用户名: 密码: 验证码:
纳米线阵列、碳纳米管纳米复合物制备及其在电化学生物传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感器在医疗、医药、生物工程、环境保护、食品等领域具有广泛的应用前景,因而吸引了众多研究者的兴趣。近年来作为危害人类健康的主要疾病之一的糖尿病,患病率与日俱增,是仅次于心血管病、癌症的第三大危险性疾病。葡萄糖生物传感器可以高效、简便、快速的测定病人的血糖浓度,因此得到临床广泛应用。但传统葡萄糖传感器存在灵敏度较低,响应速度慢以及稳定性较差等缺点。近年来,纳米材料得到广泛研究与应用,将纳米材料应用于生物传感器的制备可以较大提高传感器的响应性能。本文利用纳米材料优良的物理、化学、电催化性能以及它们良好的生物相容性制备了多种不同形貌的纳米材料,将这些纳米材料组装到电极表面所得修饰电极可在低电位下实现对过氧化氢的灵敏检测,能用于生物传感界面的构建。将葡萄糖氧化酶、胆固醇氧化酶等氧化酶采用多种方法固定到界面上,制备的生物传感器具有较高的灵敏度、较低的检测下限以及快的响应速度。具体内容如下:
     (1)采用模板法合成纳米管、纳米线阵列。纳米结构大的表面积能极大的提高酶的负载量,同时为固定酶提供了很好的微环境。将垂直排列的纳米线或纳米管阵列作为传感器件能保证酶和底物之间有尽可能大的接触面积,提高生物传感器的响应性能。首先将聚碳酸酯模板固定在电极上,用电沉积法制备了金纳米线阵列。利用纳米线阵列有效的表面积和金对生物分子的生物相容性,我们选取血红蛋白研究了金纳米线阵列对蛋白质的固定以及蛋白质的直接电化学。紫外和红外光谱表明血红蛋白分子吸附到纳米线表面并没有明显失活现象。循环伏安图中血红蛋白修饰的纳米线阵列有一对可逆的氧化还原峰,表明实现了直接电化学。实验发现参与直接电化学的蛋白质的量随着纳米线长度的增大而增加。结合循环伏安法和石英晶体微天平,计算出当纳米线长度为2μm时,70%的吸附到纳米线表面的蛋白质参与了直接电子转移(第2章)。利用相类似的方法制备了铂纳米线阵列,研究了铂纳米线阵列对过氧化氢的催化性能。在0V电位下,阵列对过氧化氢有较大响应,灵敏度比普通铂电极大了50倍,并有较宽的线性范围。低的检测下限是由于纳米线阵列能提高性噪比,高的检测上限归因于阵列较大的表面积提供了大量的催化活性位点。将葡萄糖氧化酶吸附到纳米线阵列上,得到的葡萄糖传感器有较大的灵敏度,较宽的线性范围,可实现对葡萄糖的无干扰检测(第3章)。我们用氧化铝模板合成了组氨酸/铁氰化镍纳米管阵列。组氨酸的引入促使了纳米管阵列的形成,而不是单个分散的纳米管,同时在纳米管形成的过程中,纳米管壁由于吸附了组氨酸而修饰了大量的氨基。研究了纳米管阵列修饰玻碳电极
There has been considerable interest in studying biosensors because they have potential applications in medical treatment, medicine, bioengineering, environmental protection and food industry. Recently, diabetes, as one of the main diseases that threaten human health, suffers more and more people, and is the third dangerous disease following cardiology and cancer. Glucose biosensors can be used to determine concentration of glucose in the blood conveniently and with high efficiency, so that have widely used clinically. But the conventional glucose biosensors have many problems such as low sensitivity, slow response and poor stability. In the past few years, nanomaterials have been widely researched and used. Applying nanomaterials for the fabrication of biosensors will greatly improve the performance of the resulting biosensor. This research prepared many nanomaterials with different morphology, taking advantage of the good physical, chemical, electrocatalytic and biocompatibility of these nanomaterials and using them for the preparation of sensors. The modified sensors can be used to determine hydrogen peroxide in low potential with high sensitivity, ideal for the construction of biosening platform. Immobilizing oxidases such as glucose oxidase and cholesterol oxidases onto the platform with different method, the resulting biosensors have high sensitivity, low detection limit and fast response time. The details are summarized as follows:
     (1) Prepared nanowire and nanotube array using template method. The large surface area of these nanostructures can increase the amount of enzymes immobilized, at the same time provide a friendly microenvironment for enzyme loading. It would be a significant advancement if perpendicularly aligned nanowire and nanotube array could be formed as sensing materials. The well defined surface area facilitated enzyme-substrate contact, greatly improving the performance of the resulting biosensor. First, gold nanowire array can be grown by electrodeposition in polycarbonate membrane directly immobilized on glassy carbon electrode surface. Taking advantages of the well defined surface area of the nanowire array and biocompatibility of metal gold toward biomolecules, we selected hemoglobin and investigated the efficiency of protein immobilization on gold nanowire array and the direct electrochemistry of hemoglobin. Uv-visible and FT-IR spectroscopy indicated on obvious denaturation of the proteins was observed after adsorption onto the
引文
[1] Basso D, Greco E, Fogar P, et al. Pancreatic cancer-derived S-100A8 N-terminal peptide: a diabetes cause? Clinica Chimica Acta, 2006, 372(1-2): 120-128.
    [2] Marinari G M, Papadia F S, Briatore L, et al. Type 2 diabetes and weight loss following biliopancreatic diversion for obesity. Obesity Surgery, 2006, 16(11): 1440-1444.
    [3] Larsson S C, Orsini N, Brismar K, et al. Diabetes mellitus and risk of bladder cancer: a meta-analysis. Diabetological, 2006, 49(12): 2819-2823.
    [4] Brassard P, Ferland A, Bogaty P, et al. Influence of glycemic control on pulmonary function and heart rate in response to exercise in subjects with type 2 diabetes mellitus. Metabolism-Clinical and Experimental, 2006, 55(11): 1532-1537.
    [5] Tong P C V, Kong A P S, So W Y, et al. Hematocrit, independent of chronic kidney disease, predicts adverse cardiovascular outcomes in Chinese patients with type 2 diabetes. Diabetes Care, 2006, 29(11): 2439-2444.
    [6] Andrade-Sierra J, Contreras A M, Monteon F J, et al. Risk factors and incidence of posttransplant diabetes mellitus in Mexican kidney recipients. Archives of Medical Research, 2006, 37(8): 961-966.
    [7] Barone P W, Parker R S, Strano M. S. In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: Design, fluorophore properties, advantages, and disadvantages. Analytical Chemistry, 2005, 77(23): 7556-7562.
    [8] Lyandres O, Shah N C, Yonzon C R, et al. Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Analytical Chemistry, 2005, 77(19): 6134-6139.
    [9] Pereira C M, Oliveira J M, Silva R M, et al. Amperometric glucose biosensor based on assisted ion transfer through gel-supported microinterfaces. Analytical Chemistry, 2004, 76(18): 5547-5551.
    [10] Stuart D A, Yuen J M, Lyandres N S O, et al. In vivo glucose measurement by surface-enhanced Raman spectroscopy. Analytical Chemistry, 2006, 78(20): 7211-7215.
    [11] Ban K, Ueki T, Tamada Y, et al. Electrical communication between glucoseoxidase and electrodes mediated by phenothiazine-labeled poly(ethylene oxide) bonded to lysine residues on the enzyme surface. Analytical Chemistry, 2003, 75(4): 910-917.
    [12] Chen X H, Matsumoto N, Hu Y B, et al. Electrochemically mediated electrodeposition/electropolymerization to yield a glucose microbiosensor with improved characteristics. Analytical Chemistry, 2002, 74(2): 368-372.
    [13] Matsumoto N, Chen X H, Wilson G S. Fundamental studies of glucose oxidase deposition on a Pt electrode. Analytical Chemistry, 2002, 74(2): 362-367.
    [14] Palmisano F, Zambonin P G, Centonze D, et al. A disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/tetrathiafulvalene-tetracyanopuinodimethane composite. Analytical Chemistry, 2002, 74(23): 5913-5918.
    [15] Zen J M, Kumar A S, Chung C R. A glucose biosensor employing a stable artificial peroxidase based on ruthenium purple anchored cinder. Analytical Chemistry, 2003, 75(11): 2703-2709.
    [16] Jena B K, Raj C R. Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chemistry-a European Journal, 2006, 12(10): 2702-2708.
    [17] Liu G D, Lin Y H. Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochemistry Communications, 2006, 8(2): 251-256.
    [18] Xian Y Z, Hu Y, Liu F, et al. Glucose biosensor based on Au nanoparticles-conductive polyaniline nanocomposite. Biosensors & Bioelectronics, 2006, 21(10): 1996-2000.
    [19] Zhang S X, Yang W W, Niu Y M, et al. Construction of glucose biosensor based on sorption of glucose oxidase onto multilayers of polyelectrolyte/nanoparticles. Analytical and Bioanalytical Chemistry, 2006, 384(3): 736-741.
    [20] Zhao W, Xu J J, Shi C G, et al. Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir, 2005, 21(21): 9630-9634.
    [21] Murray C B, Kagan C R, Bawendi M G. Self organization of cdse nanocrystallites into 3-dimensional quanyum-dot superlattices. Science, 1995, 270(5240): 1335-1338.
    [22] Taleb A, Petit J, Pileni M P. Synthesis of Highly Monodisperse Silver Nanoparticles from AOT Reverse Micelles: A Way to 2D and 3D Self-Organization. Chemistry of Materials, 1997, 9(4): 950-959.
    [23] Lim M H, Ast D G. Free-standing thin films containing hexagonally organized silver nanocrystals in a polymer matrix. Advanced Materials, 2001, 13(10): 718-721.
    [24] Davis K E, Russel W B, Glantschnig W J. Disorder-to-order transition in settling suspensions of colloidal silica- X-ray measurements. Science, 1989, 245(4917): 507-510.
    [25] Moon J M, Wei A. Uniform gold nanorod arrays from polyethylenimine-coated alumina templates. Journal of Physical Chemistry B, 2005, 109(49): 23336-23341.
    [26] Lee S J, Morrill A R, Moskovits M. Hot Spots in Silver Nanowire Bundles for Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2006, 128(7): 2200-2201.
    [27] Xu D, Xu Y, Chen D, et al. Preparation of CdS Single-Crystal Nanowires by Electrochemically Induced Deposition. Advanced Materials, 2000, 12(7): 520-522.
    [28] Hernandez B A, Chang K S, Fisher E R, et al. Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chemistry of Materials, 2002, 14(2): 480-482.
    [29] Liu S M, Gan L M, Liu L H, et al. Synthesis of single-crystalline TiO2 nanotubes. Chemistry of Materials, 2002, 14(3): 1391-1397.
    [30] Zelenski C M, Dorhout P K. Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2. Journal of the American Chemical Society, 1998, 120(4): 734-742.
    [31] Yao B D, Wang N. Carbon nanotube arrays prepared by MWCVD. Journal of Physical Chemistry B, 2001, 105(46): 11395-11398.
    [32] Trau M, Saville D A, Aksav I A. Field-induced layering of colloidal crystals. Science, 1996, 272(5262): 706-709.
    [33] Trau M, Saville D A, Aksav I A. Assembly of colloidal crystals at electrode interfaces. Langmuir, 1997, 13(24): 6375-6381.
    [34] Braun P V, Wiltzius P. Microporous materials-electrochemically grown photonic crystals. Nature, 1999, 402(6762): 603-604.
    [35] Vlasov Y A, Luterova K, Pelant I, et al. Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals. Applied Physics Letters, 1997, 71(12): 1616-1618.
    [36] Iijima S. Helical microtubules of graphitic Carbon. Nature, 1991, 354(6348): 56-58.
    [37] Wang J, Musameh M, Lin Y H. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society, 2003, 125(9): 2408-2409.
    [38] Zhang M G, Smith A, Gordki W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Analytical Chemistry, 2004, 76(17): 5045-5050.
    [39] Kong K P, Zhang M N, Yan Y M, et al. Sol-Gel-Derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. Analytical Chemistry, 2004, 76(21): 6500-6505.
    [40] Yemini M, Reches M, Gazit E, et al. Peptide nanotube-modified electrodes for enzyme-biosensor applications. Analytical Chemistry, 2005, 77(16): 5155-5159.
    [41] Wang J, Musameh M. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Analytical Chemistry, 2003, 75(9): 2075-2079.
    [42] Chen R S, Huang W H, Tong H, et al. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes. Analytical Chemistry, 2003, 75(22): 6341-6345.
    [43] Wei C, Dai L M, Roy A, et al. Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites. Journal of the American Chemical Society,2006, 128(5): 1412-1413.
    [44] Lin Y H, Lu F, Tu Y, et al. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters, 2004, 4(2): 191-195.
    [45] Ugo P, PePe N, Moretto L M, et al. Direct voltammetry of cytochrome c at trace concentrations with nanoelectrode ensembles. Journal of Electroanalytical Chemistry, 2003, 560(1): 51-58.
    [46] Ugo P, Moretto L M, Vezza F. Ionomer-coated electrodes and nanoelectrode ensembles as electrochemical environmental sensors: recent advances and prospects. ChenPhysChem, 2002, 3(11): 917-925.
    [47] McMahon C P, Rocchitta G, Serra P A, et al. Control of the oxygen dependence of an implantable polymer/enzyme composite biosensor for glutamate. Analytical Chemistry, 2006, 78(7): 2352-2359.
    [48] Uchiyama S, Tomita R, Sekioka N, et al. Application of polymaleimidostyrene as a convenient immobilization reagent of enzyme in biosensor. Bioelectrochemistry, 2006, 68(2): 119-125.
    [49] Yang X H, Xiang Q F, Wang K M, et al. Doped sol-gel method for immobilizingenzyme and its application in hypoxanthine biosensor based on liquid droplets. Chinese Journal of Analytical Chemistry, 2006, 34(4): 451-454.
    [50] Zhang G M, Liu D S, Shuang S M, et al. A homocysteine biosensor with eggshell membrane as an enzyme immobilization platform. Sensors and Actuators B-Chemical, 2006, 114(2): 936-942.
    [51] Zhang M, Mullens C, Gorski W. Amperometric glutamate biosensor based on chitosan enzyme film. Electrochimica Acta, 2005, 51(21): 4528-4532.
    [52] Kotzian P, Brazdilova P, Rezkova S, et al. Amperometric glucose biosensor based on rhodium dioxide-modified carbon ink. Electroanalysis, 2006, 18(15): 1499-1504.
    [53] Michel C, Ouerd A, Battaglia-Brunet F, et al. Cr(VI) quantification using an amperometric enzyme-based sensor: Interference and physical and chemical factors controlling the biosensor response in ground waters. Biosensors & Bioelectronics, 2006, 22(2): 285-290.
    [54] Perez J P H, Lopez M S P, Lopez-Cabarcos E, et al. Amperometric tyrosinase biosensor based on polyacrylamide microgels. Biosensors & Bioelectronics, 2006, 22(3): 429-439.
    [55] Tatsumi H, Katano H, Ikeda T. Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor. Analytical Biochemistry, 2006, 357(2): 257-261.
    [56] Guilbaul G G, Montalvo J G. An enzyme electrode for substrate urea. Journal of the American Chemical Society, 1970, 92(8): 2533-2534.
    [57] Nikolelis D P, Krull U J. Establishment and control of artificial ion-conductive zones for lipid-membrane biosensor development. Analytica Chimica Acta, 1992, 257(2): 239-245.
    [58] Zhylyak G A, Dzyadevich S V, Korpan Y I, et al. Application of urease conductometric biosensor for heavy-metal ion determination. Sensors and Actuators B-Chemical, 1995, 24(1-3): 145-148.
    [59] Cui G, Kim S J, Choi S H, et al. A disposable amperometric sensor screen printed on a nitrocellulose strip: a glucose biosensor employing lead oxide as an interference-removing agent. Analytical Chemistry, 2000, 72(8): 1925-1929.
    [60] Zhang Z N, Liu H Y, Deng J Q. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode. Analytical Chemistry, 1996, 68(9): 1632-1638.
    [61] Ricci, F, Palleschi G. Sensor and biosensor preparation, optimisation andapplications of Prussian Blue modified electrodes. Biosensors Bioelectronics, 2005, 21(3): 389-407.
    [62] Zhu L D, Zhai J L, Guo Y N, et al. Amperometric glucose biosensors based on integration of glucose oxidase onto Prussian blue/carbon nanotubes nanocomposite electrodes. Electroanalysis, 2006, 18(18): 1842-1846.
    [63] Ganesan N, Gadre A P, Paranjape M, et al. Gold layer-based dual crosslinking procedure of glucose oxidase with ferrocene monocarboxylic acid provides a stable biosensor. Analytical Biochemistry, 2005, 343(1): 188-191.
    [64] Muguruma H, Kase Y, Uehara H. Nanothin ferrocene film plasma polymerized over physisorbed glucose oxidase: high-throughput fabrication of bioelectronic devices without ehemical modifications. Analytical Chemistry, 2005, 77(20): 6557-6562.
    [65] Wang J, Park D S, Pamidi P V. Tailoring the macroporosity and performance of sol-gel derived carbon composite glucose sensors. Journal of Electronanalytical Chemistry, 1997, 434 (1-2): 185-189.
    [66] Kandimalla V B, Tripathi V S, Ju H X. A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials, 2006, 27(7): 1167-1174.
    [67] Yu X, Sotzing G A, Papadimitrakopoulos F, et al. Wiring of enzymes to electrodes by ultrathin conductive polyion underlayers: enhanced catalytic response to hydrogen peroxide. Analytical Chemistry, 2003, 75(17): 4565-4571.
    [68] Zhou H, Gan X, Wang J, et al. Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide. Analytical Chemistry, 2005, 77(18): 6102-6104.
    [69] Zhao S, Zhang K, Sun Y Y, et al. Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode: Direct electrochemistry and electrocatalysis. Bioelectrochemistry, 2006, 69(1): 10-15.
    [70] Li J P, Peng T Z, Peng Y Q. A cholesterol biosensor based on entrapment of cholesterol oxidase in a silicic sol-gel matrix at a Prussian blue modified electrode. Electroanalysis, 2003, 15(12): 1031-1037.
    [71] Nien P C, Tung T S, Ho K C. Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly(3,4-ethylenedioxythiophene) film. Electroanalysis, 2006, 18(13-14): 1408-1415.
    [72] Rubio-Retama J, Lopez-Cabarcos E, Lopez-Ruiz B. High stability amperometric biosensor based on enzyme entrapment in microgels. Talanta, 2005, 68(1):99-107.
    [73] Yang M H, Jiang J H, Yang Y H, et al. Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors. Biosensors Bioelectronics, 2006, 21(9): 1791-1797.
    [74] Yang M H, Yang Y, Yang H F, et al. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials, 2006, 27(2): 246-255.
    [75] Liu G D, Lin Y H. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Analytical Chemistry, 2006, 78(3): 835-843.
    [76] Cai H, Wang Y Q, He P G, et al. Studies on an electrochemical DNA biosensor based on gold nanoparticle-labeled DNA probe. Chemical Journal of Chinese Universities-Chinese, 2003, 24(8): 1390-1394.
    [77] Wang Q L, Lu G X, Yang B J. Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film. Biosensors & Bioelectronics, 2004, 19(10): 1269-1275.
    [78] Zhang F H, Cho S S, Yang S H, et al. Gold nanoparticle-based mediatorless biosensor prepared on microporous electrode. Electroanalysis, 2006, 18(3): 217-222.
    [79] Li J P, Yu Q L, Peng T Z. Electrocatalytic oxidation of hydrogen peroxide and cysteine at a glassy carbon electrode modified with platinum nanoparticle-deposited carbon nanotubes. Analytical Sciences, 2005, 21(4): 377-381.
    [80] Luo J, Maye M M, Kariuki N N, et al. Electrocatalytic oxidation of methanol: carbon-supported gold-platinum nanoparticle catalysts prepared by two-phase protocol. Catalysis Today, 2005, 99(3-4): 291-297.
    [81] Narayanan R, El-Sayed M A. Effect of catalytic activity on the metallic nanoparticle size distribution: Electron-transfer reaction between Fe(CN)(6) and thiosulfate ions catalyzed by PVP-platinum nanoparticles. Journal of Physical Chemistry B, 2003, 107(45): 12416-12424.
    [82] Wu Z Y, Chen L G, Shen G L, et al. Platinum nanoparticle-modified carbon fiber ultramicroelectrodes for mediator-free biosensing. Sensors and Actuators B-Chemical, 2006, 119(1): 295-301.
    [83] Joshi P P, Merchant S A, Wang Y D, et al. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Analytical Chemistry, 2005,77(10): 3183-3188.
    [84] Hrapovic S, Liu Y L, Male K B, et al. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Analytical Chemistry, 2004, 76(4): 1083-1088.
    [85] Zhang M G, Gorski W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. Journal of the American Chemical Society, 2005, 127(7): 2058-2059.
    [86] Patolsky F, Weizmann Y, Willner I. Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angewandte Chemie International Edition, 2004, 43(16): 2113-2117.
    [87] Agui L, Manso J, Yanez-Sedeno P, et al. Amperometric biosensor for hypoxanthine based on immobilized xanthine oxidase on nanocrystal gold-carbon paste electrodes. Sensors and Actuators B-Chemical, 2006, 113(1): 272-280.
    [88] Jena B K, Raj C R. Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Analytical Chemistry, 2006, 78(18): 6332-6339.
    [89] Lei C X, Hu S Q, Gao N, et al. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode. Bioelectrochemistry, 2004, 65(1): 33-39.
    [90] Lei C X, Wang H, Shen G L, et al. Immobilization of enzymes on the nano-Au film modified glassy carbon electrode for the determination of hydrogen peroxide and glucose. Electroanalysis, 2004, 16(9): 736-740.
    [91] Lei C X, Yang Y, Wang, H, et al. Amperometric immunosensor for probing complement III (C-3) based on immobilizing C-3 antibody to a nano-Au monolayer supported by sol-gel-derived carbon ceramic electrode. Analytica Chimica Acta, 2004, 513(2): 379-384.
    [92] Wang H, Lei C X, Li J S, et al. A piezoelectric immunoagglutination assay for Toxoplasma gondii antibodies using gold nanoparticles. Biosensors & Bioelectronics, 2004, 19(7): 701-709.
    [93] Liu A H, Wei M D, Honma I, et al. Direct electrochemistry of myoglobin in titanate nanotubes film. Analytical Chemistry, 2005, 77(24): 8068-8074.
    [94] Azamian B R, Davis J J, Coleman K S, et al. Bioelectrochemical single-walled carbon nanotubes. Journal of the American Chemical Society, 2002, 124(43): 12664-12665.
    [95] Fan C H, Wang H Y, Sun S, et al. Electron-transfer reactivity and enzymatic activity of hemoglobin in a SP sephadex membrane. Analytical Chemistry, 2001, 73(13): 2850-2854.
    [96] Armstrong F A, Hill H A O, Walton N J. Direct Electrochemistry of Redox Proteins. Accounts of Chemical Research, 1988, 21(11): 407-413.
    [97] Hicks J F, Zamborini F P, Osisek A, et al. The dynamics of electron self- exchange between nanoparticles. Journal of the American Chemical Society, 2001, 123(29): 7048-7053.
    [98] Shipway A N, Lahav M, Willner I. Nanostructured gold colloid electrodes. Advanced Materials, 2000, 12(13): 993-998.
    [99] Krishnamoorthy K, Zoski C G. Fabrication of 3D gold nanoelectrode ensembles by chemical etching. Analytical Chemistry, 2005, 77(15): 5068-5071.
    [100] Menon V P, Martin, C R. Fabrication and Evaluation of Nanoelectrode Ensembles. Analytical Chemistry, 1995, 67(13): 1920-1928.
    [101] Zhi C, Bando Y, Tang C, et al. Immobilization of proteins on boron nitride nanotubes. Journal of the American Chemical Society, 2005, 127(49): 17144-17145.
    [102] Nassar A E F, Willis W S, Rusling J F. Electron-transfer from electrodes to myoglobin - facilitated in surfactant films and blocked by adsorbed biomacromolecules. Analytical Chemistry, 1995, 67(14): 2386-2392.
    [103] Chen C C, Lin Y P, Wang C W, et al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. Journal of the American Chemical Society, 2006, 128(11): 3709-3715.
    [104] Roach P, Farrar D, Perry C C. Surface tailoring for controlled protein adsorption: Effect of topography at the nanometer scale and chemistry. Journal of the American Chemical Society, 2006, 128(12): 3939-3945.
    [105] Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry, 1979, 101(1): 19-28.
    [106] Wang S F, Chen T, Zhang Z. L, et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir, 2005, 21(20): 9260-9266.
    [107] Elliott J M, Birkin P R, Bartlett P N, et al. Platinum microelectrodes with unique high surface areas. Langmuir, 1999, 15(22): 7411-7415.
    [108] Evans S A G, Elliott J M, Andrews L M, et al. Detection of hydrogen peroxide atmesoporous platinum microelectrodes. Analytical Chemistry, 2002, 74(6): 1322-1326.
    [109] Karyakin A A, Puganova E A, Budashov I A, et al. Prussian Blue based nanoelectrode arrays for H2O2 detection. Analytical Chemistry, 2004, 76(2): 474-478.
    [110] Mori V, Bertotti M. Amperometric detection with microelectrodes in flow injection analysis: theoretical aspects and application in the determination of nitrite in saliva. Talanta, 1998, 47(3): 651-658.
    [111] Chou J, Jayaraman S, Ranasinghe A D, et al. Efficient electrocatalyst utilization: Electrochemical deposition of Pt nanoparticles using nafion membrane as a template. Journal of Physical Chemistry B, 2006, 110(21): 7119-7121.
    [112] Day T M, Unwin P R, Wilson N R, et al. Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. Journal of the American Chemical Society, 2005, 127(30): 10639-10647.
    [113] Kicela A, Daniele S. Platinum black coated microdisk electrodes for the determination of high concentrations of hydrogen peroxide in phosphate buffer solutions. Talanta, 2006, 68(5): 1632-1639.
    [114] Wei X, Cruz J, Gorski W. Integration of enzymes and electrodes: Spectroscopic and electrochemical studies of chitosan-enzyme films. Analytical Chemistry, 2002, 74(19): 5039-5046.
    [115] Hou S F, Harrell C C, Trofin L, et al. Layer-by-layer nanotube template synthesis. Journal of the American Chemical Society, 2004, 126(18): 5674-5675.
    [116] Hou S F, Wang J H, Martin C R. Template-synthesized DNA nanotubes. Journal of the American Chemical Society, 2005, 127(24): 8586-8587.
    [117] Hou S F, Wang J H, Martin C R. Template-synthesized protein nanotubes. Nano Letters, 2005, 5(2): 231-234.
    [118] Yu S F, Lee S B, Kang M, et al. Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes. Nano Letters, 2001, 1(9): 495-498.
    [119] Wang J, Scampicchio M, Laocharoensuk R, et al. Magnetic tuning of the electrochemical reactivity through controlled surface orientation of catalytic nanowires. Journal of the American Chemical Society, 2006, 128(14): 4562-4563.
    [120] Pantarotto D, Partidos C D, Graff R, et al. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. Journal of the American Chemical Society, 2003, 125(20): 6160-6164.
    [121] Peng H Q, Alemany L B, Margrave J L, et al. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. Journal of the American Chemical Society, 2003, 125(49):15174-15182.
    [122] Sljukic B, Banks C E, Compton R G. Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Letters, 2006, 6(7): 1556-1558.
    [123] Garjonyte R, Malinauskas A. Electrocatalytic reactions of hydrogen peroxide at carbon paste electrodes modified by some metal hexacyanoferrates. Sensors and Actuators B-Chemical, 1998, 46(3): 236-241.
    [124] Karyakin A A, Karyakina E E, Gorton L. Amperometric biosensor for glutamate using Prussian Blue-based "artificial peroxldase" as a transducer for hydrogen peroxide. Analytical Chemistry, 2000, 72(7): 1720-1723.
    [125] Karyakin A A, Kotel'nikova E A, Lukachova L V, et al. Optimal environment for glucose oxidase in perfluorosulfonated ionomer membranes: Improvement of first-generation biosensor. Analytical Chemistry, 2002, 74(7): 1597-1603.
    [126] Abbaspour A, Mehrgardi M A. Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films. Analytical Chemistry, 2004, 76(19): 5690-5696.
    [127] Bharathi S, Nogami M, Ikeda S. Layer by layer self-assembly of thin films of metal hexacyanoferrate multilayers. Langmuir 2001, 17(24): 7468-7471.
    [128] DeLongchamp D M, Hammond P T. Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian Blue nanocomposite thin films. Chemistry of Materials, 2004, 16(23): 4799-4805.
    [129] Johansson A, Widenkvist E, Lu J, et al. Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template. Nano Letters, 2005, 5(8): 1603-1606.
    [130] Palit D, Moulik S P. Adsorption behaviors of L-histidine and DL-tryptophan on cholesterol, silica, alumina, and graphite. Journal of Colloid and Interface Science, 2001, 239(1): 20-26.
    [131] Agarwal G, Naik R R, Stone M O. Immobilization of histidine-tagged proteins on nickel by electrochemical Dip Pen nanolithography. Journal of the American Chemical Society, 2003, 125(24): 7408-7412.
    [132] Lee I S, Lee N, Park J, et al. Ni/NiO Core/Shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. Journal of the American Chemical Society, 2006, 128(33): 10658-10659.
    [133] Widmann A, Kahlert H, Petrovic-Prelevic I, et al. Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron hexacyanoferrates/hexacyanocobaltates. Inorganic Chemistry, 2002, 41(22): 5706-5715.
    [134] Vittal R, Gomathi H, Rao G. P. Influence of a cationic surfactant on the modification of electrodes with nickel hexacyanoferrate surface films. Electrochimica Acta, 2000, 45(13): 2083-2093.
    [135] Feldman B J, Melroy O R. Ion flux during electrochemical charging of Prussian Blue films. Journal of Electroanalytical Chemistry, 1987, 234(1-2): 213-227.
    [136] Saveant J M. Electron hopping between fixed sites equivalent diffusion and migration laws. Journal of Electroanalytical Chemistry, 1986, 201(1): 211-213.
    [137] Moscone D, D'Ottavi D, Compagnone D, et al. Construction and analytical characterization of Prussian Blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Analytical Chemistry, 2001, 73(11): 2529-2535.
    [138] Jia J B, Wang B Q, Wu A G., et al. A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network. Analytical Chemistry, 2002, 74(9): 2217-2223.
    [139] Brown K R, Fox A P, Natan M J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. Journal of the American Chemical Society, 1996, 118(5): 1154-1157.
    [140] Zhao J G., Odaly J P, Henkens R W, et al. A xanthine oxidase colloidal gold enzyme electrode for amperometric biosensor applications. Biosensors & Bioelectronics, 1996, 11(5): 493-502.
    [141] Wang B Q, Li B, Deng Q, et al. Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material. Analytical Chemistry, 1998, 70(15): 3170-3174.
    [142] Muguruma H, Hiratsuka A, Karube I. Thin-film glucose biosensor based on plasma-polymerized film: Simple design for mass production. Analytical Chemistry, 2000, 72(11): 2671-2675.
    [143] Anzai J, Takeshita H, Kobayashi Y, et al. Layer-by-layer construction of enzyme multilayers on an electrode for the preparation of glucose and lactate sensors: Elimination of ascorbate interference by means of an ascorbate oxidase multiplayer. Analytical Chemistry, 1998, 70(4): 811-817.
    [144] Cai H, Cao X N, Jiang Y, et al. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Analytical and Bioanalytical Chemistry, 2003, 375(2): 287-293.
    [145] Deo R P, Wang J, Block I, et al. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Analytica Chimica Acta, 2005, 530(2): 185-189.
    [146] Sotiropoulou S, Chaniotakis N A. Carbon nanotube array-based biosensor. Analytical and Bioanalytical Chemistry, 2003, 375(1): 103-105.
    [147] Wohlstadter J N, Wilbur J L, Sigal G B, et al. Carbon nanotube-based biosensor. Advanced Materials, 2003, 15(14): 1184-1189.
    [148] Xu Z, Chen X, Qu X H, et al. Single-wall carbon nanotube-based voltammetric sensor and biosensor. Biosensors & Bioelectronics, 2004, 20(3): 579-584.
    [149] Valentini F, Amine A, Orlanducci S, et al. Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Analytical Chemistry, 2003, 75(20): 5413-5421.
    [150] Torigoe K, Esumi K. Preparation of colloidal gold by photoreduction of aucl4--cationic surfactant complexes. Langmuir, 1992, 8(1); 59-63.
    [151] Bharathi S, Fishelson N, Lev O. Direct synthesis and characterization of gold and other noble metal nanodispersions in sol-gel-derived organically modified silicates. Langmuir, 1999, 15(6); 1929-1937.
    [152] Bharadwaj S, Montazeri R, Haynie D T. Direct determination of the thermodynamics of polyelectrolyte complexation and implications thereof for electrostatic layer-by-layer assembly of multilayer films. Langmuir, 2006, 22(14): 6093-6101.
    [153] Ferreyra N F, Forzani E S, Teijelo M L, et al. Unraveling the spatial distribution of immunoglobulins, enzymes, and polyelectrolytes within layer-by-layer self-assembled multilayers. Langmuir, 2006, 22(21): 8931-8938.
    [154] Michel M, Arntz Y, Fleith G, et al. Layer-by-layer self-assembled polyelectrolyte multilayers with embedded liposomes: Immobilized submicronic reactors for mineralization. Langmuir, 2006, 22(5): 2358-2364.
    [155] Shim B S, Kotov N A. Single-walled carbon nanotube combing during layer-by-layer assembly: From random adsorption to aligned composites. Langmuir, 2005, 21(21): 9381-9385.
    [156] Tang T J, Qu J, Mullen K, et al. Water-soluble perylene diimides: Solution photophysics and layer-by-layer incorporation into polyelectrolyte films.Langmuir, 2006, 22(18): 7610-7616.
    [157] Wang Y D, Joshi P P, Hobb K L, et al. Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers. Langmuir, 2006, 22(23); 9776-9783.
    [158] Zhang M N, Yan Y M, Gong K P, et al. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Langmuir, 2004, 20(20): 8781-8785.
    [159] Mugweru A, Wang B Q, Rusling J. Voltammetric sensor for oxidized DNA using ultrathin films of osmium and ruthenium metallopolymers. Analytical Chemistry, 2004, 76(18): 5557-5563.
    [160] Li Y, El-Sayed M A. The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. Journal of Physical Chemistry B, 2001, 105(37): 8938-8943.
    [161] Cordero-Rando M D M, de Cisneros J, Blanco E, et al. The sonogel-carbon electrode as a sol-gel graphite-based electrode. Analytical Chemistry, 2002, 74(10): 2423-2427.
    [162] Sampath S, Lev O. Inert metal-modified, composite ceramic-carbon, amperometric biosensors: renewable, controlled reactive layer. Analytical Chemistry, 1996, 68(13): 2015-2021.
    [163] Tsionsky M, Gun G, Glezer V, et al. Sol-gel-derived ceramic-carbon composite electrodes - introduction and scope of applications. Analytical Chemistry, 1994, 66(10): 1747-1753.
    [164] DeLongchamp D M, Hammond P T. High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Advanced Functional Materials, 2004, 14(3): 224-232.
    [165] Vittal R, Gomathi H. Beneficial Effects of Cetyltrimethylammonium Bromide in the modification of electrodes with cobalt hexacyanoferrate surface films. Journal of Physical Chemistry B, 2002, 106(39): 10135-10143.
    [166] Lezna R O, Romagnoli R, de Tacconi N R, et al. Cobalt hexacyanoferrate: compound stoichiometry, infrared spectroelectrochemistry, and photoinduced electron transfer. Journal of Physical Chemistry B, 2002, 106(14): 3612-3621.
    [167] Cai C X, Xue K H, Xu S M. Electrocatalytic activity of a cobalt hexacyanoferrate modified glassy carbon electrode toward ascorbic acid oxidation. Journal of Electroanalytical Chemistry, 2000, 486(2): 111-118.
    [168] Kulesza P J, Malik M A, Berrettoni M, et al. Electrochemical charging,countercation accommodation, and spectrochemical identity of microcrystalline solid cobalt hexacyanoferrate. Journal of Physical Chemistry B, 1998, 102(11): 1870-1876.
    [169] Yamada M, Arai M, Kurihara M, et al. Synthesis and isolation of cobalt hexacyanoferrate/chromate metal coordination nanopolymers stabilized by alkylamino ligand with metal elemental control. Journal of the American Chemical Society, 2004, 126(31): 9482-9483.
    [170] Wang G, Xu J J, Chen H Y, et al. Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix. Biosensors & Bioelectronics, 2003, 18(4): 335-343.
    [171] Chen S M. Characterization and electrocatalytic properties of cobalt hexacyanoferrate films. Electrochimica Acta, 1998, 43(21-22): 3359-3369.
    [172] Abbaspour A, Kamyabi M A. Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films. Journal of Electroanalytical Chemistry, 2005, 576(1): 73-83.
    [173] Malik M A, Miecznikowski K, Kulesza P J. Quartz crystal microbalance monitoring of mass transport during redox processes of cyanometallate modified electrodes: complex charge transport in nickel hexacyanoferrate films. Electrochimica Acta, 2000, 45(22-23): 3777-3784.
    [174] Hrapovic S, Luong J H T. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: Preparation and characterization. Analytical Chemistry, 2003, 75(14): 3308-3315.
    [175] Yan Y M, Zhang M N, Gong K P, et al. Adsorption of methylene blue dye onto carbon nanotubes: A route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chemistry of Materials, 2005, 17(13): 3457-3463.
    [176] Kostelansky C N, Pietron J J, Chen M S, et al. Triarylphosphine-stabilized platinum nanoparticles in three-dimensional nanostructured films as active electrocatalysts. Journal of Physical Chemistry B, 2006, 110(43): 21487-21496.
    [177] Lee K S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. Journal of Physical Chemistry B, 2006, 110(39): 19220-19225.
    [178] Tsai M C, Yeh T K, Tsai C H. An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation. ElectrochemistryCommunications, 2006, 8(9): 1445-1452.
    [179] Bonello J M, Lambert R M, Kunzle N, et al. Platinum-catalyzed enantioselective hydrogenation of -Ketoesters: an unprecedented surface reaction of methyl pyruvate. Journal of the American Chemical Society, 2000, 122(40): 9864-9865.
    [180] Watanabe K, Menzel D, Nilius N, et al. Photochemistry on metal nanoparticles. Chemical Reviews, 2006, 106(10): 4301-4320.
    [181] Chang G, Oyama M, Hirao K. In situ chemical reductive growth of platinum nanoparticles on indium tin oxide surfaces and their electrochemical applications. Journal of Physical Chemistry B, 2006, 110(4): 1860-1865.
    [182] Chang G, Oyama M, Hirao K. Seed-mediated growth of palladium nanocrystals on indium tin oxide surfaces and their applicability as modified electrodes. Journal of Physical Chemistry B, 2006, 110(41): 20362-20368.
    [183] Chang G, Zhang J D, Oyama M, et al. Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach. Journal of Physical Chemistry B, 2005, 109(3): 1204-1209.
    [184] Johansson P, Xu H X, Kall M. Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Physical Review B, 2005, 72(8): 879-886.
    [185] Lakowicz J R, Geddes C D, Gryczynski I, et al. Advances in surface-enhanced fluorescence. Journal of Fluorescence, 2004, 14(4): 425-441.
    [186] Lee I Y S, Suzuki H, Ito K, et al. Surface-enhanced fluorescence and reverse saturable absorption on silver nanoparticles. Journal of Physical Chemistry B, 2004, 108(50): 19368-19372.
    [187] Zhang J, Malicka J, Gryczynski I, et al. Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. Journal of Physical Chemistry B, 2005, 109(16): 7643-7648.
    [188] Bergamaski K, Pinheiro A L N, Teixeira-Neto E, et al. Nanoparticle size effects on methanol electrochemical oxidation on carbon supported platinum catalysts. Journal of Physical Chemistry B, 2006, 110(39): 19271-19279.
    [189] Hepel M, Kumarihamy I, Zhong C J. Nanoporous TiO2-supported bimetallic catalysts for methanol oxidation in acidic media. Electrochemistry Communications, 2006, 8(9): 1439-1444.
    [190] Hoshi T, Saiki H, Kuwazawa S, et al. Selective permeation of hydrogen peroxide through polyelectrolyte multilayer films and its use for amperometric biosensors. Analytical Chemistry, 2001, 73(21): 5310-5315.
    [191] Sun C Q, Du W Y, Gao Q, et al. Construction of mediated amperometricbienzyme glucose sensor. Chemical Research in Chinese Universities, 1996, 12(1): 16-21.
    [192] Chen T, Friedman K A, Lei I, et al. In situ assembled mass-transport controlling micromembranes and their application in implanted amperometric glucose sensors. Analytical Chemistry, 2000, 72(16): 3757-3763.
    [193] Mizutani F, Sato Y, Hirata Y, et al. Rapid and accurate determination of NADH by an amperometric sensor with a bilayer membrane consisting of a polyion complex layer and an NADH oxidase layer. Sensors and Actuators B-Chemical, 2000, 65(1-3): 46-48.
    [194]Yabuki S, Mizutani F, Hirata Y. Preparation of D-amino acid oxidase-immobilized polyion complex membranes. Sensors and Actuators B-Chemical, 2001, 76(1-3): 142-146.
    [195] Bartlett P N, Tebbutt P, Tyrrell C H. Electrochemical immobilization of Enzymes .3. Immobilization of glucose-Oxidase in thin-films of electrochemically polymerized phenols. Analytical Chemistry, 1992, 64(2): 138-142.
    [196] Bartlett P N, Whitaker R G. Electrochemical immobilization of enzymes.1. Theory. Journal of Electroanalytical Chemistry, 1987, 224(1-2): 27-35.
    [197] Bartlett P N, Whitaker R G. Electrochemical immobilization of enzymes .2. Glucose-Oxidase immobilized in poly-N-Methylpyrrole. Journal of Electroanalytical Chemistry, 1987, 224(1-2): 37-48.
    [198] Mailley P, Cummings E A, Mailley S C, et al. Composite carbon paste biosensor for phenolic derivatives based on in situ electrogenerated polypyrrole binder. Analytical Chemistry, 2003, 75(20): 5422-5428.
    [199] Liu B H, Cao Y, Chen D D, et al. Amperometric biosensor based on a nanoporous ZrO2 matrix. Analytica Chimica Acta, 2003, 478(1): 59-66.
    [200] Mitchell K M. Acetylcholine and choline amperometric enzyme sensors characterized in vitro and in vivo. Analytical Chemistry, 2004, 76(4): 1098-1106.
    [201] Sung W J, Bae Y H. A glucose oxidase electrode based on electropolymerized conducting polymer with polyanion-enzyme conjugated dopant. Analytical Chemistry, 2000, 72(9): 2177-2181.
    [202] Ruan C M, Yang R, Chen X H, et al. A reagentless amperometric hydrogen peroxide biosensor based on covalently binding horseradish peroxidase and thionine using a thiol-modified gold electrode. Journal of Electroanalytical Chemistry, 1998, 455(1-2): 121-125.
    [203] Xiao Y, Ju H X, Chen H Y. A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly(thionine) film on a monolayer modified electrode. Analytica Chimica Acta, 1999, 391(3): 299-306.
    [204] Xu J J, Zhou D M, Chen H Y. A reagentless hydrogen peroxide biosensor based on the coimmobilization of thionine and horseradish peroxidase by their cross-linking with glutaraldehyde on glassy carbon electrode. Electroanalysis, 1998, 10(10): 713-716.
    [205] Ruan C M, Yang F, Lei C H, et al. Thionine covalently tethered to multilayer horseradish peroxidase in a self-assembled monolayer as an electron-transfer mediator. Analytical Chemistry, 1998, 70(9): 1721-1725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700