用户名: 密码: 验证码:
半导体ZnO新型纳米结构的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,人们对纳米材料的合成兴趣越来越大。其中,半导体就是最有吸引力的功能纳米器件材料之一。合成半导体纳米结构的多种技术已经被报道。特别是在室温下具有3.37 eV的宽带隙的氧化锌已引起人们的注意,因为它在紫外光发光器件方面有潜在的应用。该纳米结构在光电子学,微电子学,生物医学科学方面有潜在的应用:如发光二极管,纳米激光器件,光传感器和气体传感器,变频器,染料敏化太阳能电池,变阻器和光催化剂。现在,寻找氧化锌新的结构,性能和应用已成为最重要的领域之一。使用有效的表征技术在确定制备纳米结构的最佳条件和确保高纳米结构的质量上是必不可少的。氧化锌的掺杂这个研究课题引起了相当大的兴趣,但讨论仍然有限。氧和硫由于有类似的电子层结构,它们有许多共同的物理和化学特性。氧化锌搀杂硫能改善其电学和光学性能,因为大的电负性及硫和氧元素大小的区别。另外,因为硫化锌比氧化锌的带隙较大,可能需要带隙设计。
     在这篇论文里,通过化学气相沉积的方法合成了多种氧化锌和硫搀杂氧化锌纳米结构。这些纳米结构合成在硅,石英和铁合金基片上,并研究了它们的结构和光学特性。氧化锌和硫化亚铁被分别用作锌源和硫源。这些化合物被证明是化学气相沉积方法的良好源材料。当我们在源材料中增加硫化亚铁的浓度时,硫在合成物中的含量也相应增加。我们的研究工作表明,这些纳米结构的形貌取决于源的温度,沉积温度,氩气的流速,源材料之间的比率以及基底的性质。在实验结果的基础上提出了这些纳米结构成长的过程。它主要包含如下四个部分:
     合成了部分硫掺杂的三片面的对称羽毛状氧化锌纳米结构。产物是不用催化剂一步合成的。合成的样品有近相同的纳米结构形态,虽然这些样品含有不同浓度的硫(1.55原子百分比和10.48原子百分比)。我们的研究表明,该样品的茎部是硫掺杂的,而牙齿部分则没有。这些合成的纳米结构都是纤锌矿单晶结构。室温光致发光(PL)光谱合成的产品在紫外,蓝光和绿光发射区呈现三个PL峰。硫搀杂使这些峰都移向高能区域。
     合成了ZnO:S/ZnO(硫搀杂丝带与氧化锌纳米齿)纳米锯异质结构。在400-450℃生长温度范围得到了最佳的选择和最高密度的纳米锯。我们的研究表明,该薄带是硫掺杂的氧化锌,而牙齿部分只有氧化锌。在不同的生长温度,我们也实验得到了纳米棒,纳米飞机,纳米带和表面光滑的纳米尖状结构。纳米锯的光致发光谱表明,在室温下它有比不搀杂的纯氧化锌粉末更强的可见光发射带。纳米锯异质结构的强可见光发射带可能在未来的紫外线受激荧光粉以产生明亮、宽广的可见光方面有用。
     合成了ZnO:S/ZnO六片状纳米转子异质结构。我们设计了一系列的实验调查生长温度,生长时间以及做为起始原料的氧化锌和硫化亚铁的比例对实验结果的影响。获得纳米转子的最佳条件;生长温度:400-425℃范围之间;生长时间:100分钟以及氧化锌和硫化亚铁的比例为1:1。每个纳米转子异质结构由一个纳米线核心与从这个核心向外产生的分支构成。我们的研究表明,纳米线核心部分是硫搀杂的氧化锌,纳米棒部分则只有氧化锌。此外,用紫外可见光谱测算了纳米转子的激子吸收峰。纳米转子的光致发光谱比不搀杂的纯氧化锌粉末有更强的可见光发射带。在我们的实验中,我们发现该纳米结构的硫含量与基底和源料之间的距离非常敏感。由于在氧存在的条件下硫元素是非常活泼的,在源和衬底的距离增大时,由于与剩余的氧气反应,硫部分的气压将会急剧减少。因此,我们可以简单地通过调节基底和源材料之间的距离在一定程度上调节纳米结构的硫含量。
     通过退火硫化锌掺杂聚乙二醇合成了多孔和高度多孔氧化锌球形微粒。纯硫化锌在约600°с温度退火获得了氧化锌纳米颗粒。合成研究这种聚合物/无机复合物前驱体以确定制备氧化锌颗粒的最佳条件。据观察,PEG的加入对产物氧化锌的形态,粒径分布和光致发光性质有很大的影响。在PL谱测量时,得到两个峰,一个是所有样品在394 nm都有的典型的紫外线峰。另外一个峰,对于样品A(没加PEG),峰在468 nm;对于样品B,(0.05克PEG),峰移到489纳米;对于样品C (下与0.1克PEG),峰移到494 nm。
In recent years, significant interest has focused on the synthesis of nanoscale materials. One of the most attractive classes of materials for functional nanodevices is semiconductors. Various techniques have been reported for the synthesis of semiconducting nanostructures. In particular ZnO with a wide direct band gap (Eg) of 3.37 eV at room temperature has attracted attention because of its possible application in UV light emitting devices. The nanostructures can be of a great potential for applications in optoelectronics, microelectronics, and biomedical sciences such as light-emitting diodes, nanolasers, light and gas sensors, transducers, dye-sensitized solar cells, varistors, and photocatalyst. Now, searching new structures, properties and applications of ZnO has become one of the most important fields. Use of effective characterization techniques is indispensable in determining the optimum conditions for the fabrication of nanostructures and to ensure the quality of the nanostructures. The doping of ZnO is a research topic of considerable interest in its own right, but the discussions are still limited. Oxygen and sulfur have many common physical and chemical properties due to a similar structure of their electronic shells. S-doping in ZnO is expected to modify the electrical and optical properties because of the large electronegativity and size difference between S and O. In addition, the band gap engineering might be possible because of larger band gap of ZnS than ZnO.
     In this dissertation, several kinds of ZnO and S-doped ZnO nanostructures have been synthesized by chemical vapor deposition method. These nanostructures have been synthesized on silicon, quartz and steel alloy substrates and investigated their structural and optical properties. Zinc oxide and iron sulfide were used as zinc and sulfur sources, respectively. These compounds were proved to be excellent source materials for a CVD process. As we increased the concentration of FeS in the source materials, the amount of sulfur also increased in steps. Our research work shows that the morphologies of these nanostructures depend upon source temperature, deposition temperature, argon (Ar) flow rate, the ratio between source materials and the nature of substrate. The growth processes of as- synthesized nanostructures were proposed, based on experimental results. It mainly contains four parts as follows:
     Partially S-doped ZnO symmetric three-sided feather-like nanostructures have been synthesized. The products were grown in a one step catalyst-free process. The synthesized nanostructures of both samples have nearly same morphology although these contain different concentration of sulfur (1.55 atom % and 10.48 atom %). Our study suggests that the stems were S-doped while the teeth were not. These synthesized nanostructures were single-crystalline wurtzite structure. Room-temperature photoluminescence (PL) spectra of the synthesized products showed three PL peaks in the ultraviolet, blue and green emission regions. The peaks were shifted towards high energy by sulfur doping.
     Heterostructured ZnO:S/ZnO (S-doped ribbon with ZnO nanoteeth) nanosaws were synthesized. Optimum selectivity and maximum nanosaw densities are obtained for growth temperatures in the range of 400–450°C. Our study suggests that the ribbons were ZnO:S while the teeth was only ZnO. Nanorods, nano-airplane, nanobelts and smooth surface nanotip-like structures were also obtained in our experiment at different growth temperatures. The photoluminescence spectrum of the nanosaws showed stronger visible emission band as compared to undoped ZnO powder at room temperature. This stronger visible emission in the heterostructured nanosaws might be useful as a future UV-excited phosphor for producing bright and broad visible-wavelength light.
     Heterostructured ZnO:S/ZnO six-fold nanorotors were synthesized. We performed a series of designed experiments to investigate the effect of growth temperatures, growth time and the ratios between ZnO and FeS used as starting material on the growth. Optimum conditions where maximum nanorotors were obtained were; growth temperatures: between the range of 400-425°C; growth time: 100 minutes and 1:1 ratio of ZnO + FeS. Each heterostructured nanorotor consisted of a core nanowire with side branches emanating from it. Our studies suggest that the core nanowires were ZnO:S while the nanorods were only ZnO. Furthermore ultraviolet–visible (UV–vis) spectroscopy was employed to estimate the excitonic absorption peak of the synthesized nanorotors. The photoluminescence spectrum of the heterostructured nanorotors showed stronger visible band emission as compared to pure ZnO powder at room temperature. In our experiments, we found that the S content in the nanostructures is very sensitive to the distance between the substrate and the source. Since element S is very active in the presence of oxygen, the S partial pressure would decrease dramatically with increasing source–substrate distance due to the reaction with residual oxygen. Thus, it is possible to tune the S content in the nanostructures to some extent simply by varying the distance between the substrate and the source.
     Porous and highly porous spherical microparticles of ZnO successfully synthesized by annealing of ZnS doped PEG, while ZnO nanoparticles were obtained by annealing pure ZnS at temperature about 600°С. Synthetic studies have been performed on such polymer/inorganic composite precursors in order to establish the optimum conditions for the preparation of the ZnO particles. It has been observed that the morphology, size distribution and photoluminescence of the ZnO products were strongly affected in the presence of PEG. In PL measurements, two peaks are obtained, one is typical UV peak for all samples at 394 nm, the other peak at 468 nm for sample A (without PEG), shifted to 489 nm for sample B (with 0.05 g of PEG) and 494 nm for sample C (with 0.1g of PEG).
引文
[1] (a) Montemerlo, M. S., et al., Technologies and Design for Electronic Nanocomputers, MITRE Corporation, McLean, VA, 1996. (b) Sathyajith Ravindran Ph.D dissertation on Fabrication and Self Assembly of Nano-heterostructures, University of California, August 2005
    [2] Hutcheson, G. D. Moore’s law: the history and economics of an observation that changed the world. Electrochem. Soc. Interface, 2005, 14(1), 17–18, 20–21.
    [3] Stern, E., Klemic, J. F., Routenberg, D. A., Wyrembak, P. N., Turner-Evans, D. B., Hamilton, A. D., LaVan, D. A., Fahmy, T. M., and Reed, M. A. Nature, 2007, 445(7127), 519–522.
    [4] (a) Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897-99. (b) Stewart M E, Motala M J, Yao J, Thompson L B, and Nuzzo R G, J. Nanoengineering and Nanosystems 2007, 81-138
    [5] Catchpole, K. R. Nanostructures in photovoltaics. Phil. Trans. R. Soc. Lond., A, 2006, 364(1849), 3493-3503
    [6] Willner, I., Basnar, B., and Willner, B. Nanoparticle–enzyme hybrid systems for nanobiotechnology FEBS J., 2007, 274(2), 302–309.
    [7] Schonenberger, C. Semicond. Sci. Tech., 2006, 21(11), S1–S9.
    [8] Shah, P. Mater. Res. Bull., 2006, 31(11), 894–899.
    [9] Zhang, X., Zhang, F., Guan, R.-F., and Chan, K.-Y. Mater. Res. Bull., 2007, 42(2), 327–333.
    [10] Yu, B. and Meyyappan, M. Solid State Electron., 2006, 50(4), 536–544.
    [11]Moreau, W. M. Semiconductor lithography: principles, practices, and materials (microdevices), 1st ed., 1988, (Springer, New York), p. 952.
    [12] Whitesides, G. M. and Love, C. J. Sci. Am., 2001, 285(3), 38–48.
    [13] Rao C N R, Cheetham A K, Journal of Materials Chemistry, 11 (2001) 2887.
    [14] Woltersdorf, J., Nepijko A.S., and Pippel E., Surf. Sci., 1981, 106, 64.
    [15] Ahmadi T.S., Wang Z.L., Green T.C., Henglein A. and El-Sayed M.A., Science, 1996, 272, 1924.
    [16] Wang Z. L. Characterization of nanophase materials, Wiley-VCH Verlag GmbH, 2000
    [17] Berry B.S. and. Pritchett W.C, Thin Solid Films, 1976, 33, 19.
    [18] Su C.M., Oberle R.R., Wuttig M., and. Cammarata R.C, Mater. Res. Soc. Symp. Proc. 1993, 280,
    [19] Weertman J.R. and Averback R.S., Nanomaterials: Synthesis, Properties and Applications, eds. A.S. Edelstein and R.C. Cammarata, London, Institue of Phys. Publ., 1996, Chapter 13, 323, and references therein.
    [20] Gunther L., Phys. World, 1990, 3, 28.
    [21] Audran R.G. and Huguenard A.P., U.S. Patent, 1981, 4,302,523.
    [22] Anton I. et al., J. Magn. Magnsm Mater., 1990, 85, 219.
    [23]. Marchessault R.H, Ricard S. and Rioux P., Carbohydrate Res., 1992, 224, 133.
    [24] McMichael R.D.,. Shull R.D, Swartzendruber L.J., Bennett L.H., Watson R.E., J. Magn. Magnsm Mater., 1992, 111, 29
    [25] Ziolo R.F., U.S. Patent, 1984, 4,474,866.
    [26] Baibich M.N., Broto J.M., Fert A., Nguyen Van dau F., Petroff F., Etienne P., Greuzet G, Frie-derich A., and Chazelas J., Phys. Rev. Letts., 1988, 61, 2472.
    [27] Buffat Ph., Borel J.P., Phys. Rev. A, 1976, 13, 2287.
    [28] Prokes S.M., Appl. Phys. Lett., 1993, 62, 3244.
    [29] Brus L., Appl. Phys. Mater. Sci. & Processing, 1991, 53, 465.
    [30] Alivisatos A.P., Science, 1996, 271, 933.
    [31], Murray C.B., Norris D.J., Bawendi M.G., J. of American Chemical Society, 1993, 115, 8706.
    [32] Klein D.L., Roth R., Lim A.K.L., Alivisatos A.P., McEuen P.L., Nature, 1997, 389, 699.
    [33] Pickering C., Beale M.I.J., Robbins D.J., Pearson P.J. and Greef R., J. Phys. C: Solid State Phys., 1984, 17, 6536.
    [34] Canham L.T., Appl. Phys. Lett., 1990, 57, 1046.
    [35] Cammarata R.C., Nanomaterials: Synthesis, Properties and Applications, eds. A.S. Edelstein and R.C. Cammarata, London, Institue of Phys. Publ., 1996, Chapter 13, 323, and references therein.
    [36] Kroto H.W., Heath J.R., O'Brien S.C., Curl R.F. and Smalley R.F., Nature, 1985, 318, 162.
    [37] Iijima S., Nature, 1991, 354, 56.
    [38] Frank S., Poncharal P., Wang Z.L. and de Heer W.A., Science, 1998, 280, 1744.
    [39] Tans S.J., Verschueren A.R.M., Dekker C., Nature, 1998, 393, 49.
    [40] de Heer W. A., Chatelain A., Ugarte D., Science, 1995, 270, 1179.
    [41] Han W.Q., Fan S.S., Li Q.Q. and Hu Y.D., Science, 1997, 277, 1287.
    [42] Dai H., Hafner J.H., Rinzler A.G., Colbert D.T., Smalley R.E., Nature, 1996, 384, 147.
    [43] Wong S.S., Joselevich E., Woolley A.T., Cheung C.L., Lieber C.M., Nature, 1998, 394, 52.
    [44] Whetten R.L., Khoury J.T., Alvarez M.M., Murthy S., Vezmar I., Wang Z.L., Cleveland, C.C.Adv. Materials, 1996, 8, 428
    [45] Yin J.S. and Wang Z.L., Phys. Rev. Lett., 1997, 79, 2570.
    [46] Murray C.B., Kagan C.R., Bawendi M.G., Science, 1995, 270, 1335.
    [47] Sun S. and Murray C.B., J. Appl. Phys. 1999, 85, 4325.
    [48] Wang Z.L., Adv. Mater., 1998, 10, 13.
    [49] Harfenist S.A., Wang Z.L., Alvarez M.M., Vezmar I. and Whetten R.L., J. Phys. Chem., 1996, 100, 13904.
    [50] Collier C.P., Saykally R.J., Shiang J.J., Henrichs S.E. and Heath J.R., Science, 1997, 277, 1978.
    [51] Joannopoulos J.D., Villeneuve P.R. and Fan S., Nature, 1997, 386, 143.
    [52] Gadot F F., Chelnokov A., DeLustrac A., Crozat P., Lourtioz J.M., Cassagne C D.. J. Appl. Phys. Letts., 1997, 71, 1980.
    [53] Krauss T.F., DeLaRue R.M., Brand S., Nature, 1996, 383, 699.
    [54] Sievenpiper D.F., Sickmiller M.E., Yablonovitch E E., Phys. Rev. Letts., 1996, 76, 2480.
    [55] Zakhidov A.Z., Baughman R.H., Iqbal Z., Cui C., Khayrullin I., Dantas S.O., J. Marti, and V.G. Ralchenko, Science, 1998, 282, 897.
    [56] Velev O.D., Jede T.A., Lobo R.F. and Lenhoff A.M., Nature, 1997, 389, 448.
    [57] Wijnhoven J.E.G.J. and Vos W.L., Science, 1998, 281, 802.
    [58] Holland B.T., Blanford C.F. and Stein A., Science, 1998, 281, 538.
    [59] Kresge C.T., Leonowioz M.E., Roth W.J., Vartuli J.C. and Beck J.S., Nature, 1992, 359, 710.
    [60] Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G.H., Chmelka B.F. and Stucky G.D., Science, 1998, 279, 548.
    [61] Yin J.S. and Wang Z.L., Appl. Phys. Letts., 1999, 74, 2629.
    [62] Bach U., Lupo D., Comte P., Moser J.E., Weissortel F., Salbeck J., Spreitzer H., Gratzel M., Nature, 1998, 395, 583.
    [63] Feng X., Fryxell G.E., Wang L.Q., Kim A.Y., Liu J., Kemner K.M., Science, 1997, 276, 923.
    [1] (a) Bunn C W, Proc. Phys. Soc. London,47 (1935)835.(b) Kamal Mahir Sulieman Khalil Ph.D dissertation on Synthesis and characterization of semiconducting ZnO and ZnS nanostructures, Huazhong Normal University,Wuhan, China. April, 2007
    [2] (a) Braekken H, Jore C, Det Norske Videnskabers Skrifter (The Norwegian Science Scripts) NR8, 1 (1935) (in Norwegian). (b) Nabok A. Organic and Inorganic Nanostructures 2005 Artech House, Inc.Boton/London
    [3] Heller R B, McGannon J, Weber A H, J. Appl. Phys., 21(1950) 1283.
    [4] Rymer T B, Archard G D, Research (London), 5 (1952) 292.
    [5] Cimino A, Marezio M, Santoro A, Naturwiss., 12 (1957) 348.
    [6] Gray T J, Ceram J Am., Soc., 37 (1954) 534.
    [7] Mohatny G P, Azaroff L V, J. Chem. Phys., 35 (1961) 1268.
    [8] Khan A A, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A,24 (1968) 403.
    [9] Reeber R R, J. Appl. Phys., 41(1970) 5063.
    [10] Reynolds D C, Collins T C, Phys. Rev., 185 (1969) 1099.
    [11] Thomas D G, J. Phys. Chem. Solids, 15 (1960) 86.
    [12] Park Y S, Litton C W, Collins T C, Reynolds D C, Phys. Rev., 143 (1965) 512.
    [13] Collins R J, Kleinman D A, J. Phys. Chem. Solids, 11 (1959) 190.
    [14] Weiher R L, Phys. Rev., 152 (1966) 736.
    [15] Bear W S, Phys. Rev., 154(1967) 785.
    [16] Mollwo E, Z. Angew. Phys., 6 (1954) 257.
    [17] Bond W L, J. Appl. Phys., 36 (1965) 1674.
    [18] Liang W Y, Yoffe A D, Phys. Rev. Lett., 20 (1968) 59.
    [19] Hutson A R, J. Appl. Phys., 32 (1961) 2287.
    [20] Freeouf J L, Phys. Rev. B, 7 (1973) 3810.
    [21] Schirmer O F, Zwingel D, Solid State Commun., 8 (1970) 1559.
    [22] Hopfield J J, Thomas D G, Phys. Rev. Lett., 15 (1965) 22.
    [23] Stephens R E, Malitson I H, J. Res. Natl. Bur. Stand., 49 (1952) 249.
    [24] Park Y S, Schneider J R, J. Appl. Phys., 39 (1968) 3049.
    [25] Heiland G, Mollwo E, St?ckmann F, Solid State Phys., 8 (1959) 191.
    [26] Damen T C, Porto S P S, Tell B, Phys. Rev., 142 (1966) 570.
    [27] Arguello C A, Rousseau D L, Porto S P S, Phys. Rev., 181(1969) 1351.
    [28] Callender R H, Sussman S S, Selders M, Chang R K, Phys. Rev.B, 7 (1973) 3788.
    [29] Calleja J M,Cardona M, Phys. Rev. B, 16 (1977) 3753.
    [30] Tsuboi M,Wada A, J. Chem. Phys., 48 (1968) 2615.
    [31] Porto S P S,Krishnan R S, J. Chem. Phys., 47 (1967) 1009.
    [32] Mitra S S, Brafman O, Daniels W B, Crawford R K, Phys. Rev., 186 (1969) 942.
    [33] Galli G,Coker J E, Appl. Phys. Lett., 16 (1970) 439.
    [34] Shiloh M,Gutman J, J. Cryst. Growth, 11 (1971) 105.
    [35] Croxall D F, Ward R C C, Wallace C A, Kell R C, J. Cryst.Growth, 22 (1974) 117.
    [36] Kern W,Heim R C, J. Electrochem. Soc., 117 (1970) 562.
    [37] Look D C, Mater. Sci. Eng.B, 80 (2001) 381.
    [38] Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T, J. Cryst. Growth, 260 (2004) 166.
    [39] Please visit the web site http://www.cermetinc.com/products.htm
    [40] Ntep J-M, Hassani S S, Lusson A, Tromson-Carli A, Ballutaud D, Didier G, Triboulet R, J. Cryst. Growth, 207 (1999) 30.
    [41] Look D C, Reynolds D C, Hemski J W, Jones R L, Sizelove J R, Appl. Phys. Lett., 75 (1999) 811.
    [42] Polyakov A Y, et al., J. Appl. Phys., 94 (2003) 2895.
    [43] Kucheyev S O, Williams J S, Jagadish C, Zou J, Evans C, Nelson A J, Hamza A V, hys. Rev. B, 67 (2003) 094115.
    [44] Gu X, Reshchikov M A, Teke A, Johnstone D, Morkoc H, Nemeth B, Nause J, Appl. Phys. Lett. 84 (2004) 2268; J. Mater. Sci., 15 (2004) 373.
    [45] Hamdani F, et al., J. Appl. Phys., 83 (1998) 983.
    [46] Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D, Science, 287 (2000) 1019.
    [47] Pearton S J, et al., J. Phys.: Condens. Matter, 16 (2004) R209.
    [48] Pearton S J, Heo W H, Ivill M, Norton D P, Steiner T, Semicond. Sci. Technol., 19 (2004) R59.
    [49] Dulub O, Boatner L A , Diebold U, Surf. Sci., 519 (2002) 201.
    [50] Meyer B, Marx D, Phys. Rev. B, 67(2003) 035403.
    [51] Tasker P W, J. Phys. C: Solid State Phys., 12 (1979) 4977.
    [52] Dulub O, Diebold U, Kresse G, Phys. Rev. Lett., 90 (2003) 016102.
    [53] Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner T S, Thornton G, Harrison N M, Phys. Rev. Lett., 86 (2001) 3811.
    [54] Staemmler V, Fink K, Meyer B, Marx D, Kunat M, Gil Girol S, Burghaus U, Woll Ch, Phys. Rev. Lett., 90 (2003) 106102.
    [55] Huang M H, Wu Y Y, Feick H, Tran N, Weber E, Yang P D, Adv. Mater., 13 (2001) 113
    [56] Wagner R S, Ellis W C, Appl. Phys. Lett., 4 (1964) 89.
    [57] Westwater J, Gosain D P, Tomiya S, Usui S, Ruda H, J. Vac. Sci. Technol. B, 15 (1997) 554.
    [58] Morales A M, Lieber C M, Science, 279 (1998) 208.
    [59] Gao P X, Wang Z L, J. Phys. Chem. B, 106 (2002) 12653.
    [60] Gao P X, Wang Z L, Nano Lett., 3 (2003) 1315.
    [61] Gao P X, Wang Z L, J. Phys. Chem. B, 106 (2002) 12653 + cover.
    [62] Lao J Y, Huang J Y, Wang D Z, Ren Z F, Nano Lett., 3 (2003) 235.
    [63] Pan Z W, Dai Z R, Wang Z L, Science, 291 (2001) 1947.
    [64] Wang X D, Ding Y, Summers C J, Wang Z L, J. Phys. Chem. B, 108 (2004) 8773.
    [65] Zhong J, Muthukumar S, Chen Y, Lu Y, Ng H M, Jiang W, Garfunkel E L, Appl. Phys. Lett., 83 (2003) 3401.
    [66] Hashimoto S, Yamaguchi A, J. Am. Ceram. Soc., 79 (1996) 1121.
    [67] Vigue F, Vennegues P, Vezian S, Laugt M, Faurie J P, Appl. Phys. Lett., 79 (2001) 194.
    [68] Wang Z L, Kong X Y, Zuo J M, Phys. Rev. Lett., 91(2003) 185502 + cover.
    [69] Moore D, Ronning C, Ma C, Wang Z L, Chem. Phys. Lett., 385 (2004) 8.
    [70] (a) Ma C, Ding Y, Moore D, Wang X D, Wang Z L, J. Am. Chem. Soc., 126 (2004) 708. (b) Ma C, Ding Y, Moore D, Wang X D, Wang Z L, Nature, 427 (2004) 497 (Feature).
    [71] Kong X Y, Ding Y, Yang R S, Wang Z L, Science, 303 (2004) 1348.
    [72] Gao P X, Wang Z L, J. Am. Chem. Soc., 125 (2003) 11299.
    [73] Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D, Science, 292(2001) 1897.
    [74] Arnold M S, Avouris Ph, Pan Z W, Wang Z L, J. Phys. Chem. B, 107 (2003) 659.
    [75] Cui Y, Lieber C M, Science, 291 (2001) 851.
    [76] Collins P G, Arnold M S, Avouris Ph, Science, 292 (2001) 706.
    [77] Kong J, Franklin N, Wu C, Pan S, Cho K J, Dai H, Science, 287 (2000) 622.
    [78] Avouris Ph, Chem. Phys., 281(2002) 429.
    [79] Zhang D H, Mater. Chem. Phys., 45 (1996) 248.
    [80] Bonasewicz P, Hirschwald W, Neumann G, J. Electrochem. Soc., 133 (1986) 2270.
    [81] Shapira Y, Cox S M, Lichtma D, Surf. Sci., 54 (1976) 43.
    [82] Bai X, Wang E G, Gao P X, Wang Z L, Nano Lett., 3 (2003) 1147.
    [83] Comini E, Faglia G, Sberveglieri G, Pan Z W, Wang Z L, Appl. Phys. Lett., 81 (2002) 1869.
    [84] Kim P, Shi L, Majumdar A, McEuen P L, Phys. Rev. Lett., 87 (2001) 215502.
    [85] Schwab K, Henriksen E A, Worlock J M, Roukes M L, Nature, 404(2000) 974.
    [86] Shi L, Hao Q, Yu C, Kim D, Mingo N, Kong X Y, Wang Z L, Appl. Phys. Lett., 84 (2004) 2638.
    [87] Volz S G, Chen G, Appl. Phys. Lett., 75 (1999) 2056.
    [88] Sverdrup P G, Ju Y S, Goodson K E, J. Heat Transfer, 123 (2001) 130.
    [89] Poncharal P, Wang Z L, Ugarte D, de Heer W A, Science, 283 (1999) 1513.
    [90] Wang Z L, Poncharal P, de Heer W A, Pure Appl. Chem., 72 (2000) 209.
    [91] Gao R P, Wang Z L, Bai Z G, de Heer W A, Dai L M, Gao M, Phys. Rev. Lett., 85 (2000) 622.
    [92] Wang Z L, Dai Z R, Bai Z G, Gao R P, Gole J, Appl. Phys. Lett., 77 (2000) 3349.
    [93] Meirovich L, Elements of Vibration Analysis 2nd edn (New York: McGraw-Hill), 1986.
    [94] Bai X D, Wang E G, Gao P X, Wang Z L, Appl. Phys. Lett., 82 (2003) 4806.
    [95] Gao R P, Pan Z W, Wang Z L, Appl. Phys. Lett., 78 (2001) 1757.
    [96] Bai X D, Wang E G, Gao P X, Wang Z L, Nano Lett., 3 (2003) 1147.
    [97] Dai H J, Hafner J H, Rinzler A G, Colbert D T, Smalley R E, Nature, 384 (1996) 147.
    [98] Hughes W, Wang Z L, Appl. Phys. Lett., 82 (2003) 2886.
    [99] Zhao M H, Wang Z L, Mao S X, Nano Lett., 4(2004) 587.
    
    
    
    
    
    [1] (a) Toy D A. Semiconductor International 1990;6:64.(b) Choy K.L. Progress in Materials Science 48 (2003) 57–170
    [2] Kern W, Schuergraf KK. In: Schuergraf KK, editor. Handbook of thin film deposition processes and techniques. Park Ridge (NJ): Noyes; 1988. p. 1.
    [3] Choy K L. In: Nalwa HS, editor. Handbook of nanostructured materials and nanotechnology, vol.1: Synthesis and Processing. San Diego (CA): Academic Press; 2000. p. 533.
    [4] (a) Morosanu C.E., Thin Films by Chemical Vapour Deposition, Elsevier, Amsterdam, 1990. (b) Kim, Jeong-Seok, Ph.D dissertation on A study on ZnO, A.I2O3, and A1 doped ZnO thin films grown by LPMOCVD technique; growth and characterization, University of Kentucky, 1993
    [5] Mantel1 D.A., J. Vac. Sci. Technol. A 7(3), 630 (1989).
    [6] Morosanu C.E., Iosif K, and Sega1 E., Tin Solid Films 92, 333 (1982).
    [7] Morosanu C.E.and Segal E, Thin Solid Films 91, 251 (1982).
    [8] Jensen K.F. and Kern W, Thin Film Processes II. J.L.Vossen and W.Kcm cds., Ch.ITI-I, Academic Press, New York, 1991.
    [9] Briggs D. and Seah, "Practical Surface Analysis", 2nd Ed., Vol.1. John Wiley & SonsLtd.,1990.
    [10] (a) Keyse, R. J., et al.,“Introduction to Scanning Transmission Electron Microscopy,”in Microscopy Handbook, Vol. 39, Oxford, England: BIOS Scientific Publishers, 1998.
    (b) Greffet, J.-J., and R. Carminati,“Image Formation in Near-Field Optics,”Progr. Surf. Sci., Vol. 56, No. 3, 1997, pp. 133–237.
    (c) Buseck P., Cowley J.M. and Eyring L. High Resolution Transmission Electron Microscopy and Associated Techniques, New York, London, Amsterdam, Oxford University Press, 1988.
    (d) Goldstein J.I.,. Newbury D.E, Echlin P., Joy D.C., Romig A.D., Lyman C.E., Fiori C., and Lifshin E., Scanning Electron Microscopy and X-ray Microanalysis, a text for biologists, materials scientists and geologists, New York, Plenum Press, 1992.
    [1] Pan Z W, Dai Z R and Wang Z L 2001 Science 291 1947-49
    [2] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897-99
    [3] Verghese P M and Clarke D R 2000 J. Appl. Phys. 87 4430-38
    [4] Yan H Q, He R R, Johnson J, Law M, Saykally R J and Yang P D 2003 J.Am. Chem. Soc. 125 4728-29
    [5] Sulieman K M, Huang X, Liu J and Tang M 2006 Nanotechnology 17 4950-55
    [6] Fonoberov V A and Balandin A A 2004 Appl. Phys. Lett. 85, 5971-3; 2004 Phys. Rev. B 70 195410-1 ; 2005 Appl. Phys. Lett. 86 226101-2
    [7] Park W I, Kim D H, Jung S W and Yi G C 2002 Appl. Phys. Lett. 80 4232-34
    [8] Wei M D, Qi Z -M, Ichihara M, Honma I and Zhou H S 2007 Nanotechnology 18 095608 (7pp)
    [9] Zheng M J, Zhang L D, Li G H and Shen W Z 2002 Chem. Phys. Lett. 363 123-28
    [10] Zhang Y F, Tang Y H, Wang N, Yu D P, Lee C S, Bello I and Lee S T 1998 Appl. Phys. Lett. 72 1835-37
    [11] Ma C, Berta Y and Wang Z L 2004 Solid State Commun. 129 681-85
    [12] Sanon G, Rup R and Mansingh A 1991 Phys. ReV. B 44 5672-80
    [13] Sernelius B E, Berggren K F, Jin Z C, Hamber I and Granqvist C G 1998 Phys. ReV. B 37 10244-48
    [14] Zhou S, Zhang X, Meng X, Zou K, Fan X, Wu S and Lee S T 2004 Nanotechnology 15 1152-55
    [15] Geng B Y, Wang G Z, Jiang Z, Xie T, Sun S H, Meng G W and Zhang L D 2003 Appl. Phys. Lett., 82 4791-93
    [16] Bae S Y, Seo H W and Park J 2004 J Phys. Chem. B, 108 5206-10
    [17] Shen G, Cho J H, Yoo J K, Yi G -C, and Lee C J 2005 J. Phys. Chem. B 109 5491-96
    [18] Sulieman K M, Huang X T, Liu J P and Tang M 2007 Mater.Lett. 61 1756-59
    [19] Moon H, Nam C, Kim C and Kim B, 2006 Mater. Res. Bull. 41 2013-17
    [20] Lu M Y, Su P Y, Chueh Y L, Chen L J and Chou L J 2005 Appl. Surf. Sci. 244 96-100
    [21] Yao B D, Chan Y F, and Wang N 2002 Appl. Phys. Lett. 81 757-59
    [22] Lao C S, Gao P X, Yang R S, Zhang Y, Dai Y and Wang Z L 2006 Chem. Phys. Lett. 417 358-62
    [23] Foreman J V, Li J Y, Peng H Y, Choi S, Everitt H O, and Liu J, 2006 Nano.Letters 6 1126-30
    [24] Shen G Z, Cho J H, Jung S I and Lee C J 2005 Chem. Phys. Lett. 401 529-33.
    [25] Kong Y C, Yu D P, Zhang B, Fang W and Feng S Q, 2001 Appl. Phys. Lett. 78 407-09.
    [26] Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, and Segawa Y, 1998 Appl. Phys. Lett. 72 3270-72.
    [27] Kim K J and Park Y R, 2001 Appl. Phys. Lett. 78 475-77.
    [1] Pan Z W, Dai Z R and Wang Z L 2001 Science 291 1947
    [2] Yan H Q, He R R, Johnson J, Law M, Saykally R J and Yang P D 2003 J.Am. Chem. Soc. 125 4728-29
    [3] Norton D P, Heo Y W, Ivill M P, Ip K, Pearton S J, Chisholm M F and Steiner T 2004Mater. Today 7 34
    [4] Geng B Y, Wang G Z, Jiang Z, Xie T, Sun S H, Meng G W and Zhang L D 2003 Appl. Phys. Lett. 82 4791
    [5] Xu W Z, Ye Z Z, Ma D W, Lu H M, Zhao L P, Zha B H, Yang X D and Xu Z Y 2005 Appl. Phys. Lett. 87 093110
    [6] Gao P M, Ding Y, Mai W J, Hughes W L, Lao C S and Wang Z L 2005 Science 309 1683
    [7] Sulieman K M, Huang X, Liu J and Tang M 2006 Nanotechnology 17 4950
    [8] Wang J X, Sun X W, Wei A, Lei Y, Cai X P, Li C M and Dong Z L 2006 Appl. Phys. Lett. 88 233106
    [9] Wang Z L, Kong XY and Zuo J M, 2003 Phys. Rev. L ett. 91 185502
    [10] Bae S Y, Seo H W, Park J and Yang H 2003 Chem. Phys. Lett. 373 620
    [11] Ma C, Ding Y, Moore D, Wang X, and Wang Z L 2004 J. Am. Chem. Soc. 126 708
    [12] Colli A, Hofmann S, Ferrari A C, Ducati C, Martelli F, Rubini S, Cabrini S, Franciosi A and Robertson J 2005 Appl. Phys. Lett. 86 153103
    [13] Lao J Y, Huang J Y, Wang D Z and Ren Z F 2004 J. Mater. C hem. 14 770
    [14] Leung Y H, Djurisic A B, Gao J, Xie M H, Wei Z F, Xu S J and Chan W K 2004 Chem. Phys. Lett. 394 452
    [15] Pan Z W, Mahurin S M, Dai S and Lowndes D H 2005 Nano Lett. 5 723
    [16] Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T and Segawa Y 1998 Appl. Phys. Lett. 72 2466
    [17] Foreman J V, Li J Y, Peng H Y, Choi S, Everitt H O, and Liu J, 2006 Nano Lett. 6 1126
    [18] S G Hussain, D Liu1, X Huang, K M Sulieman, J Liu, H Liu and A N Abd Alla 2007 Smart Mater. Struct. 16 1736
    [19] Lim Y S, Park J W, Hong S -T, Kim J, 2006 Mate. Sci. .Eng. B 129 100
    [20] Park J-H, Choi H-J, Choi Y-J, Sohn S-H and Park J -G 2004 J. Mater. Chem. 14 35
    [21] Moon H, Nam C, Kim C and Kim B, 2006 Mater. Res. Bull. 41 2013
    [22] Yao B D, Chan Y F, and Wang N 2002 Appl. Phys. Lett. 81 757
    [23] Kong X Y, Din Y g, Yang R, Wang Z L 2004 Science 303 1348
    [24] Fonoberov VA, Alim K A, and Balandin A A 2006 Phys. Rev B 73 165317
    [25] Kong Y C, Yu D P, Zhang B, Fang W and Feng S Q 2001 Appl. Phys. Lett. 78 407
    [26] Vanheusden K, Seager C H, Warren W L, Tallant D R, and Voigt J A 1996 Appl. Phys. Lett. 68 403 ; Vanheusden K, Warren W L, Seager C H, Tallan D R t, Voigt J A andGnade B E 1996J. Appl. Phys. 79 7983
    [27] Arnold M S, Avouris P, Pan Z W and Wang Z L 2003 J. Phys. Chem. B 107 659
    [28] Shalish I, Temkin H and Narayanamurti V 2004 Phys. Rev. B 69 245401
    [1] Ohta, H.; Kawamura, K.; Orita, M.; Hirano, M.; Sarukura, N.; Hosono, H. Appl. Phys. Lett. 2000, 77 , 475-477.
    [2] Aoki, T.; Hatanaka, Y.; Look, D, C. Appl. Phys. Lett. 2000, 76, 3257-3258.
    [3] Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; Arakawa, H. Sol. Energy Mater. Sol. Cells 2000, 64, 115-134.
    [4] Rodriguez, J. A.; Jirsak, T.; Dvorak, J.; Sambasivan, S.; Fischer, D. J. Phys. Chem. B 2000, 104, 319-328.
    [5] Yumoto, H.; Inoue, T.; Li, S. J.; Sako, T.; Nishiyama, K. Thin Solid Films 1999, 345, 38-41.
    [6] Carcia, P, F.; McLean, R, S.; Reilly, M. H.; Nunes, G, Jr. Appl. Phys. Lett. 2003, 82, 1117-1119.
    [7] Panwar, B. S. Appl. Phys. Lett. 2002, 80, 1832-1834.
    [8] Yan, H. Q.; He, R. R.; Johnson, J.; Law, M.; Saykally, R. J.; Yang, P. D. J. Am. Chem. Soc. 2003, 125, 4728-4729.
    [9] Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo R.; Yang, P. D. Science 2001, 292, 1897-1899.
    [10] Arnold, M. S.; Avouris, P.; Pang, Z, W,; Wang, Z. L. J. Phys. Chem. B 2003, 107 659-663.
    [11] Look, D. C. Mater. Sci. Eng. B 2001, 80, 383-387.
    [12] Kong, Y. C.; Yu, D. P.; Zhang, B.; Fan, W.; Feng, S. Q. Appl. Phys. Lett. 2001, 78, 407-409.
    [13] (a) Umar, A.; Lee, S.; H Im Y.; Hahn, Y. B. Nanotechnology 2005, 16, 2462–2468. (b) Umar, A.; Kim, B. K.; Kim, J. J.; Hahn, Y. B. Nanotechnology2007, 18, 175606-175612. (c) Umar, A;. Suh, E. K.; Hahn, Y. B. J. Phys. D: Appl. Phys. 2007, 40, 3478–3484. (d) Umar, A.; Hahn, Y. B. Nanotechnology 2006, 17, 2174–2180.
    [14] Li, C.; Fang, G. J.; Xu, S.; Zhao, D. S.; Zhao, X. Z. Nanotechnology 2006,17. 5367-5372.
    [15] (a) Hussain, S. G.; Liu, D.; Huang, X.; Sulieman, K. M.; Liu, J.; Liu, H.; Rasool, R. U. J. Phys. D: Appl. Phys. 2007, 40, 7662–7668.(b) Hussain, S. G.; Liu, D.; Huang, X.; Sulieman, K. M.; Liu, J.; Liu, H.; Abd Alla, A. N. Smart Mater. Struct. 2007, 16, 1736-1741.
    [16] Djurisic, A. B.; Choy, W. C. H.; Roy, V. A. L.; Leung, Y. H.; Kwong, C. Y.; Cheah, K. W.; Rao, T. K. G.; Chan, W. K.; Lui, H. F.; Surya, C. Adv. Funct. Mater. 2004, 14, 856-864.
    [17] Foreman, J. V.; Li, J. Y.; Peng, H. Y.; Choi, S.; Everitt, H. O.; Liu, J. Nano Lett. 2006, 6, 1126-1130.
    [18] Yoo, Y-Z.; Jin, Z–W.; Chikyow, T.; Fukumura, T.; Kawasaki, M.; Koinuma, H. Appl. Phys. Lett. 2002, 81, 3798-3800.
    [19] Geng, B. Y.; Wang, G. Z.; Jiang, Z.; Xie, T.; Sun, S. H.; Meng, G. W.; Zhang, L. D.Appl. Phys. Lett. 2003, 82, 4791-4793.
    [20] Lao, J. Y.; Huang, J. Y.; Wang, D. Z.; Ren, Z. F. J. Mater. Chem. 2004, 14, 770-773.
    [21] Wen, J. G.; Lao, J. Y.; Wang, D. Z.; Kyaw, T. M.; Foo, Y. L.; Ren, Z. F. Chem. Phys. Lett. 2003, 372, 717-722.
    [22] Lao, J. Y.; Wen, J. G.; Ren, Z. F. Nano Lett. 2002, 2, 1287-1291.
    [23] Moon, H.; Nam, C.; Kim, C.; Kim, B. Mater. Res. Bull. 2006, 41, 2013-2017.
    [24] Yao, B. D.; Chan, Y. F.; Wang, N. Appl. Phys. Lett. 2002, 81, 757-759.
    [25] Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. K.; Voigt, J. A.; Gnade, B. E. J. Appl. Phys. 1996, 79, 7983-7990.
    [26] Bae, C. H.; Park, S. M.; Park, S. C.; Ha, J. S. Nanotechnology 2006, 17, 381-384.
    [1] Law M., Goldberger J. and Yang P., Annu. Rev. Mater. Res. 34, 83 (2004).
    [2] Wang Z. L., Adv. Mater. 15, 432 (2003).
    [3] Neves M. C., Trindade T., Timmons A. M.B. and Jesus J. D. P. d., Mater. Res. Bull. 36, 1099 (2001).
    [4] Kou H., Wang J., Pan Y. and Guo J., Mater. Chem. Phys. 99 325(2006).
    [5] Bourlinos A. B. and. Karakvassides M. A, Chem. Commun. 1518 (2001).
    [6] Fowler C. E., Khushalani D. and Mann S., J. Mater. Chem. 11,1968 (2001).
    [7] Yoon S. B., Sohn K., Kim J. Y., Shin C. -H., Yu J. -S.and Hyeon T. Adv. Mater. 14, 19 (2002).
    [8] Mandal T. K., Fleming M. S. and Walt D. R. Chem. Mater. 12, 3481, (2000).
    [9] Graf C. and Blaaderen A., Langmuir 18, 524 (2002).
    [10] Yan C. and Xue D., J. Phys. Chem. B 110, 11076 ( 2006).
    [11] Sulieman K. M., Huang X., Liu J. and Tang M., Nanotechnology 17, 4950 (2006).
    [12] Arnold M. S., Avouris P., Pan Z. W. and Wang Z. L., J. Phys. Chem. B 107, 659 (2003).
    [13] Huang M. H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R. and Yang P., Science 292, 1897 (2001).
    [14]. Hussain S.G, Liu D., Huang X., Sulieman K. M., Liu J.P, Liu H. and Abd Alla A. N., Smart Mater. Struct. 16, 1736 (2007).
    [15] Wedekind K. J.,. Hortin A. E and Baker D. H., J. Anim. Sci. 70, 178 (1992).
    [16] Ogata K ., Komuro T., Hama K ., Koike K., Sasa S., Inoue M. and Yano M . Phys. Status Solidi B 241, 616 (2004).
    [17] Sekar A., Kim S. H., Umar A.and Hah Y. B., J. Cryst. Growth 277, 471 (2005).
    [18] Umar A., Kim S. H., Lee Y. S., Nahm K. S. and Hahn Y. B., J. Cryst. Growth 282, 131 (2005).
    [19] Umar A., Lee S., Lee Y. S., Nahm K. S. and Hahn Y.B., J. Cryst. Growth 277, 479 (2005).
    [20] Duan J., Huang X., Wang E. and Ai H., Nanotechnology 17, 1786 (2006).
    [21] Zhao Y., Hong J.-M and Zhu J.-J, J. Cryst. Growth 270, 438 (2004).
    [22] Peng W. Q., Cong G. W., Qu S. C. and Wang Z. G., Nanotechnology 16, 1469 (2005).
    [23] Zhou X., Zhang D., Zhu Y., Shen Y., Guo X., Ding W. and Chen Y., J. Phys. Chem. B 110, 25734 (2006).
    [24] Kong Y. C., Yu D. P., Zhang B., Fang W. and Feng S. Q., Appl. Phys. Lett. 78, 407 (2001).
    [25] Bagnall D. M., Chen Y. F., Zhu Z., Yao T., Koyama S.,. Shen M. Y and Goto T., Appl. Phys. Lett. 70, 2230 (1997).
    [26] Yuan H. J., Xie S. S., Liu D. F., Yan X. Q., Zhou Z. P., Ci L. J., Wang J. X., Gao Y., Song L., Liu L. F., Zhou W.Y. and Wang G., Chem. Phys. Lett. 371, 337 (2003).
    [27]. Bagnall D. M, Chen Y. F., Zhu Z., Yao T., Shen M. Y. and Goto T., Appl. Phys. Lett.73, 1038 (1998).
    [28] Vanheusden K., Seager C. H., Warren W. L., Tallant D. R. and Voigt J. A., Appl. Phys. Lett. 68, 403 (1996).
    [29] Vanheusden K., Warren W. L.,. Seager C. H, Tallant D. R., Voigt J. A. and Gnade B. E., J. Appl. Phys. 79, 7983 (1996).
    [1] Law M., Goldberger J. and Yang P. Annu. Rev. Mater. Res. 34, 83 (2004).
    [2] Wang Z. L., Adv. Mater. 15, 432 (2003).
    [3] Neves M. C., Trindade T., Timmons A. M.B. and Jesus J. D. P. d., Mater. Res. Bull. 36, 1099 (2001).
    [4] Bourlinos A. B. and. Karakvassides M. A, Chem. Commun. 1518 (2001).
    [5] Arnold M. S., Avouris P., Pan Z. W. and Wang Z. L., J. Phys. Chem. B 107, 659 (2003).
    [6] Wedekind K. J.,. Hortin A. E and Baker D. H., J. Anim. Sci. 70, 178 (1992).
    [7] Sekar A., Kim S. H., Umar A.and Hah Y. B., J. Cryst. Growth 277, 471 (2005).
    [8] Umar A., Kim S. H., Lee Y. S., Nahm K. S. and Hahn Y. B., J. Cryst. Growth 282, 131 (2005).
    [9] Umar A., Lee S., Lee Y. S., Nahm K. S. and Hahn Y.B., J. Cryst. Growth 277, 479 (2005).
    [10] Duan J., Huang X., Wang E. and Ai H., Nanotechnology 17, 1786 (2006).
    [11] Kong Y. C., Yu D. P., Zhang B., Fang W. and Feng S. Q., Appl. Phys. Lett. 78, 407 (2001).
    [12] Tang Z. K., Wong, G. K. L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H. and Segawa, Y. Appl. Phys. Lett. 72, 3270 (1998).
    [13] Vanheusden K., Warren W. L., Seager C. H, Tallant D. R., Voigt J. A. and Gnade B. E., J. Appl. Phys. 79, 7983 (1996).
    [14] Bae, C. H., Park, S. M., Park, S. C. and Ha, J. S. Nanotechnology 17, 381(2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700