用户名: 密码: 验证码:
乙醇氧化羰基合成碳酸二乙酯负载型Wacker催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸二乙酯(DEC)作为一种“绿色化学品”是一种可以用于替代光气的重要化工中间体,特别是近年来发现DEC可以作为汽油、柴油的含氧添加剂,取代MTBE的使用,有着广泛的应用前景。本研究对乙醇气相直接氧化羰基合成碳酸二乙酯的活性炭负载Wacker型催化剂体系进行探讨。
     助剂对乙醇氧化羰基合成碳酸二乙酯催化剂影响的研究表明,KCl助剂表现出较佳的助催化性能。XRD以及XPS表征分析表明,加入KCl助剂后,催化剂活性组分由γ-Cu2(OH)3Cl部分转变为Cu(OH)Cl。碱式氯化铜晶型结构分析结合反应活性评价表明,Cu(OH)Cl在DEC合成中更具催化活性。通过Cu组分ESR表征以及Pd组分XPS解叠分析,解释了过程中所采用的Wacker型催化剂Pd-Cu间电子传递促进反应进行的原理,并指出由于Cl流失所造成的电子传递循环的中断,Pd0的不断产生是催化剂失活的主要原因。催化剂表面基团的DRIFT分析表明,反应过程中主、副产物的生成提高了催化剂表面基团极性,造成催化剂催化反应活性下降。
     CuCl2-PdCl2-KCl-NaOH催化剂的原位升温XRD研究表明,采用温度热处理的手段可以有效调变催化剂活性组分碱式氯化铜的晶型结构。其中,523 K热处理的催化剂由于促进了Cu(OH)Cl晶型的产生,催化剂的催化反应活性较佳。活性炭载体经等离子体表面改性研究表明,O2等离子体气氛处理有利于活性炭表面的羰基以及酚羟基的形成,H2等离子体气氛处理的活性炭有利于活性炭表面内酯基的形成,而活性炭表面羧基基团含量对等离子体气氛种类不敏感。活性炭载体预处理的研究表明,预处理后的活性炭载体表面含氧基团的含量增加,促进了铜组分向载体上的负载以及分散。
     催化体系的准原位XPS、XRD以及原位漫反射红外光谱分析表明,反应过程中存在乙醇解离吸附、一氧化碳化学吸附、一氧化碳插入等过程,而氧气主要以气相方式参与反应。催化剂活性组分除Pd-Cu电子传递促进反应进行外,Cl元素同时参与了反应循环。得出Wacker型催化剂催化氧化羰基合成碳酸二乙酯的反应历程。
Oxidative carbonylation of ethanol for preparation of diethyl carbonate (DEC) offers prospects for a“green chemistry”replacement of phosgene for polymer production and other processes. Over past years, diethyl carbonate has been found to be a substitute for methyl tert-butyl ether (MTBE), which is used as an oxygen-containing fuel additive. Wacker type catalysts for the (gas-phase) oxidative carbonylation of ethanol to diethyl carbonate have been discussed and present in this dissertation.
     We report on the effect of promoters on catalytic activities in the oxidative carbonylation of ethanol to diethyl carbonate and the results have shown that KCl is the best promoter. Additionally, KCl favors crystalline Cu(OH)Cl formation, which plays a decisive role in the DEC synthesis. An electron transfer effect of Pd-Cu in the Wacker type catalyst has been proved by ESR analysis of copper species and XPS analysis of palladium species. We have also presented evidence that deactivation of catalysts can be ascribed to the leaching of Cl species that is a possible intermediate in electron transfer between Pd and Cu, which leads to the formation of a large amount of Pd0. DRIFT analysis of surface functional groups on the Wacker type catalyst indicates that the presence of main product and by products result in an increase in polar groups on the surfaces of the catalysts, which causes a decrease in the catalytic activities.
     In-situ XRD studies on the CuCl2-PdCl2-KCl-NaOH catalyst shows that thermal pretreatment on the catalyst significantly alters the structures catalyst crystal. A optimal thermal pretreated temperature has been obtained at 523 K, which favors the formation of Cu(OH)Cl.
     Modifications of surface groups on the activated carbon via different type of plasma have been discussed. O2 plasma is found to be favored for the formation of hydroxyl groups, while H2 plasma improves the production of lactone groups. However, surface group of carboxyl is not sensitive to the type of plasmas. In addition, pretreatment of activated carbon provides increased amount of oxygen containing group on the activated carbon surfaces and enhances the dispersion of Cu species on the supports.
     Quasi in-situ XPS, XRD and in-situ DRIFT investigations on the catalytic system indicate that the reaction involves a multiple steps in the oxidative carbonylation of ethanol to diethyl carbonate, e.g., dissociative adsorption of ethanol; chemisorption of CO, and the insertion of CO. Oxygen is involved in the reaction as a gas phase. Chloride species plays a significant role in the cycle of reaction and besides, Pd-Cu electron transfer process in the catalyst promots the reaction, Basen on these experimental results, a reaction course of oxidative carbonylation of ethanol to diethyl carbonate over Wacker type catalyst has been proposed..
引文
[1] Nagasubramanian G., Doughty D., Improving the interfacial resistance in lithium cells with additives. Journal of Power Sources, 2001, 96(1): 29~32
    [2] Jeong S.K., Inaba M., Iriyama Y., et al, AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries. Journal of Power Sources, 2003, 119-127: 555~560
    [3] Moumouzias G., Ritzoulis G., Siapkas D., et al, Comparative study of LiBF4, LiAsF6, LiPF6, and LiClO4 as electrolytes in propylene carbonate-diethyl carbonate solutions for Li/LiMn2O4 cells. Journal of Power Sources, 2003, 122(1): 57~66
    [4] Herstedt M., Stjerndahl M., Gustafsson T., et al, Anion receptor for enhanced thermal stability of the graphite anode interface in a Li-ion battery. Electrochemisty Communications, 2003, 5(6): 467~472
    [5] Gnanaraj J.S., Zinigrad E., Asraf L., et al, On the use of LiPF3(CF2CF3)3 (LiFAP) solutions for Li-ion batteries. Electrochemisty Communications, 2003, 5(11): 946~951
    [6] Pacheco M. A., Marshall C. L., Review of dimethyl carbonate (DMC) Manufacture and its characteristics as a fuel additive. Energy & Fuels, 1997, 11(1): 2~29
    [7] Muskat I. E., Strain F., Preparation of Carbonic Acid Esters. 美国: 2,379,250, 1941-05-28
    [8] 章思规,实用精细化学品手册 有机卷(上). 北京: 化学工业出版社, 1996: 945~946
    [9] 方云进,罗虎平,肖文德,制备碳酸二乙酯的方法. 中国: 01105860.9, 2001-04-03
    [10] Anastas P. T., Warner J. C., Green Chemistry: Theory and Practice. London: Oxford University Press, 1998: 11~16
    [11] Frevel L. K., Gilpin J. A., Carbonate synthesis from alkylene carbonates. 美国: 3,642,858. 1969-02-12
    [12] Urano Y., Kirishiki M., Onda Y. et al, Process for preparing diaklyl carbonates. 美国: 5,430,170. 1993-11-23
    [13] Romano U., Melis U., Process for the preparation of dialkylcarbonates. 美国: 4,062,884. 1976-04-08
    [14] Buysch H. J., Klausener A., Reinhard Langer et al, Process for the continuous preparation of diakyl carbonates. 美国: 5,231,212. 1992-08-26
    [15] Krimm H., Buysch H. J., Rudolph H., Process for the preparation of dialkyl carbonates. 美国: 4,307,032. 1980-05-13
    [16] Buysch H. J., Krimm H., Rudolph H., Process for the preparation of dialkyl carbonates. 美国: 4,181,676. 1978-08-31
    [17] Doya M., Kimizuka K., Kanbara Y., Process for the production of dialkyl carbonate. 美国: 5,489,702. 1994-08-05
    [18] 刘淑芝, 崔宝臣, 荆国林, 非光气法合成碳酸二甲酯催化剂研究进展. 化工进展, 2002, 21(4): 250~253
    [19] Fenton D. M., Preparation of alkyl carbonates. 美国: 3,227,740. 1963-02-25
    [20] Fenton D. M., Preparation of organic carbonates bearing disparate radicals. 美国: 3,227,741. 1963-06-28
    [21] 殷元骐,羰基合成化学. 北京: 化学工业出版社, 1995: 241~246
    [22] Dunn B. C., Guenneau C., Hilton S. A. et al, Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalyst. Energy & Fuels, 2002, 16(1): 177~181
    [23] Romano U., Tesei R., Cipriani G. et al, Method for the preparation of esters of carbonic acid. 美国: 4,218,391. 1979-05-05
    [24] 赵天生,韩怡卓,孙予罕, 碳酸二甲酯合成方法的研究进展. 石油化工, 1998, 27(6): 457~462
    [25] Tanaka M., Kimura T., Shimoda T., Method for manufacturing dialkyl carbonate. 美国: 6,258,923. 2000-05-31
    [26] Kimura T., Shimoda T., Tanaka M., A method for manufacturing dialkyl carbonate. 世界: 0200596, 2001-6-21
    [27] Mo W.L., Li G.X., Zhu Y.Q., et al, A Novel Catalyst CuCl/ 1,10-Phenanthroline/ N-Methylimidazole for the Oxidative Carbonylation of Ethanol to Diethyl Carbonate. Chinese Journal of Catalysis, 2003, 24(1): 3~4
    [28] 李光兴,朱永强,莫婉铃等,乙醇在 CuCl/Schiff 碱上催化氧化羰基合成碳酸二乙酯,应用化学,2003, 20(2): 163~166
    [29] Curnutt G.L., Process of preparing dihydrocarbyl carbonates using a nitrogen-containing coordination compound supported on activated carbon. US4325044, 1986
    [30] Tomishige K., Sakaihori T., Sakai S. et al, Dimethyl carbonate synthesis by oxidative carbonylation on activated carbon supported CuCl2 catalysts: catalytic properties and structural change. Applied Catalysis A: General, 1999, 181(1): 95~102
    [31] Han M.S., Lee B.G., Ahn B.S. et al, Synthesis of Dimethyl carbonate by vaporphase oxidative carbonylation of methanol over Cu-based catalysts. Journal of Molecular Catalysis A: Chemical, 2001, 170(1-2): 225~234
    [32] Fang D., Cao F., Intrinsic kinetics of direct oxidative caronylation of vapor phase methanol to over Cu-based catalysts. Chemical Engineering Journal, 2000, 78(2):237~241
    [33] Yang P., Cao Y., Dai W.L. et al, Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over Wacker-type catalysts. Applied Catalysis A: General, 2003, 243 (2): 323~331
    [34] Yang P., Cao Y., Hu J.C. et al, Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol. Applied Catalysis A: General, 2003, 241(1-2): 363~373
    [35] Jiang R.X., Wang Y.J., Zhao X.Q. et al, Characterization of catalyst in the synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol, Journal of Molecular Catalysis A: Chemical, 2002, 185 (1-2): 159~166
    [36] Li Z., Xie K.C., Slade R.C.T., High selective catalyst CuCl/MCM-41 for oxidative carbonylation of methanol to dimethyl carbonate, Applied Catalysis A: General, 2001, 205(1-2): 85~92
    [37] Ma X., Li Z., Effect of Cu Catalyst preparation on the oxidative carbonylation of methanol to dimethyl carbonate. React Kinet Catal Lett, 2002, 76(1):179~187
    [38] Jiang X.Z., Su Y.H., Chien Shu Hua, Novel synthesis of diethyl carbonate over palladium/MCM-41 catalysts. Catalysis Letters, 2000, 69(3-4): 153~156
    [39] Umemura S., Matsui K., Ikeda Y. et al, Process for preparing diesters of dicarboxylic acids. 美国: 4,260,810. 1979-06-27
    [40] Nishihira K., Mizutare K., Tanaka S., Process for preparing a diester of carboxylic acid. 美国: 5,162,563. 1990-10-17
    [41] Matsuzaki T., Shimamura T., Fujitsu S. et al, Method of producing carbonic acid diester. 美国: 5,292,916. 1991-09-30
    [42] Manada N., Murakami M., Abe K. et al, Method of producing carbonic acid diester. 美国: 5,403,949. 1993-06-29
    [43] Landscheidt H., Klausener A., Erich Wolters, Process for the preparation of dialkyl carbonates, 美国: 5,231,213. 1992-06-08
    [44] 苏跃华,姜玄真,常压气相羰基化合成碳酸二乙酯. 现代化工,2002, 22(2): 33~36
    [45] Wang Y., Zhao X. , Yuan B. et al, Synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol on the supported solid catalyst I. Catalystpreparation and catalytic properties. Applied Catalysis A: General, 1998, 171(2): 255~260
    [46] Paul F., Production of carbonate diesters from oxalate diesters. 美国 : 4,544,507. 1984-02-06
    [47] 原田胜正,衫濑良二,西尾正幸,碳酸二烷基酯的制备方法. 中国: 98125031.9,1998-11-7
    [48] Tsurahide C., Takaaki T., Toshitsura C. et al, Process for preparing dialkyl carbonates. 美国: 5,534,649, 1994-12-29
    [49] 王书明,江琦,由二氧化碳出发合成有机碳酸酯. 现代化工,2002, 22(3): 18~22
    [50] 王延吉,赵新强, 绿色催化过程与工艺. 北京, 化学工业出版社,2002: 95~97
    [51] Hacking M.A.P.J, Rantwijk F. van, Sheldon R.A., Lipase catalyzed reactions of aliphatic and arylaliphatic carbonic acid esters. Journal of Molecular Catalysis B: Enzymatic, 2000, 9: 201~208
    [52] 苏伟,椰壳基微孔活性炭制备与表征研究:[博士学位论文],天津:天津大学,2003
    [53] Roh N.S., Dunn B.C., Eyring E.M. et al, Continuous production of diethyl carbonate over a supported CuCl2/PdCl2/KOH catalyst. Fuel Chemistry Division Preprints, 2002, 47(1): 142~143
    [54] Roh N.S., Dunn B.C., Eyring E.M., et al, Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalytic flow reactor. Fuel Processing Technology, 2003, 83(1-3): 27~38
    [55] Punnoose A., Seehra M.S., Dunn B.C. et al, Characterization of CuCl2/PdCl2/Acitivated carbon catalysts for the synthesis of diethyl carbonate. Energy & Fuels. 2002, 16(1): 182~188
    [56] Han M.S., Lee B.G., Ahn B.S., et al, The role of copper chloride hydroxide in the oxidative carbonylation of methanol for dimethyl carbonate synthesis. Journal of Molecular Catalysis A: Chemical, 2003, 203(1-2): 137~143
    [57] Liu T.C., Chang C.S., Vapor-phase oxidative carbonylation of ethanol over CuCl-PdCl2/C catalyst. Applied Catalysis A: General, 2006, 304(1-2): 72~77
    [58] 张震,马新宾,李振花等,羰基合成碳酸二乙酯反应产物的气相色谱-质谱分析. 色谱. 2004, 22(2), 191
    [59] IUPAC Manual of Symbols and Terminology, Pure Appl. Chem., 1972, 31:578~638
    [60] Kresge C.T., Leonowicz M.E., Roth W.J. et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710~712
    [61] Beck J.S., Vartuli J.C., Roth W.J. et al., A new family of mesoporous molecularsieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114:10834~10843
    [62] Beck J.S., Vartuli J.C., Recent advances in the synthesis, characterization and applications of mesoporous molecular sieves. Current Opinion in Solid State and Materials Science, 1996, 1(1): 76~87
    [63] Casci J.L., Crystallization of 'inorganic' ZSM-5 in the system K2O-Al2O3- SiO2-H2O, Stud. Surf. Sci. Catal., 1994, 85: 329~335
    [64] Sayari A., Catalysis by Crystalline Mesoporous Molecular Sieves. Chemistry of Materials,1996, 8(8):1840~1852
    [65] Coma A., From microporous to mesoporous molecularsieve materials and their use in catalyst. Chem Rev, 1997, 97(6): 2373
    [66] Yang H., Kuperman A., Coombs N. et al, Synthesis of oriented films of mesoporous silica on mica. Nature, 1996, 379(6567): 703
    [67] Feng X., Fryxell F., Wang L.Q. et al, Functionalized monolayers on ordered mesoporous supports. Science, 1997, 276(5314): 923~926
    [68] Tanev P.T., Pinnavaia T.J., Neutral templating route to mesoporous molecular sieves. Science, 1995, 267(5199): 865~867
    [69] Tanev P.T., Chibwe M., Pinnavaia T.J., Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature, 1994, 368(6469): 321~323
    [70] 曾雷,伏再辉,熊畅等,Ti-HMS 的合成和催化苯乙烯环氧化性能. 湖南师范大学自然科学学报,2001, 24(4): 59~63
    [71] Zhang J.L., He B., Matsuoka M. et al., Preparation of Ti-HMSMesoporous molecular sieves and their photocatalytic activity for decomposition of nitrogen oxide. Chinese Journal of Catalysis, 2001, 22(2): 157~160
    [72] 罗勇,卢冠忠,黄家桢等,用无机钛源合成 Ti-HMS 中孔分子筛. 华东理工大学学报,2002, 28(5):529~532
    [73] 伏再辉,陈君华, 含过渡金属HMS的合成和催化性能. 物理化学学报,2000, 16(5): 410~415
    [74] King S.T., Oxidative carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts. Catalysis Today, 1997, 33(1-3): 173~182
    [75] Yang P., Cao Y., Hu J.C., et al, Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol. Applied Catalysis A: General. 2003, 241(1-2): 363~373
    [76] Thayer A., Gas additive gets subtracted, Chemical & Engineering News, 2003-7-28: 12
    [77] Hogue C., California gasoline, Chemical & Engineering News, 2003-7-28: 12
    [78] Backvall J.E., Akermark B., Ljunggren S.O., Stereochemistry of the Hydroxypalladation Step in the Waker Process. J. Chem. Soc., Chem. Commun, 1977, 264~265
    [79] Hubig S.M., Rathore R., Kochi J.K., Steric control of electron transfer. Changeover from outer-sphere to inner-sphere mechanisms in arene/quinone redox pairs. Journal of the American Chemical Society, 1999, 121(4): 617~626
    [80] Addison S.A., Is ligand topology an influence on the redox potentials of copper complexes. Inorg. Chim. Acta, 1989, 162(2): 217~220
    [81] Manada N., Murakami M., Abe K. et al, Method of producing carbonic acid diester. US 5403949, 1995-04-04
    [82] 姜兆华,孙德智,韶光杰等,应用表面化学与技术,哈尔滨:哈尔滨工业大学出版社,2000,45
    [83] Fleet M.E., The Crystal Stucture of Paratacamite, Cu2(OH)3Cl. Acta Crystallographica, 1975, B31(1): 183~187
    [84] Iitaka Y., Locchi S., Oswald H.R., Die Kristallstruktur von CuOHCl. Helvetica Chimica Acta, 1961, 44: 2095~2103
    [85] Cudennec Y., Riou A., Gerault Y. et al, Synthesis and Crystal Structures of Cd(OH)Cl and Cu(OH)Cl and relationship to Brucite Type. Journal of Solid State Chemistry, 2000, 151(2): 308~312
    [86] 刘光启,马连湘,刘杰,化学化工物性数据手册——无机卷,北京:化学工业出版社,2002,455
    [87] Choi K.I., Vannice M.A., CO oxidation over Pd and Cu catalysts. I, Unreduced PdCl2 and CuCl2 dispersed on alumina or carbon. J. Catal., 1991, 127(2): 465~488
    [88] Choi K.I., Vannice M.A., CO oxidation over Pd and Cu catalysts. II,Unreduced bimetallic PdCl2-CuCl2 dispersed on alumina or carbon. J. Catal., 1991, 127(2): 489~511
    [89] Choi K.I., Vannice M.A., CO oxidation over Pd and Cu catalysts. III, Reduced Al2O3-supported Pd. J. Catal.,1991, 131(1): 1~21
    [90] Choi K.I., Vannice M.A., CO oxidation over Pd and Cu catalysts. IV, Prereduced Al2O3-supported copper. J. Catal., 1991, 131(1): 22~35
    [91] Choi K.I., Vannice M.A., CO oxidation over Pd and Cu catalysts. V, Al2O3-supported bimetallic Pd-Cu particles. J. Catal., 1991, 131 (1): 36~50
    [92] Lee J.S., Choi S.H., Kim K.D. et al., Supported PdCl2-CuCl2 Catalysts for Carbon Monoxide Oxidation II. XAFS Characterization. Applied Catalysis B: Environmental, 1996, 7: 199~212
    [93] Park E.D., Lee J.S., Effects of Copper Phase on CO Oxidation over SupportedWacker-Type Catalysts. Journal of Catalysis, 1998, 180(2): 123~131
    [94] Park E.D., Choi S.H., Lee J.S., Active States of Pd and Cu in Carbon-Supported Wacker-Type Catalysts for Low-Temperature CO Oxidation. J. Phys. Chem. B, 2000, 104(23): 5586~5594
    [95] Kucherov A.V., Gerlock G.L., Jen H.W. et al, State of copper in a working, low-concentration CuH-ZSM-5 catalyst for exhaust gas purification: in-situ ESR monitoring. Catalysis Today, 1996, 27(1-2): 79~84
    [96] Zhang P., Zhang Z., Wang S.P. et al, A new type of catalyst PdCl2/Cu-HMS for synthesis of diethyl carbonate by oxidative carbonylation of ethanol. Catalysis Communications, 2007, 8(1): 21~26
    [97] 杨平,负载型 Wacker 催化剂及其甲醇气相氧化羰基合成碳酸二甲酯研究:[博士学位论文],上海;复旦大学,2003
    [98] Wang B.W., Xu G.H., Ma X.B. et al, Study of catalyst of CO coupling to diethyl oxalate in gaseous phase. Journal of Fuel chemistry and Technology, 2000, 28(3): 262~267
    [99] Li Z.H., Song Y., Du P. et al, Effect of hydrogen on catalytic coupling reaction of carbon monoxide to diethyl oxalate. Reaction Kinetics and Catalysis Letters, 2001, 73(1): 135~142
    [100] 翁师甫,傅里叶变换红外光谱仪,北京:化学工业出版社,2005,320~326
    [101] Cudennec Y., Riou A., Gerault Y. et al, Synthesis and Crystal Structures of Cd(OH)Cl and Cu(OH)Cl and relationship to Brucite Type. Journal of Solid State Chemistry, 2000, 151(2): 308~312
    [102] 周公度,段连运,结构化学基础(第三版),北京:北京大学出版社,2003,188~194
    [103] Liu T., Chang C., Vapor-phase oxidative carbonylation of ethanol over CuCl-PdCl2/C catalyst. Applied Catalysis A: General, 2006, 304 (1-2): 72~77
    [104] Richardson H.W., Handbook of copper compounds and applications, New York: Marcel Dekker, INC., 53~92
    [105] 范崇正,吴佑实,青铜器粉状锈生长过程的动力学研究. 中国科学:B 辑,1992, 5: 470~477
    [106] 徐如人,庞文琴,于吉红等,分子筛与多孔材料化学,北京:科学出版社,2004,198~206
    [107] 吴新华,活性炭生产工艺原理与设计,北京:中国林业出版社,1994,59
    [108] Gregg S.J., Sing K.S.W., Adsorption surface area and porosity. 2nd ed. Suffolk: St Edmundsbury Press, 1982, 25
    [109] Diaz-Aunon J.A., Roman-Martinez M.C., Salinas-Martinez de Lecea C., et al, [PdCl {NH (CH ) CH3} ] supported on an active carbon: effect of the carbon properties on the catalytic activity of cyclohexene hydrogenation2 2 2 (12) (2). J.Mole. Catal. A: Chemical, 2000, 153(1-2): 243~256
    [110] Farkas G., Hegedus L., Tungler A. et al, Effect of carbon support properties on enantioselective hydrogenation of isophorone over palladium catalysts modified with (-)-dihydroapovincaminic acid ethyl ester. J. Mol. Catal. A: Chemical, 2000, 153(1-2): 215~219
    [111] Valdes H., Sanchez-Polo M., Rivera-Utrilla J. et al, Effect of ozone treatment on surface properties of activated carbon. Langmuir, 2002, 18(6): 2111~2116
    [112] Figueiredo J.L., Pereira M.F.R., Freitas M.M.A. et al, Modification of the surface chemistry of activated carbons. Carbon, 1999, 37(9): 1379~1389
    [113] J.R. 罗思,工业等离子体工程(第一卷),北京:科学出版社,1998
    [114] Masudas, Pulse corona induced plasma chemical process: a horizon of new plasma chemical technologies. Pure & Applied Chemistry, 1988, 60(5): 727~731
    [115] Boehm H.P., Diehl E., Heck W. et al., Surface Oxides of Carbon. Angew. Chem. Int. Edit., 1964, 3(17): 669~677
    [116] Yang P., Cao Y., et al, Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over Wacker-type catalysts. Appl Catal, A Gen, 2003, 243(2): 323~331
    [117] Yee A., Morrison S.J., Idriss H., A study of the reaction of ethanol on CeO2 and Pd/CeO2 by steady state reactions, temperature programmed desorption, and in situ FT-IR. Journal of Catalysis, 1999, 186(2): 279~295
    [118] Yee A., Morrison S.J., Idriss H., A Study of ethanol reactions over Pt/CeO2 by temperature-programmed desorption and in situ FT-IR spectroscopy: evidence of benzene formation. Journal of Catalysis, 2000, 191(1): 30~45
    [119] Erdohelyi A., Rasko J., Kecskes T. et al, Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catalysis Today, 2006, 116(3): 367~376
    [120] Hierl R., Knozinger H., Urbach H.P., Surface properties and reduction behavior of calcined CuO/Al2O3 and CuO-NiO/Al2O3 catalysts. J. Catal., 1981, 69(2): 475~486
    [121] London J.W., Bell A.T., Infrared spectra of carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, nitrous oxide, and nitrogen adsorbed on copper oxide. J. Catal., 1973, 31(1): 32~40
    [122] De Jong K.P., Geus J.W., Joziasse J., Infrared spectroscopic study of the adsorption of carbon monoxide on silica-supported copper oxide. J. Catal., 1980, 65(2): 437~441
    [123] Li C., Domen K., Maruya K. et al, IR spectra of dioxygen species formed onCeO2 at room temperature. J. Chem. Soc. Chem. Commun., 1988, 23: 1541~1545
    [124] 李灿,辛勤,郭燮贤,乙烯和乙烷在CeO2上温和条件下表面氧化反应的原位FT-IR研究,分子催化,1991,5(3): 193~201
    [125] Tsyganenko A.A., Rodionova T.A., Filimonov V.N., Infrared studies of low temperature adsorption of oxygen on NiO2 surface. React Kinet Catal Lett , 1979, 11(2):113~117
    [126] Zecchina A., Spoto G., Coluccia S., Surface dioxygen adducts on Mg-CoO solid solutions: Analogy with cobalt-based homogeneous oxygen carriers. J Mol Catal , 1982, 14(3): 351~354
    [127] Andrews L., Smardzewski R.R., Argon matrix raman spectrum of LiO2: bonding in the M+O2- molecules and the ionic model. J Chem Phys, 1973, 58(6): 2258~2261

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700