312. Morin P.A, et al. Kin selection, social structure, gene flow, and the evolution of chimpanzees. Science, 1994,265:1193—1201
    313. Moritz C, Dowling T.E, Brown W. M. Evolution of anima mitochondrial DNA: relevance for population biology and systematics. Ann Rev Ecol Syst, 1987, 18:269-29
    314. Mortiz C. Applications of mitochondrial DNA analysis in conservation:a critical review. Molec. Ecol. , 1994.401-411.
    315. Mortiz C. Defining evolutionarily significant units for conservation. Trends Ecol. Evol., 1994. 373-375.
    316. Mortiz C., Dowling T. E., and Brown W. M.. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu. Rev. Ecol. Syst. 1987.18:269-292
    317. Morton N. E, Maclean C.J. Analysis of family resemblance Ⅲ. Complex segregation
    
    of quantitative traits. Amer. J. Hum. Genet.,1974,26:489-503.
    318. Msing-MeiHsieh, Hsiao-Ling chiang. Cytochrome b gene for species identification of the conservation animals, forensic science interational 2001,122:7-18
    319. Mukai. F, Oyama K.,and Kohno S.. Genetic relationships between performance test traits and field carcass traits in Japanese Black cattle .Livest. Prod. Sci. 1995. 44:199-205.
    320. Mukai. F.S, Tsuji, Fukazawa K., Ohtagaki S.,and Nambu Y.. History of population struction structure of a closed strain of Japanese Black cattle. J. Anim. Breed. Genet. 1989, 106:254-264
    321. Mukai. Fgenetic evaluation and selection methods for carcass traits in Japanese Black cattle. Anim. Sci. Technol. 1994.65:890-905.
    322. NAMIKAWA T. Genetical aspect of domestication and phylogeny in the cattle .Jap. j. ZOOTHECH. scI. 1980,49:817-827
    323. NASS S. Intramitochondrial fibers with DNA characteristic:enzymatic and others hydrolytic trealment. J Cell Biol,1963,19:613-629.
    324. NAVA C.S, FIRST N.L, SCHATTEN G.Microtubule organization in the cow during fertiliazation, polyspemy, parthenogenesis, and nuclear transfer:the role of the sperm aster. Fertil. Steril, 1994,62,1197-1204
    325. NAVIAUX R.K. Mitochondrial DNAdisorders. Eur J Pediatr 2000,159(3)219-226
    326. Nei M. Molecular Evolutionary Genetics. New York:Columbia University Press. 1987.
    327. Nei M, LI W.H. Mathematical model for studying genetic variation in terms of restrication endoncleases. Prodeedings of the National Academy of Sciences, 1979, 76(10): 5269-5273
    328. Nei M, Miller J.C. A simple mithod for estimating average number of nuceotide substitutions within and between populations from restriction data. Genetics, 1990, 125:873-879
    329. Nei M, Tajima F. DNA polymorphism detectable by restriction endoncleases. Genetics, 1985, 97:145-163
    330. Nei M. Analysis of gene diversity in subdivided populations. Proc . Natl.
    
    Acad. Sci. U.S.A.,1973,70:3321-3323
    331. Nei M. ,and Tajima F. DNA polymorpbism detectable by restriction endnucleases. Genetics 1981.97: 145-163.
    332. Jones G.F. Genetic aspects of domection, common breeds and their origin ,in the genetics of the pig, edited by A, Ruvinsky and M,F, Rothschild, CAB internationl, oxon, UK, 1998, pp:17-50.
    333. Nei M, and Li W.H. Mathematical model for studying genetic variation in terms of restriction endonuclease Proc.,Natk. Acad. Sci, USA. 1979.76:5269-5273
    334. Nei M. Molecular Evolutionary Genetics. Columbia University Press, New York. 1987.
    335. Nie L, Yu Y, Zhang G. F, Wen J .K and Zhang Y. P. Genetic diversity of cattle in South China as revealed by blood protein electrophoresis Biochemical Genetics. 1999, 37:257-265
    336. Northcutt. S. L, Willham R. L. and Wilson D. E.. Genetic parameters for nuclear and nonnuclear inheritance in three synthetic lines of beef cattle differing in mature size. J. Animsci. 1991.69:4745-4753.
    337. Obrien s.j ,Menotti-Raymond M, Murphy W.J, et al. The promise of comparative genomics in mammals. Science, 1999, 286(5439): 458-462; 479-481
    338. Ogawa. Y, Daigo M.,and Amasaki H.. Craniometrical estimation of the native Japanese Mishima cattle. Anat. Anz. Jena. 1989, 168:197-203.
    339. OHNO S. The one ancestor per generation rule and three pther rules of mitochondrial inheritance. Proc. Natl. Acad. Sci, 1997,94:8033-8035
    340. Ohta T. Synonymous and nonsynonymous substitutions in mamaliangenes and the nearly nertral theory, J. Mol, Cvol, 1995,40:56-63.
    341. Orita M., Suzuki T.,Hayashi K. Rapid and sensitive detection of point mutation and DNA polymorphisms using the polymerase chain reaction. Genomics, 1989. 5:874-879.
    342. Osiewacz H. D. Hetmanns J. The role of mistochondrial DNA rearrangements in aging and human disease. Aging(Milano),1992, Dec, 4(4):273-286.
    343. PakrasiH, B, NyhusK. J. and Granok H. Targeted deletion mutagenesis of the subunit of cytochrome 559 protein destabilizes the reaction center of photosystem
    
    z. naturforsch. 45c: 1990,423-429.
    344. Pakrasi H,B, Williams J, G,K, and Arntzen C. J. Targeted mutagenesis of the psbe and psbf genes blocks photosynthetic electron transport:evidence for a functional role of cytochrome b559 in photosystem embo, Gene. 1998, 7:325-323.
    345. PARSONS T.J., MUNIEC D.S., SULLIVAN K., WOODYATT N., ALLISTON-GREINER R.,et al. A high observed substitution rate in the human mitochondrial DNA control region. Nat. genet. 1997,15:363-368
    346. Pesole G, Gissi C, Chirco A.D, et al. Nucleotide substitution rate of mammalian mitochondrial genomes, J of molecular evolution, 1999,53:1280-1283
    347. Piumi F., Schibler L., Vaiman D., Oustry A., and Cribiu E.P.. Comparative cytogenetic mapping reveals chromosome rearrangements between the X chromosomes of two closely related Mammalian species (cattle and goats). Cytogenet. Cell Genet. 1998.81: 36-41.
    348. Plante Y., Schmutz S. M., Lang K. et al. Detection of leucochimates in bovine twins by DNA fingerprinting. Anim. Genet. , 1991.23:295-302.
    349. Ponce de Leon F. A., Ambady S., Hawkins G. A., Kappes S. M., Bishop M.D., Robl J.M., and Beattie C.W.. Development of a bovine X chromosome linkage group and painting probes to assess cattle, sheep, and goat X chromosome segment homologies. Proc. Natl. Acad. Sci. 1996. 93: 3450-3454.
    350. Potter S. S., Nowbold J. E., Hutchinson C. A. Ⅲ und Edgell M. H. Specific cleavage analysis of mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72: 4496-4500.
    351. Pringle H. NEOLITHIC AGRICULTURE: Reading the signs of ancient animal domestication . Science 1998.282: 1448.
    352. Qallon O, Hoyer-Hansen G. and simpson D.J. photosystem, and cytochrome b559 in the stroma lamellae of braley chloroplasts. Carlsberg, res, commun, 1987, 52:405-421.
    353. Rand D.M, Harrison G.K. Molecular poulation genetics of mtDNA size variation in crickets. Genetics, 1998, 121:551-569
    354. Rand A. L. Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol. Evnl. 1994. 9:125-131.
    
    
    355. Rasmussen D.T, Nekaris K.A. evolutionary history of lorisiform primates, Folia primatol, 6(suppl, 1) 1998, :250-258.
    358. Raymond M., and Rousset F.. An exact test for population differentiation. Evolution ,1995.49:563-567.
    356. Robinson D. F., and Foulds L. R.. Comparison of phylogenetic trees. Math. Biosci. 1981, 53:131-147.
    357. Roff D. P.,Bemmtzem. The statistical analysis of mitochondrial DNA polymorphisms: X_2 and thd promblem of small samples. Mol Bio Evol, 1989, 6:539-545
    358. Roger A. Genetic evidence for a Pleistocene population explosion. Evolution 1995.49:608-615.
    359. Rohl A., Brinkmann B., Forster L., Forster P. An annotated mtDNA database. Int J Legal Med. 2001.115(1):29-39.
    360. Ron M, Genis I, Ezra E, et al. Mitochonidrial DNA polymorphism and determination of effects on economic traits in dairy cattle. Animal Biotechnology, 1992, 3: 201-19
    361. Ron M. B. M, Yanai A. Mapping QTL with DNA microsatellites in a commercial dairy cattle population. Animal Genetics, 1994,25:259-264.
    362. Ronaghi M,Nygren M, Lundeberg J, et al. Analyses of secondary structures in DNA by pyrosequencing.Biotechniques. 1998,267:65-71.
    363. Ronaghi M,Uhlen M,Nyren P, Real-time pyrophosphate datection for DNAsequencing. Science, 1998,281:363-365.
    364. Rosel P. E, Haygood M.G, Perrin W.F .Phylogenetic relationship among the true porpoise (cetacean:phocoenidae).Mol, Phy Evol ,1995,4(4):463-474.
    365. Rozas J, Rozas R. Dnasp:DNA sequence polymorphism, Ver, 1999,3.
    366. Rozas J. and Rozas R. DnaSP version 3:an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics1999. 15:174-175.
    367. Saccone C, Pesole G. Sbisa E. The main regulatory region of mammalian mitochdrial DNA: structure-function model and evolutionary pattern. J Mol Evol, 1991, 33: 83-91
    
    
    368. Sage R.D, Wolff J.O. Pleistocene glaciations. Fluctuating ranges, and low genetics variability in a large mammal (Ovis dalli). Evolution, 1985, 40:1092-1095
    369. Saiki R. K. , Gelfand D. H., Stoffel S. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988. 239:481-479.
    370. Saiton M.,and Nei M. The neighbour-joining method:A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987.406-425
    371. Sannenberg A.S.M. The occurrence of mitochondrial genotype and inheritance of mitochondrial in the cultivated mushroom anarcus bisprous, Mushroom Science, 1991, (6):85-92.
    372. Sausman K. Survival of captive born Ovis Canadensis in North American zoos. Zoc Biology, 1984, 3:111-121
    373. Schreiber A, Seibold I, Notzold G, et al. Cytochrome b gene haplotypes characterize chromosomal lineages of Anoa, the Sulawesi Dwarf Buffalo (Bovidae: Bubalus sp.). The Journal of Heredity, 1999, 90(1):165-176
    374. Schrooten C, Bovenhuis H, et al..Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle, The Journal of Dairy Sciencej; 2000,83(4):795-806.
    375. Schutz M. M, Freeman A. E, Lindberg G. L, et al. Effects of maternal lineages grouped by mitochondrial genotypes on milk yidld and composition. Journal of Dairy Science, 1993. 76:621-629
    376. Schutz M. M. Freeman A. E, Lindberg G. L, et al. The effect of mitochondrial DNA on milk prodiction and health of dairy cattle. Livestock Production Science, 1994, 37:283-295
    377. Sedroff R. R.. Structural variation in mitochondrial DNA. Advances in Genetics, 1984, 22.
    378. Sirats kyi, Fedorovgch Iel. Genetic polymorphism of blood and milk enzymes and proteins and their association with economically valuable traits of black/white cattle of the western region of the Ukraine, Tstol Genet, 2002,36(2) 53-59
    379. Slatkin M. Gene flow and the geographic structure of natural populations. Science.
    
    1987, 236:787-792
    380. Smith M.F.& Patton J.L. Variation in mitochondrial cytb sequence in natural population of south American akodontine rodent(Muridae Sigmodontinase). Mol. Evol. 1991,8:85-103
    381. Smouse P.E, Chevillon C. Analytical aspects of population-specific DNA fingerprinting for individuals. J Hered, 1998,89(2):143-150
    382. Sokal R.R, and Michener C.D..1958. A statistical method for evaluating systematic relationgships. University of Kansas Sci. Bull.28:1409-1438.
    383. Solignac M, Monnerot M, Mounolou J.C. Concerted evolution of sequences repeats in Drosophila mitochondria; DNE. J Mol Evol, 1986, 24:53-60
    384. Sourdis J., and Nei M.. Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. Mol. Biol. Evol. 1988,5:298-311.
    385. Stewart D.T, Baker A .J. Patterns of sequence variation in the mitochondrial D-loop region of shrews. Mol Biol Evol, 1994, 11:9-21
    386. Strittmatter P. and Velick S.F.,The purification and properties of microsomal cytochrome reductase. J. Biol. Chem.,1985:228,758
    387. Su B, Wang Y.X, Lan H., et al. phylogenetics study of complete cytochrome b genes of musk deer (genus moschus)using museum samples, Molecular phylogenetics and evolution, 1999,12:241-249.
    388. Suzuki R, KempS J, Tealke A. J. Polymerase chain reaction analysis of mitochondrial DNA polymorphism in N' Dama and Zebu cattle. Animal Genetics, 1993, 24:339-43
    389. Swofford O. L. and Maddison W. P. Reconstructing ancestral character states under Wagner parsimony. Mathematical Biosciences 1987.87:199-229.
    390. Swofford D. L., Olsen G. J., Waddell P. J., and Hillis D. M.. Phylogenetic inference. 1996.407-514 in D. M. Hillis, C. Moritz, and B. K. Mable (ed.),Molecular Systematics, 2nd edition. (Sinauer Associates: Sunderland, Massachusetts).
    391. Swofford D. L and Begle D.P.. PAUP:Phylogenetic analysis using parsimony, ver. 3.1 user' s manual. Illionois Natural History Survey, Champaign, IL. 1993.
    392. Swofford D.L. PAUP:phylogegetic analysis using psrsimony. Vserion 3.0Ⅲinosis natural history survey . 1989,.
    
    
    393. Swofford D. L. and Olsen G. J.. Phylogeny reconstruction. 1990. 411-501. in D. M. Hillis and C. Moritz (ed.), Molecular Systematics (Sinauer Associates: Sunderland, Massachusetts).
    394. Swofford D. L. and Berlocher S. H. Inferring evolutionary trees from gene frequency data under the principle of maximum parsimony. Systematic Zoology 1987.36:293-325.
    395. Swofford D. L. and Maddison W. P.. Parsimony, character-state reconstructions, and evolutionary inferences. 1992. 186-223 in R. L. Mayden (ed.), Systematics, Historical Ecology, and North American Freshwater Fishes (Stanford University Press: Stanford).
    396. Swofford D. L. When are phylogeny estimates from morphological and molecular data incongruent? 1991. 295-333. in: M. M. Miyamoto and J. Cracraft (ed.), Phylogenetic Analysis of DNA Sequences (Oxford University Press: New York, N. Y.).
    397. Tajima F. and Nei M. Estimation of evolutionary distance between nucleotide sequences. Mol. Biol. Evol. 1984.1:269-285.
    398. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics1989.123:585-589.
    399. Tajima F..Evolutonary relationship of DNA sequences in finite population. Genetics1983, 105:437-640.
    400. Tajima F..Measurement of DNA polymorphism. In:Mechanisms of Molecular Evolution. Introduction to Molecular Paleopopulation Biology, edited by Takahata N. and Clark A.G.,Tokyo, Sunderland, MA:Japan Scientific Societies Press, Sinaure Associates, Inc. 1993, 37-59.
    401. Tajima F..The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics1996, 143:1457-1465.
    402. Takada T, Kikkawa Y, Yonekawa H, Kawakami S, Amano T.. Bezoar (Capra aegagrus) is a matriarchal candidate for ancestor of domestic goat (Capra hircus): evidence from the mitochondrial DNA diversity. Biochem Genet. 1997, 35(9-10):315-26.
    403. Tamura K, Aotsuka T. Rapid isolation method of animal mitochondrial DNA by the alkaline lysis procedure. Biochemical genetics. 1988,26:815-819.
    404. Tamura K.,and Nei M. 1993. Estimation of the number of nucleotide substitutions in
    
    the control region of mitochondrial DNA in human and chimpanzees. Mol. Biol. Evol. 10:512.
    405. Tamura, K, and Nei M..Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993.10:512-526.
    406. Tanaka k, Solis C.D, Masangkay J. S, et al. Phylogenetic relationship among all living species of the Genus Bubalus based on DNA sequences of the Cytochrome b gene. Biochemical Genetics, 1996, 34 (11/12): 443-452
    407. Tanaka K, Yamagata T, Masangkay J.S, et al. Nucleotide diversity of mitochondrial DNAs between the swamp and the river types of domestic water buffaloes, Bubalus bubalus, based on restriction endonuclease cleavage patterns. Biochemical Genetics, 1995, 33 (5/6): 137-148
    408. Tautz D. Hyper variability of simple sequence as a general source for polymorphic DNA makers. Nucleic Acids Research, 1989.17:6463-6471.
    409. Taylor J W, Smolieh B. C and May G. Evolution and Mitochondrial DNA in Neurospors crassa evalution, 1986,40(4):716-739.
    410. Teresa cymbron, Loftus R.T. et al.Mitochondrial Sequence Variation, Proc. R. Soc, LONF. b 1999 ,266:597-603
    411. Tess M.W. and Robison O.W.. Evaluation of cytoplasmic genetic effects in beef cattle using an animal model. J. Anim. Sci. 1990.68:1899-1909.
    412. Tess M.W.andMacNeil M.D.. Evaluation of cytoplasmic genetic effects in miles city line 1 Hireford cattle. J. Anim. Sci. 1994.72:851-856.
    413. Thompson J. D., Gibson T.J., Plewniak F., Jeanmougin F., and Higgins D. G. The Clustal X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res 1997.24:4867-4882.
    414. Thompson, J. D., Higgins, D. G.,and Gibson, T.J. Clustal W:Improving the sensitivity of progressive multiple alignment through sequence weighting. Nucl. Acids Res 1994.22:4673-4680.
    415. Threadgill D., and Womack J.. Genomic analysis of the major bovine milk protein genes. Nucleic Acids Res. 1990. 18:6935-6942.
    
    
    416. Toelle V.D. et al. Cytoplasmic effects in swine. J Anim Sci, 1986, 63(Suppli): 203
    417. Troy C.S, MacHugh D.E, Balley J.F, et al. Genetic evidence for Near-Eastern origins of European cattle. Nature, 2001, 410:1088-1091
    418. Tu Z., Nie L, Yu Y, Zhang Y.P and Wen J.K. Blood protein polymorphism in B. frontalis, B. grunniens, B. Taurus and B. indicus. Biochemical Genetics, 2000, 38:413-416
    419. Tumennasan K. H, Tuya T. s, Hotta Y, et al..Fertility investigations in the Fl hybrid and backcross progeny of cattle(Bos Taurus)and yak(B. grunniens)in Mongolia. Cytogenet. Cell Genet, 1997,78:69-73
    420. Upholt W. B, Dawid I. B. Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D loop region. Cell, 1977, 11:571-583
    421. Van Tassel. l, Ashwell M.S.,et al. Detection of putative loci affecting milk, health and conformation traits in a US Holstein population using 105 microsatellite marker, The Journal of Dairy Science, 2000,83(8):1865-1872.
    422. Varvio S.L, Chakraborty R, Nei M. Genetic varoation in subdiviedpopulations and conservation genetics. Heredity, 1986, 57:189-198
    423. Venge. o. Studies of the maternal influence on growth in rabbits. Acta Agric. Scand. 1953.3:241.
    424. Vilkki H.J, Koning D.J, et al.,Multiple marker mapping of quantitative trait loci of Finnish dairy cattle by regression, The Journal of Dairy Science, 1997,80(1):198-204.
    425. Wagner R.P. The role of maternal effects in animal inheritance. J, Anim. Sci. 1972.35:1280-1287.
    426. Wallace D. C, etal. Mitochodrial DNAmutation associated with leber' s hereditary optic neuropathy Science 1988,242:1427-1430
    427. Watanabe T, Hayashi Y, Semba R and Ogasawara N. Bovine mitochondrial DNA polymorphism in restriction endonuclease cleavage patterns and the location of the polymorphic sites. Biochem. Genet, 1985, 23, 947-957.
    428. Watanabe T, Masangkay J., Wakana S, Saitou N and Tomita T. Mitochondrial DNA
    
    polymorphism in native Philippine cattle based on restriction endonuclease cleavage patterns. Biochem. Genet, 1989, 27: 431-438.
    429. Watanabe T, et al. Bovine Mitochondrial DNA polymorphism in restriction endonuclease cleavage patterns and the location of the polymorphic sites, Biochemical Genetic, 1985,23(1/12):947-957
    430. Watanabe T, et al. Pig mitochondrial DNA polymorphism, redstriction map orientation and sequence data. biochen. Benet. 1986,24:385-396.
    431. Watanable T.,Hayashi Y.,Semba R.,Ogaswara N..Bovine mitochondrial DNA polymorphism in restriction endonuclease cleavage patterns and the location of the polymorphic sites. Biochem. Gent. 1985, 23(11-12):945-957.
    432. Welsh J., McClelland M. Fingerprinting genome using PCR with arbitrary primers. Nucleic Acids Research, 1990.18:7213-7218.
    433. Wenink, Paul. W. Allan. Jbaker marcel J. Tilanus. Mitochondrial control region sequences in two shorebird species, the Tumstone and the dunlin ,and their utility in population genetic studies. Mol boil evol,1994,11(1):22-31.
    434. White t.j, bruns t, Iee. s and taylor j. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics PCR Prococks: A guide to methods and applications a, press inc ,1990,315-322.
    435. Whitmarsh J, and pakrasi H. Bform and function of cytochrome b559, in oxygenic photosynthesis:the light reactions ,edited by ort, D,R, and yocum ,C.F pp; 1996, 249-264. kluwer acad, publ. dordrecht.
    436. Williams J. G. K. et al. DNA polymorphism amplified by arbitrary primers are useful as genetic makers. Nucleic Acids., 1990. 18:6531-6535.
    437. Wilson A. C., Maxson L. R. Sarich. Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proc. Natl. Acad. Sci. USA 71: 1974.2843 -2847.
    438. Wilson A. C., Sarich V. M., and Maxson L. R.. The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein, and anatomical evolution. Proc. Natl. Acad. Sci. USA 1974. 71:3028-3030.
    439. Wlson A. C., Cann R. L., Carr S. M., Geoge M., Gyliensten U. B., Helimbychowski
    
    K. M., Higuchi R. G., Palumbi S. R., Prager E. M., Sage R. D., and Stoneking M.. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linnaean Sot. 1985.26:375-400.
    440. Wu J.M, Smith R.K, Freeman A.E, et al. Sequence heteroplasmy of D-loop and rRNA coding regions in mitochondrial DNA from Holstein cows of independent maternal lineages. Biochemical Genetics, 2000, 38 (10): 323-335
    441. Xia X, DAMEB:Data analysis in molecular biology &evolution, Ver, 1998.4.0,26. university of Hong Kong.
    442. Xue Mei La, Yun Xin Fu, and Ya Ping Zhang. Evolution of Mitochondrial Cytochrome b Pseudogene in Genus Nycticebus. Mol. Biol. Evo12002. 19(12):2337-2341.
    443. Y.Plante, Gibson J.P, et al.,Detection of quantitative trait loci effecting milk production traits on 10 chromosomes in Holstein cattle, The Journal of Dairy Science, 2001,84(6):1516-1524.
    444. Yang F.T et al.A comparative study of karyotype of munjacs by chrome painting. Chromosome, 1995,103:642-652
    445, Yang L.,Zhao S.H.,Li K.,Peng Z. Z.,Montgomery G.W. Determinationof genetic relationships among five indigenous Chinese goat breeds with six microsatellite markers. Anim. Gent. 1999.30:452-455.
    446. Yoder A.D, Vilgalys R, Ruvolo M. molecular evolutionary dynamics of cytochrome b in strepsirrhine primales:the phylogenetic significance of third-position transversions, Mol, Bilo, Evol, 1996, 13(10):1339-1350.
    447. Yu R. L, Chen L, Xin C and Chen Y. A dual-karyotype phenomenom of Qinchuan and Jinnan cattle in China. Report of the Society for Researches on Native Livestock, 1990, 3:13-18
    448. Yu Y, Nie L, He Z. Q, Wen J.K, Jian L. S and Zhang Y. P. Mitochondrial DNA variation I ncattle of South China: origin and introgression. Animal Genetics, ,1999, 30:245-250
    449. Zehner R, Zimmermann S, Mebs D. RFLP and sequence analysis of the cytochrome b gene of selected animal and man:methodology and forensic application .Int J Legal Med, 1998,111:323-327.
    
    
    450. Zeuner F. E. A history of domesticated animals. London: Hutchinson, 1963
    451. Zhang Q, Biochard D., Hoeschele I.,et al.,Mapping quantitative trait loci from milk production and health of dairy cattle in a large outbred pedigree, Genetics, 1998,149:1959-1973.
    452. Zhang Y.P, Chen Z.P, Shi L.M. Mitochondrial DNA and karyotype evidence for the phylogeny of the genus Nycticebus, Incurrent primatlogy, Vol 1, Annerson, J R. et al. (ed), Strasbourg, France, 1994
    453. Zhang Y. P, Ryder O.A. Different rates of mitochondrial DNA sequences evolution in kirk' s dik-dik (madoqua kirkiiⅠ) populations. Mol. Phylogenet. Evol. 1995, 4:291-297
    454. Zhang Y.P, Shi L.M. Phylogenetics relationships of macqques as inferred from restriction endonuclease analysis of mitochondrial DNA, Folia Primatologica, 1993, 60:7-17
    455. Zhang Y.P. Lan H, and Shi L.M. Animal mitochondrial DNA polymorphism a valuable tool for evolutionary studies. Cell research, 1993, 3:113-119
    456. Zhang Y. P., Ryder O.A. Non-invasive giant panda paternity exclusion. Zoo Biolog, 1994.14:569-573.
    457. Zouros E, Ball A. O, Saavedra C, et al..Mitochondrial DNA interitance, Discussion article:Shellfish genes kept in line.Nature, 1994,368 (818): 619-639.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700