用户名: 密码: 验证码:
镧系掺杂氟化物发光生物标记纳米材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几十年来,发光标记材料的研究与应用极大地促进了生物化学、临床医学及疫病防治与控制等生物学研究的进步与发展。目前广泛使用的有机染料和量子点(Quantum Dots,QDs)等生物标记材料因存在发射光谱宽、光热稳定性差、间歇性发光(闪烁,Blinking)和细胞毒性等诸多缺陷,有很大的应用局限。近年来,人们发现镧系掺杂发光纳米微粒兼具有毒性低、化学稳定性高、发光强度高而稳定(无闪烁)、斯托克斯位移(Stokes shift)大等综合优异性能,可望成为一种极具发展前景的新型发光生物标记材料,因而对其产生了浓厚的研究兴趣。
     本文综述了发光生物标记材料的研究现状,系统介绍了镧系离子的光谱理论及镧系掺杂发光纳米微粒的研究背景,概括和评述了近年来镧系掺杂发光纳米微粒的合成和表面修饰所取得的进展和面临的问题,并对其今后的研究方向进行了总结和展望。在此基础上,我们针对生物标记对发光材料的要求,研究建立了一系列低温湿化学合成方法和原位表面化学修饰技术,成功制备了多种具有不同光学性质的镧系掺杂氟化物发光纳米微粒。应用X射线衍射(XRD)、透射电镜(TEM)、光致发光谱(PL)、傅立叶变换红外光谱(FT-IR)、热分析(DTA-TG)以及Eu~(3+)离子荧光探针和细胞毒性检测等手段研究了合成条件和掺杂离子浓度等对镧系掺杂发光纳米微粒的晶体结构、形貌和尺寸、表面化学性质、掺杂离子的固溶度和掺杂格位以及发光性能的影响和控制规律,取得了一系列重要的结论和创新性成果,为镧系掺杂纳米微粒在生物标记领域应用的推广和普及打下了坚实的基础。
     以湿化学法制备镧系掺杂发光纳米微粒时,通常都需要在起始反应溶液中加入其它试剂来控制微粒的生长,从而得到纳米级的微粒。本文中,我们基于溶度积原理,研究建立了一种简便易行的在纯乙醇溶液中进行的化学共沉淀法,在不使用任何外加试剂的情况下,分别制备了粒径为15nm、10nm和30nm左右的CaF_2:Eu~(3+)、LaF_3:Eu~(3+)和GdF_3:Eu~(3+)纳米微粒。所得产物均为纯单相晶体,其晶型分别为立方、六方和斜方。通过改变起始原料的配比,在纳米微粒中掺入了不同浓度的Eu~(3+)离子。研究表明,在所考察的掺杂浓度范围内(CaF_2、LaF_3和GdF_3纳米微粒中Eu~(3+)离子的最高掺杂浓度分别为30mol%、60mol%和40mol%),增加Eu~(3+)离子掺杂浓度不会引起新结晶相的产生,三种纳米微粒的发光强度随Eu~(3+)离子掺杂浓度增大均表现出了浓度猝灭现象,其猝灭浓度分别为~15mol%、~30mol%和~20mol%。
     大多数生物实验都要求标记材料亲水,获得亲水性纳米微粒的常用方法是在样品制备过程中加入一些具有亲水基团的有机配体,使这些配体结合在产物表面从而赋予其亲水性。本文中,我们基于水分子与稀土离子的配位作用,研究建立了一种非常简单的在水溶液中进行的化学共沉淀法,在不使用任何外加有机配体的情况下制备了粒径30nm以下的亲水性LaF_3:Ln~(3+)(Ln=Eu,Ce-Tb,Nd)纳米微粒。所得产物具有纯六方相晶体结构,能稳定存在于水溶液中并产生较强的发光(量子效率为16%)。掺杂不同的镧系离子的样品能够产生从可见到近红区域的发光,适用于多种不同的生物标记,特别是掺杂Nd~(3+)离子的纳米微粒,其激发位置和主要发射峰都位于近红外区域,非常适用于超灵敏的生物检测和生物呈像。
     生物标记(特别是活细胞和活体标记)实验中通常还要求纳米微粒表面具有化学官能团并且生物相容(即没有细胞毒性),获得这些属性的常规方法是在纳米微粒制备好之后再对其进行表面修饰。本文中,我们基于表面包覆剂分子结构上的氨基与稀土离子间的配位作用,研究建立了一种镧系掺杂发光纳米微粒的原位表面修饰方法,通过单步反应分别制备了壳聚糖包覆的CTS/LaF_3:Eu~(3+)和聚乙烯亚胺包覆的PEI╱NaYF_4:Yb~(3+),Er~(3+)等一系列纳米微粒。其中CTS/LaF_3:Eu~(3+)纳米微粒具有纯六方相晶体结构,粒径为25nm左右;PEI/NaYF_4:Yb~(3+),Er~(3+)纳米微粒为六方相和立方相混合的晶体,粒径约为50nm。研究表明,两种表面包覆膜对人结肠腺癌HT-29细胞系均无细胞毒性,也不会影响纳米微粒的发光光谱性质和发光量子效率。经表面修饰的纳米微粒在中性水溶液中可稳定存在5天以上,能较好地满足活细胞和活体标记的需要。
     常规的发光标记技术通常以紫外光或短波长的可见光作为激发源,这些激发光因能量较高,除能引起生物体的自发荧光,还会对细胞和生物组织产生光损伤。为了克服这些缺陷,我们开展了镧系掺杂上转换发光纳米微粒的研究。上转换发光材料能够在近红外光的激发下产生可见发光,可以有效解决常规激发方式引起的一系列问题。我们应用本文建立的纯乙醇溶液中进行的化学共沉淀法,制备了共掺yb~(3+)_Er~(3+)的LaF_3上转换发光纳米微粒,研究了热处理对其结构、形貌和上转换发光性能的影响规律,发现随着热处理温度升高,纳米微粒的晶体结构保持不变、粒径和上转换发光强度则均有显著增加,经过400℃以上温度的热处理后,样品表现出了肉眼可见的明亮上转换发光。但高温热处理会引起纳米微粒的长大、胶体属性的丧失以及表面化学官能团的破坏,因此不是制备上转换发光生物标记纳米微粒的最佳途径。
     为了制备出具有较好胶体属性和较强上转换发光的纳米微粒,我们选用了NaYF_4这种更有利于实现上转换的材料作为基质,采用本文建立的镧系掺杂发光纳米微粒的原位表面修饰方法,制备了PEI/NaYF_4:Yb~(3+),Er~(3+)上转换发光纳米微粒,研究了合成工艺对其晶型和形貌的影响规律,发现延长反应时间有助于NaYF_4晶体由四方相向六方相转变,从而有利于提高其上转换发光的强度。延长水热处理时间不会引起产物的形貌和大小的改变。研究确认比较适宜的反应时间是24h,研究了该条件下制备的纳米微粒在水溶液中的上转换发光行为,发现它们在600mW近红外二极管激光器的激发下能够产生明亮的上转换发光,非常适用于上转换生物检测和活体生物呈像。
     在生物标记中,往往需要同时标记体系中的多个不同组分,这些实验需要采用多种具有不同颜色的发光标记材料,并且这些标记物应能被单一波长的激发源同时激发,以简化实验设备、提高信噪比。针对这一要求,我们采用本文建立的镧系掺杂发光纳米微粒的原位表面修饰方法,制备了共掺同一敏化剂(Ce~(3+))和不同激活剂(Tb~(3+),Eu~(3+),Sm~(3+),Oy~(3+))的一系列PEI/NaGdF_4纳米微粒。产物具有六方相晶体结构,形貌为棒状(棒直径约20nm-30nm,棒长约40nm-60nm)。研究发现,当Ce~(3+)离子受到激发后,能够通过基质晶格中Gd~(3+)离子的辅助作用有效地将所吸收的能量传递给镧系激活离子,从而引发后者的特征发光。正是由于这一光学特性,在单一波长(254nm)紫外光的激发下,掺杂不同镧系激活离子的PEI/NaGdF_4纳米微粒的水溶液产生了不同颜色的明亮发光,表明它们在多色生物标记实验中具有很大的应用潜力。
The use of luminescent labeling agents has greatly assisted the studies in the field of biology. Conventional luminescent labeling agents such as organic dyes and quantum dots (QDs) have several limitations caused by their intrinsic properties such as, for example, broad emission profiles, poor photochemical stability, intermittent on/off emission (blinking), and cytotoxicity etc. Recently, considering their attractive optical and chemical features such as low toxicity, large effective Stokes shifts, as well as high resistance to photobleaching, blinking, and photochemical degradation, lanthanide-doped luminescent nanoparticles were proposed to be a promising new class of luminescent labeling agents, which have the potential and ability to overcome a number of problems associated with the commonly used luminescent labels.
    This thesis gives an overview of the recent advances on luminescent materials for biological labeling, systemically introduces the luminescence theories of lanthanide ions and backgrounds of lanthanide-doped luminescent nanoparticles, summarizes the recent achievements on syntheses and surface modifications of lanthanide-doped luminescent nanoparticles, and puts forward the challenges they faced and the future directions of them in the area of biological labeling. On the above bases, we developed a series of mild wet chemical routes and in situ surface modification methods, and synthesized several kinds of lanthanide-doped luminescent fluoride nanoparticles accordingly. X-ray diffraction (XRD), transmission electronic microscope (TEM), photoluminescence spectroscopy (PL), fourier transform infrared spectroscopy (FT-IR), thermal analysis (DTA-TG), and MTT assay were used to study the crystal structure, size and morphology, surface property, and luminescence property of the nanoparticles. A series of important conclusions and innovative results with practical significance were obtained.
    In wet chemical routes to produce lanthanide-doped luminescent nanoparticles, organic ligands were usually required to control the particle growth in order to get products in the nanometer scale. In this thesis, we developed a very simple
    coprecipitation method carried out in absolute ethanol to synthesize lanthanide-doped luminescent nanoparticles without the use of any ligands. A series of nanoparticles include CaF_2:Eu~(3+) (-15 nm), LaF_3:Eu~(3+) (-10 nm), and GdF_3:Eu~(3+) (-30 nm) were synthesized using this method. The products consist of well crystallized pure cubic, hexagonal, and orthorhombic phases, respectively. By varying the ratios of the start materials, nanoparticles doped with different concentrations of Eu~(3+) ions were synthesized. In the doping concentration range studied (the maximum doping concentrations of Eu~(3+) ions for CaF_2, LaF_3, and GdF_3 nanoparticles are 30 mol%, 60 mol%, and 40 mol% respectively), no second phase were found for all the three samples at high doping concentrations of Eu~(3+) ions and they all showed a concentration quenching with increasing the Eu~(3+) ions doping concentration (the quenching concentrations are -15 mol%, -30 mol%, and -20 mol%,for CaF_2, LaF_3, and GdF_3 respectively).
    Since most biological studies are situated in an aqueous environment, nanoparticles with hydrophilic surfaces are usually required. Conventional method for making hydrophilic nanoparticles is to use organic ligands with hydrophilic groups when synthesizing the nanoparticles. In this thesis, we developed a simple method to synthesize hydrophilic lanthanide-doped luminescent LaF_3 nanoparticles directly in aqueous solution without using any ligands. The nanoparticles have a nearly spherical shape with average size of below 30 nm and consist of well crystallized pure hexagonal phase. The nanopartcles are stable in aqueous solutions and show strong luminescence (quantum yield 16 %). LaF_3 nanoparticles doped with different lanthanide ions or ion pair (Eu~(3+), Ce~(3+)-Tb~(3+), and Nd~(3+)) were synthesized, which emit in the visible (VIS) and near-infrared (NIR) spectral regions, and can be used for different biological applications.
    For certain biological labeling, especially for in vivo cell and animal labeling, the nanoparticles should be biocompatible (free of cytotoxicity) and contain functional groups for further attachment of biomolecules. Conventional method for obtaining such nanoparticles is via post surface modification. In this thesis, we developed an in-situ surface modification method to prepare biocompatible lanthanide-doped luminescent nanoparticles with functional chemical groups in a one-pot synthesis process. Chitosan capped CTS/LaF_3:Eu~(3+) nanoparticles and polyethylenimine capped PEI/NaYF_4:Yb~(3+),Er~(3+) nanoparticles were synthesized using this method. The CTS/LaF_3:Eu~(3+) nanoparticles have an average size of about 25 nm and consist of well crystallized pure hexagonal
    phase. The PEI/NaYF_4:Yb~(3+),Er~(3+) nanoparticles have an average size of about 50 nm and consist of well crystallized cubic and hexagonal mixed phases. It is revealed that both CTS and PEI coatings are biocompatible to human colon HT-29 cells and have no impacts on the luminescence property and quantum yield of the nanoparticles. The as-prepared nanoparticles stay stable in aqueous solutions for more than 5 days and thus have good potentials for in vivo cell and animal labeling.
    Conventional luminescent labeling technologies are most based on the use of ultraviolet (UV) or short VIS irradiation. A major problem associated with these systems in biological applications is the autofluorescence from and photo-damage to the biological specimens. A possible way to circumvent this problem is labeling with lanthanide-doped up-conversion nanoparticles, which show VIS emissions under NIR irradiation. Using the above described coprecipitation method carried out in absolute ethanol, we prepared Yb~(3+) and Er~(3+) codoped LaF_3 nanoparticles and investigated the influence of synthesis temperatures on the size, morphology, and up-conversion luminescence intensity of the nanoparticles. It is found that elevating the synthesis temperatures will cause significant increase in the particle size and up-conversion luminescence intensity of the nanoparticles. Annealing at above 400 °C is necessary to obtain products with practical up-conversion luminescence. However, heat treatment at high temperatures will cause the nanoparticles to lose colloidal properties and functional chemical groups, and thus is not the optimal way to produce up-conversion luminescent biolabels.
    In order to prepare colloidal lanthanide-doped nanoparticles with intense up-conversion luminescence, we replace the host matrix with NaYF_4, which is the most efficient host material for performing up-conversion known to date. We synthesized the PEI/NaYF_4:Yb~(3+),Er~(3+) nanoparticles using the in situ surface modification method described above and investigated the influence of reaction time on the properties of the resulting products. It is revealed that prolonging the reaction time will cause phase transfer from cubic to hexagonal of the products and thus promote their up-conversion luminescence intensity. The size and morphology of the nanoparticles show no obvious changes with varying the reaction time. The optimum reaction time is found to be 24 h and the nanoparticles synthesized under this condition show strong up-conversion luminescence in aqueous solutions when excited with a 600 mW diode laser at 980 nm, and thus have good potentials for use as labels in up-conversion detection and in vivo animal imaging.
    For multiplexing labeling, which is of especial interest in biological field currently, nanoparticles of different emission colors should be readily available and the whole group of labels can be excited at a single wavelength. To cater for these applications, we prepared the PEI/NaGdF_4:Ce~(3+),Ln~(3+) (Ln = Tb, Eu, Sm, and Dy) nanoparticles using the in situ surface modification method described above. The nanoparticles have a rod shape (20-30 nm in diameter and 40-60 nm in length) and consist of well crystallized hexagonal phase. It is found that after excitation into the Ce~(3+) ions, the excitation energy can be transferred to the luminescent centers via the Gd~(3+) sublattice followed by emission from the these luminescent centers. As such, the PEI/NaGdF_4 nanoparticles activated with different lanthanide ions show bright luminescence of different colors under single wavelength excitation at 254 nm, and thus have good potentials for multiplexing labeling.
引文
[1] R.S. Yalow, S. A. Berson, Assay of plasma insulin in human subjects by immunological methods, Nature 1959, 184, 1648-49.
    [2] 汪尔康,21世纪的分析化学,北京:科学出版社,1999.
    [3] 高鸿,分析化学前沿,北京:科学出版社,1991.
    [4] P.B. Luppa, L. J. Sokoll, D. W. Chan, Immunosensors-principles and applications to clinical chemistry, Clin. Chim. Acta 2001, 314(1-2), 1-26.
    [5] S. Kulmala, J. Suomi, Current status of modern analytical luminescence methods, Anal. Chim. Acta 2003, 500, 21-69.
    [6] S. Pathak, S. K. Choi, N. Arnheim, M. E. Thompson, Hydroxylated quantum dots as luminescent probes for in situ hybridization, J. Am. Chem. Soc. 2001, 123(17), 4103-04.
    [7] W.C.W. Chan, S. M. Nie, Quantum dot bioeonjugates for ultrasensitive nonisotopic detection, Science 1998, 281(5385), 2016-18.
    [8] M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science 1998, 281(5385), 2013-16.
    [9] I. Johnson, Fluorescent probes for living cells, Histochem.J. 1998, 30(3), 123-40.
    [10] X. Brokmann, J. P. Hermier, G. Messin, P. Desbiolles, J. P. Bouchaud, M. Dahan, Statistical aging and nonergodicity in the fluorescence of single nanocrystals, Phys. Rev. Lett. 2003, 90(12), 120601. 120601
    [11] C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig, W. J. Parak, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Lett. 2005, 5(2), 331-38.
    [12] S.J. Rosenthal, A. Tomlinson, E. M. Adkins, S. Schroeter, S. Adams, L. Swafford, J. McBride, Y. Q. Wang, L. J. DeFelice, R. D. Blakely, Targeting cell surface receptors with ligand-conjugated nanocrystals, J. Am. Chem. Soc. 2002, 124(17), 4586-94.
    [13] E. Beaurepaire, V. Buissette, M. P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J. L. Martin, T. Gacoin, J. P. Boilot, A. Alexandrou, Functionalized fluorescent oxide nanoparticles: Artificial toxins for sodium channel targeting and Imaging at the single-molecule level, Nano Lett. 2004, 4(11), 2079-83.
    [14] F. Meiser, C. Cortez, F. Caruso, Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles, Angew. Chem. Int. Ed 2004, 43(44), 5954-57.
    [1] A. Miyawaki, Visualization of the spatial and temporal dynamics of intracellular signaling, Dev. Cell 2003, 4(3), 295-305.
    [2] I.L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing Nat. Mater. 2005, 4(6), 435-46.
    [3] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics, Science 2005, 307(5709), 538-44.
    [4] F. Wang, W. B. Tan, Y. Zhang, X. P. Fan, M. Q. Wang, Luminescent nanomaterials for biological labelling Nanotechnology 2006, 17, R1-R13.
    [5] F. Meiser, C. Cortez, F. Caruso, Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles, Angew. Chem. Int. Ed. 2004, 43(44), 5954-57.
    [6] E. Beaurepaire, V. Buissette, M. P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J. L. Martin, T. Gacoin, J. P. Boilot, A. Alexandrou, Functionalized fluorescent oxide nanoparticles: Artificial toxins for sodium channel targeting and Imaging at the single-molecule level, Nano Lett. 2004, 4(11), 2079-83.
    [7] T.H. James, Theory of Photographic Processes, New York: Macmillan, 1977.
    [8] A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, Cyanines during the 1990s: A review, Chem. Rev. 2000, 100(6), 1973-2011.
    [9] G. Patonay, J. Salon, J. Sowell, L. Strekowski, Noncovalent labeling of biomolecules with red and near-infrared dyes, Molecules 2004, 9(3), 40-49.
    [10] F.M. Hammer, The Cyanine Dyes and Related Compounds, New York: Wiley, 1964.
    [11] N. Tyutyulkov, J. Fabian, A. Mehlhorn, F. Dietz, A. Tadjer, Polymethine Dyes: Structure and Properties, Sofia: St. Kliment Ohridski University Press, 1991.
    [12] J. Fabian, H. Nakazumi, M. Matsuoka, Near-infrared absorbing dyes, Chem. Rev. 1992, 92(6), 1197-226.
    [13] A.A. Ishchenko, N. A. Derevyanko, V. A. Svidro, Effect of polymethine-chain length on fluorescence-spectra of symmetrical cyanine dyes, Opt. Spektrosk. 1992, 72(1), 110-14.
    [14] N. Panchuk-Voloshina, R. P. Haugland, J. Bishop-Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W. Y. Leung, R. P. Haugland, Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates, J. Histochem. Cytochem. 1999, 47(9), 1179-88.
    [15] J.E. Berlier, A. Rothe, G. Buller, J. Bradford, D. R. Gray, B. J. Filanoski, W. G. Telford, S. Yue, J. X. Liu, C. Y. Cheung, W. Chang, J. D. Hirsch, J. M. Beechem, R. P. Haugland, R. P. Haugland, Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: Fluorescence of the dyes and their bioconjugates, J. Histochem. Cytochem. 2003, 51(12), 1699-712.
    [16] R.B. Mujumdar, L. A. Ernst, S. R. Mujumdar, C. J. Lewis, A. S. Waggoner, Cyanine dye labeling reagents-sulfoindocyanine succinimidyl esters, Bioconjug. Chem. 1993, 4(2), 105-11.
    [17] G.P. Anderson, N. L. Nerurkar, Improved fluoroimmunoassays using the dye Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor, J. Immunol. Methods 2002, 271(1-2), 17-24.
    [18] S. Mahmudi-Azer, P. Lacy, B. Bablitz, R. Moqbel, Inhibition of nonspecific binding of fluorescent-labelled antibodies to human eosinophils, J. Immunol. Methods 1998, 217(1-2), 113-19.
    [19] J.R. Taylor, M. M. Fang, S. M. Nie, Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles, Anal. Chem. 2000, 72(9), 1979-86.
    [20] S. Santra, P. Zhang, K. M. Wang, R. Tapec, W. H. Tan, Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers, Anal. Chem. 2001, 73(20), 4988-93.
    [21] X. C. Zhou, J. Z. Zhou, Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles, Anal. Chem. 2004, 76(18), 5302-12.
    [22] M. G. Bawendi, M. L. Steigerwald, L. E. Brus, The quantum mechanics of larger semiconductor clusters ("quantum dots"), Annu. Rev. Phys. Chem. 1990, 41,477-96.
    [23] A.L. Efros, A. L. Efros, Interband absorption of light in a semiconductor sphere, Sov. Phys. Semicond. 1982, 16, 772-75.
    [24] A.I. Ekimov, A. A. Onushchenko, Quantum size effect in the optical spectra of semiconductor microcrystals, Sov. Phys. Semicond. 1982, 16, 775-78.
    [25] C.B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc. 1993, 115(19), 8706-15.
    [26] M.A. Hines, P. Guyot-Sionnest, Bright UV-blue luminescent colloidal ZnSe nanocrystals, J. Phys. Chem. B 1998, 102(19), 3655-57.
    [27] D.V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, A novel organometallic synthesis of highly luminescent CdTe nanocrystals, J. Phys. Chem. B 2001, 105(12), 2260-63.
    [28] L. H. Qu, Z. A. Peng, X. G. Peng, Alternative routes toward high quality CdSe nanocrystals, Nano Lett. 2001, 1(6), 333-37.
    [29] M. A. Hines, P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals, J. Phys. Chem. 1996, 100(2), 468-71.
    [30] X. G. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility, J. Am. Chem. Soc. 1997, 119(30), 7019-29.
    [31] A.D. Yoffe, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems, Adv. Phys. 2001, 50(1), 1-208.
    [32] A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem. 1996, 100(31), 13226-39.
    [33] A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 1996, 271(5251), 933-37.
    [34] M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science 1998, 281(5385), 2013-16.
    [35] W.C.W. Chan, S. M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 1998, 281(5385), 2016-18.
    [36] W.C.W. Chan, D. J. Maxwell, X. H. Gao, R. E. Bailey, M. Y. Han, S. M. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol. 2002, 13(1), 40-46.
    [37] C.M. Niemeyer, Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science, Angew. Chem. Int. Ed. 2001, 40(22), 4128-58.
    [38] A.J. Sutherland, Quantum dots as luminescent probes in biological systems, Curr. Opin. Solid State Mater. 2002, 6(4), 365-70.
    [39] W.J. Parak, T. Pellegrino, C. Plank, Labelling of cells with quantum dots, Nanotechnology 2005,16(2), R9-R25.
    
    [40] X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, S. M. Nie, In vivo molecular and cellular imaging with quantum dots, Curr. Opin. Biotechnol. 2005,16(1), 63-72.
    
    [41] A. Hoshino, K. Fujioka, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, T. Dohi, K. Suzuki, K. Yamamoto, Fluorescent labeling of cells and biomolecules with nanocrystal quantum dots, Proc. SPIE 2005, 5705,263-71.
    
    [42] Z. A. Peng, X. G Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor, J. Am. Chem. Soc. 2001,123(1), 183-84.
    
    [43] M. Lazell, P. O'Brien, A novel single source precursor route to self capping CdS quantum dots, Chem. Commun. 1999(20), 2041-42.
    
    [44] R. Kho, C. L. Torres-Martinez, R. K. Mehra, A simple colloidal synthesis for gram-quantity production of water-soluble ZnS nanocrystal powders, J. Colloid Interface Sci. 2000, 227(2), 561-66.
    
    [45] S. Asokan, A. R. Carreon, Z. Mu, K. M. Krueger, A. Alkhawaldeh, V. L. Colvin, M. S. Wong, Synthesis of high-quality CdSe nanocrystals in heat transfer fluids, Proc. SPJE 2005, 5705, 60-67.
    
    [46] H. Mattoussi, J. M. Mauro, E. R. Goldman, G P. Anderson, V. C. Sundar, F. V. Mikulec, M. G Bawendi, Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc. 2000,122(49), 12142-50.
    
    [47] D. Gerion, W. J. Parak, S. C. Williams, D. Zanchet, C. M. Micheel, A. P. Alivisatos, Sorting fluorescent nanocrystals with DNA, J. Am. Chem. Soc. 2002,124(24), 7070-74.
    
    [48] W. J. Parak, D. Gerion, D. Zanchet, A. S. Woerz, T. Pellegrino, C. Micheel, S. C. Williams, M. Seitz, R. E. Bruehl, Z. Bryant, C. Bustamante, C. R. Bertozzi, A. P. Alivisatos, Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots, Chem. Mater. 2002, 14(5), 2113-19.
    
    [49] H. Skaff, T. Emrick, The use of 4-substituted pyridines to afford amphiphilic, pegylated cadmium selenide nanoparticles, Chem. Commun. 2003(1), 52-53.
    
    [50] H. T. Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon, H. Mattoussi, Synthesis of compact multidentate Hgands to prepare stable hydrophilic quantum dot fluorophores, J. Am. Chem. Soc. 2005, 127(11), 3870-78.
    
    [51] I. D. Tomlinson, D. W. Wright, T. D. Giorgio, R. D. Blakely, S. J. Pennycook, D. Hercules, L. Bentzen, R. A. Smith, J. McbBride, M. J. Vergne, S. Rosenthal, The quantum dot nanoconjugate tool box, Proc. SPIE 2005, 5705, 199-209.
    
    [52] X. Y. Wu, H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. F. Ge, F. Peale, M. P. Bruchez, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nat. Biotechnol. 2003,21(1), 41-46.
    
    [53] B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science 2002, 298(5599), 1759-62.
    [54] X.H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol. 2004, 22(8), 969-76.
    [55] T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Radler, G. Natile, W. J. Parak, Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals, Nano Lett. 2004, 4(4), 703-07.
    [56] R.E. Bailey, A. M. Smith, S. M. Nie, Quantum dots in biology and medicine, Physica E 2004, 25(1), 1-12.
    [57] X.H. Gao, S. M. Nie, Doping mesoporous materials with multicolor quantum dots, J. Phys. Chem. B 2003, 107(42), 11575-78.
    [58] M.Y. Han, X. H. Gao, J. Z. Su, S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol. 2001, 19(7), 631-35.
    [59] M. Kuang, D. Y. Wang, H. B. Bao, M. Y. Gao, H. Mohwald, M. Jiang, Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres, Adv. Mater. 2005, 17(3), 267-70.
    [60] A.M. Derfus, W. C. W. Chan, S. N. Bhatia, Probing the cytotoxicity of semiconductor quantum dots, Nano Lett. 2004, 4(1), 11-18.
    [61] A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, K. Yamamoto, Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification, Nano Lett. 2004, 4(11), 2163-69.
    [62] C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig, W. J. Parak, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Lett. 2005, 5(2), 331-38.
    [63] M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, L. E. Brus, Fluorescence intermittency in single cadmium selenide nanocrystals, Nature 1996, 383(6603), 802-04.
    [64] W. van Sark, P. Frederix, A. A. Bol, H. C. Gerritsen, A. Meijerink, Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots, Chem. Phys. Chem. 2002, 3(10), 871-79.
    [65] X. Brokmann, J. P. Hermier, G. Messin, P. Desbiolles, J. P. Bouchaud, M. Dahan, Statistical aging and nonergodicity in the fluorescence of single nanocrystals, Phys. Rev. Lett. 2003, 90(12), 120601. 120601
    [66] S.J. Rosenthal, A. Tomlinson, E. M. Adkins, S. Schroeter, S. Adams, L. Swafford, J. McBride, Y. Q. Wang, L. J. DeFelice, R. D. Blakely, Targeting cell surface receptors with ligand-conjugated nanocrystals, J. Am. Chem. Soc. 2002, 124(17), 4586-94.
    [67] G. Blasse, B. C. Grabmaier, Luminescent Materials, Berlin: Springer-Verlag, 1994.
    [68] H. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala, H. J. Tanke, Detection of cell and tissue surface antigens using up-converting phosphors: A new reporter technology, Anal. Biochem. 1999, 267(1), 30-36.
    [69] P. Corstjens, M. Zuiderwijk, M. Nilsson, H. Feindt, R. S. Niedbala, H. J. Tanke, Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay, Anal. Biochem. 2003, 312(2), 191-200.
    [70] F. van de Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, H. J. Tanke, Up-converting phosphor reporters for nucleic acid microarrays, Nat. Biotechnol. 2001, 19(3), 273-76.
    [71] R.N. Bhargava, D. Gallagher, T. Welker, Doped nanocrystals of semiconductors-a new class of luminescent materials, J. Lumin. 1994, 60-61,275-80.
    [72] R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Optical properties of manganes-doped nanocrystals of ZnS, Phys. Rev. Lett. 1994, 72, 416-19.
    [73] M.A. Chamarro, V. Voliotis, R. Grousson, P. Lavallard, T. Gacoin, G. Counio, J. P. Boilot, R. Cases, Optical properties of Mn-doped CdS nanocrystals, J. Cryst. Growth 1996, 159(1-4), 853-56.
    [74] V. Jungmickel, F. Henneberger, Luminescence related processes in semiconductor nanocrystals-The strong confinement regime, J. Lumin. 1996, 70(1-6), 238-52.
    [75] K. Yan, C. K. Duan, Y. Ma, S. D. Xia, J. C. Krupa, Photoluminescence lifetime of nanocrystalline ZnS: Mn~(2+), Phys. Rev. B 1998, 58(20), 13585-89.
    [76] K. Riwotzki, M. Haase, Wet-chemical synthesis of doped colloidal nanoparticles: YVO_4: Ln (Ln=Eu, Sm, Dy), J. Phys. Chem. B 1998, 102(50), 10129-35.
    [77] A. Huignard, T. Gacoin, J. P. Boilot, Synthesis and luminescence properties of colloidal YVO_4: Eu phosphors, Chem. Mater. 2000, 12(4), 1090-94.
    [78] A. Huignard, V. Buissette, G. Laurent, T. Gacoin, J. P. Boilot, Synthesis and characterizations of YVO_4: Eu colloids, Chem. Mater. 2002, 14(5), 2264-69.
    [79] J.W. Stouwdam, F. C. J. M. van Veggel, Near-infrared emission of redispersible Er~(3+), Nd~(3+), and Ho~(3+) doped LaF_3 nanoparticles, Nano Lett. 2002, 2(7), 733-37.
    [80] J.W. Stouwdam, G. A. Hebbink, J. Huskers, F. C. J. M. van Veggel, Lanthanide-doped nanoparticles with excellent luminescent properties in organic media, Chem. Mater 2003, 15(24), 4604-16.
    [81] H. Meyssamy, K. Riwotzki, A. Kornowski, S. Naused, M. Haase, Wet-chemical synthesis of doped colloidal nanomaterials: Particles and fibers of LaPO_4: Eu, LaPO_4: Ce, and LaPO_4: Ce, Tb, Adv. Mater. 1999, 11(10), 840-44.
    [82] K. Riwotzki, H. Meyssamy, A. Kornowski, M. Haase, Liquid-phase synthesis of doped nanoparticles: Colloids of luminescing LaPO_4: Eu and CePO_4: Tb particles with a narrow particle size distribution, J. Phys. Chem. B 2000, 104(13), 2824-28.
    [83] K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski, M. Haase, Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO_4: Ce, Tb nanocrystals, Angew. Chem. Int. Ed. 2001, 40(3), 573-76.
    [84] G.A. Hebbink, J. W. Stouwdam, D. N. Reinhoudt, F. van Veggel, Lanthanide(Ⅲ)-doped nanoparticles that emit in the near-infrared, Adv. Mater. 2002, 14(16), 1147-50.
    [85] V. Buissette, M. Moreau, T. Gacoin, J. P. Boilot, J. Y. Chane-Ching, T. Le Mercier, Colloidal synthesis of luminescent rhabdophane LaPO_4:Ln~(3+)·xH_2O(Ln=Ce, Tb, Eu; x≈0.7) nanocrystals, Chem. Mater. 2004, 16(19), 3767-73.
    [86] K. Kompe, H. Borchert, J. Storz, A. Lobo, S. Adam, T. Moller, M. Haase, Green-emitting CePO_4:Tb/LaPO_4 core-shell nanoparticles with 70% photoluminescence quantum yield, Angew. Chem. Int. Ed. 2003, 42(44), 5513-16.
    [87] J.W. Stouwdam, F. van Veggel, Improvement in the luminescence properties and processability of LaF_3/Ln and LaPO_4/Ln nanoparticles by surface modification, Langmuir 2004, 20(26), 11763-71.
    [88] T. Justel, H. Nikol, C. Ronda, New developments in the field of luminescent materials for lighting and displays, Angew. Chem. Int. Ed. 1998, 37(22), 3085-103.
    [89] K. Kawano, K. Arai, H. Yamada, N. Hashimoto, R. Nakata, Application of rare-earth complexes for photovoltaic precursors, Sol. Energy Mater. Sol. Cells 1997, 48(1-4), 35-41.
    [90] D.B. Barber, C. R. Pollock, L. L. Beecroft, C. K. Ober, Amplification by optical composites, Opt. Lett. 1997, 22(16), 1247-49.
    [91] D. Dosev, M. Nichkova, M. Liu, B. Guo, G. Liu, Y. Xia, B. D. Hammock, I. M. Kennedy, Application of fluorescent Eu:Gd_2O_3 nanoparticles to the visualization of protein micropatterns, Proc. SPIE 2005, 5699, 473-81.
    [92] 干福熹,玻璃的光学和光学性质,上海:上海科技出版社,1992.
    [93] 张若桦,稀土元素化学,天津:天津科技出版社,1987.
    [94] 苏锵,稀土化学,河南:河南科技出版社,1993.
    [95] G. Blasse, Some considerations on rare-earth activated phosphors, J. Lumin. 1970, 1-2, 766-77.
    [96] G. Blasse, A. Bril, Study of energy transfer from Sb~(3+), Bi~(3+), Ce~(3+) to Sm~(3+), Eu~(3+), Tb~(3+), Dy~(3+), J. Chem. Phys. 1967, 47(6), 1920-26.
    [97] J.F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion, Opt. Mater. 2005, 27(6), 1111-30.
    [98] G. Blasse, A. Bril, On the Eu~(3+) fluorescence in mixed metal oxides. Ⅲ. Energy transfer in Eu~(3+)-activated tungstates and molybdates of the type Ln_2WO_6 and Ln_2MoO_6, J. Chem. Phys. 1966, 45(7), 2350-55.
    [99] G. Blasse, N. Sabbatini, The quenching of rare-earth ion luminescen in molecular and non-molecular solids, Materials Chemistry and Physics 1987, 16, 237-52.
    [100] G. Blasse, Energy transfer from Ce~(3+) to Eu~(3+) in (Y, Gd)F_3, Physica Status Solidi (a) 1983, 75, K41-K43.
    [101] S.W.S. McKeever, Thermoluminescence of Solids, Cambridge: Cambridge University, 1985.
    [102] 孟宪国,何志毅,孙力,王永生,红外光激励下稀土共掺杂SrS中的光存储,激光与红外 2000,30(6),367-69.
    [103] 苏勉曾,固体化学导论,北京:北京大学出版社,1987.
    [104] R. Reisfeld, L. Boehm, Y. Eckstein, N. Lielich, Multiphonon relaxation of rare earth ions in Borate, Phosphate, Germanate and Tellurite glasses, J. Lumin. 1975, 10, 193-95.
    [105] G. Blasse, J. P. M. van Vliet, J. W. M. Verwer, R. Hoogendam, M. Wiegel, Luminescence of Pr~(3+) in scandium borate (ScBO_3) and the host lattice dependence of the stokes shift, J. Phys. Chem. Solids 1989, 50(6), 583-85.
    [106] E.P. Riedel, Effect of temperature on the quantum efficiency of Eu~(3+) fluorescence in Y_2O_3, ScBO_3 and LaBO_3, J. Lumin. 1970, 1-2, 176-90.
    [107] W.H. Fonger, C. W. Struck, Eu~(+3) ~5D resonance quenching to the Charge-Transfer States in Y_2O_2S and LaOCl, J. Chem. Phys. 1970, 52(12), 6364-72.
    [108] G. Blasse, A. Bril, On the Eu~(3+) fluorescence in mixed metal oxides. V. The Eu~(3+) fluorescence in the rocksalt lattice, J. Chem. Phys. 1966, 45(9), 3327-32.
    [109] L. G. Van Uitert, L. F. Johnson, Energy transfer between rare-earth ions, J. Chem. Phys. 1966, 44(9), 3514-22.
    [110] R.J. Birgeneau, Mechanisms of energy transport between rare-earth ions, Appl. Phys. Lett. 1968, 13(5), 193-95.
    [111] 张思远,毕宪章,稀土光谱理论,长春:吉林科学技术出版社,1991.
    [112] F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids, Chem. Rev. 2004, 104(1), 139-73.
    [113] 杨建虎,戴世勋,姜中宏,稀土离子的上转换发光及研究进展,物理学进展 2003,23(3),284-98.
    [114] E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, A three-color, solid-state, three-dimensional display, Science 1996, 273(5279), 1185-89.
    [115] N. Bloembergen, Solid state infrared quantum counters, Phys. Rev. Lett. 1959, 2(3), 84-85.
    [116] J.S. Chivian, W. E. Case, D. D. Eden, The photon avalanche: A new phenomenon in Pr~(3+)-based infrared quantum counters, Appl. Phys. Lett. 1979, 35(2), 124-25.
    [117] Y.K. Voron'ko, A. A. Sobol, S. N. Ushakov, V. E. Shukshin, Spectroscopy of disordered laser crystals, Inorg. Mater. 2002, 38(4), 390-96.
    [118] P.J. Deren, A. A. Demidovich, J. C. Krupa, W. Strek, Spectroscopic properties and upconversion in KYb(WO_4)_2: Ho~(3+), J. Alloy. Compd. 2002, 341(1-2), 130-33.
    [119] N. Martin, P. Boutinaud, M. Malinowski, R. Mahiou, J. C. Cousseins, Optical spectra and analysis of Pr~(3+) in β-NaYF_4, J. Alloy. Compd. 1998, 277, 304-06.
    [120] S. Hufner, Optical spectra of transparent rare earth compounds, New York: Academic Press, 1978.
    [121] B.R. Judd, Optical absorption intensities of rare-earth ions, Phys. Rev. 1962, 127(3), 750-61.
    [122] G. S. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 1962, 37(3), 511-20.
    [123] C.K. Jorgensen, B. R. Judd, Hypersensitive pseudoquadrupole transitions in lanthanides, Mol. Phys. 1964, 8, 281-90.
    [124] H.C. Kandpal, K. C. Joshi, Temperature dependence of hypersensitive transitions of Eu~(3+) in different glass matrices, J. Non-Crystal. Solids 1988, 101(2-3), 243-48.
    [125] 张立德,牟季美,纳米材料学,北京:科学出版社,1994.
    [126] K. Sattler, J. Muhlbach, E. Recknagel, Generation of metal clusters containing from 2 to 500 atoms, Phys. Rev. Lett. 1980, 45(10), 821-24.
    [127] W.P. Zhang, P. B. Xie, C. K. Duan, K. Yan, M. Yin, L. R. Lou, S. D. Xia, J. C. Krupa, Preparation and size effect on concentration quenching of nanocrystalline Y_2SiO_5: Eu, Chem. Phys. Lett. 1998, 292(1-2), 133-36.
    [128] P.B. Xie, C. K. Duan, W. P. Zhang, M. Yin, L. R. Lou, S. D. Xia, Research on quenching concentrtion of nanocrystalline Y_2SiO_5: Eu, Chin. J. Lumin. 1998, 19(1), 19-23.
    [129] 张吉林,稀土发光材料M_2O_3:RE~(3+)(M=Y,Gd;RE=Eu,Tb)体系的AAO模板组装,博士论文,中国科学院长春应用化学研究所(长春),2004.
    [130] B.M. Tissue, Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts, Chem. Mater. 1998, 10(10), 2837-45.
    [131] B.L. Cushing, V. L. Kolesnichenko, C. J. O'Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev. 2004, 104(9), 3893-946.
    [132] 李强,高濂,严东生,纳米的Y_2O_3∶Eu~(3+)的荧光特性,无机材料学报,1997,12(2),237-41.
    [133] J.W. Stouwdam, M. Raudsepp, F. van Veggel, Colloidal nanoparticles of Ln~(3+)-doped LaVO_4: Energy transfer to visible- and near-infrared-emitting lanthanide ions, Langmuir 2005, 21(15), 7003-08.
    [134] M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer, V. Huch, Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol-gel methods, J. Mater. Chem. 1999, 9(12), 3069-79.
    [135] 王介强,陶珍东,孙旭东,无机溶胶凝胶法制取Y_2O_3纳米微粒,中国稀土学报 2003,21(1),15-18.
    [136] R.N. Hua, B. F. Lei, D. M. Xie, C. S. Shi, Synthesis of calcium fluoride nanoparticles from microemulsion, Chem. J. Chin. Univ.-Chin. 2003, 24(10), 1756-57.
    [137] R.N. Hua, C. Y. Zang, C. Sha, D. M. Xie, C. S. Shi, Synthesis of barium fluoride nanoparticles from microemulsion, Nanotechnology 2003, 14(6), 588-91.
    [138] M.H. Lee, S. G. Oh, S. C. Yi, Preparation of Eu-doped Y_2O_3 luminescent nanoparticles in nonionic reverse microemulsions, J. Colloid Interface Sci. 2000, 226(1), 65-70.
    [139] J.L. Lemyre, A. M. Ritcey, Synthesis of lanthanide fluoride nanoparticles of varying shape and size, Chem. Mater. 2005, 17(11), 3040-43.
    [140] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Hydrothermal synthesis of rare-earth fluoride nanocrystals, Inorg. Chem. 2006, 45(17), 6661-65.
    [141] J.H. Zeng, Z. H. Li, J. Su, L. Y. Wang, R. O. Yan, Y. D. Li, Synthesis of complex rare earth fluoride nanocrystal phosphors, Nanotechnology 2006, 17(14), 3549-55.
    [142] J.H. Zeng, J. Su, Z. H. Li, R. X. Yan, Y. D. Li, Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3+, phosphors of controlled size and morphology, Adv. Mater. 2005, 17(17), 2119-23.
    [143] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, A general strategy for nanocrystal synthesis, Nature 2005, 437(7055), 121-24.
    [144] E. Katz, I. Willner, Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications, Angew. Chem. Int. Ed. 2004, 43(45), 6042-108.
    [145] 刘桂霞,稀土纳/微米颗粒的包覆技术与性能研究,博士论文,天津大学(天津),2003.
    [146] 崔洪涛,颗粒表面包覆,博士论文,中国科学院长春应用化学研究所(长春),2002.
    [147] H. C. Lu, G. S. Yi, S. Y. Zhao, D. P. Chen, L. H. Guo, J. Cheng, Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties, J. Mater. Chem. 2004, 14(8), 1336-41.
    [1] Z. Grabarek, J. Gergely, Zero-length crosslinking procedure with the use of active esters, Anal. Biochem. 1990, 185(1), 131-35.
    [2] J.V. Staros, R. W. Wright, D. M. Swingle, Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions, Anal. Biochem. 1986, 156(1), 220-22.
    [3] W.B. Tan, Y. Zhang, Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications, J. Biomed. Mater. Res. Part A 2005, 75A(1), 56-62.
    [4] Y. Zhang, N. Huang, Intracellular uptake of CdSe-ZnS/polystyrene nanobeads, J. Biomed. Mater. Res. Part B 2006, 76B(1), 161-68.
    
    [5] M. Gupta, A. K. Gupta, In vitro cytotoxicity studies of hydrogel pullulan nanoparticles prepared by aot/n-hexane micellar system, J Pharm. Pharm. Sci. 2004, 7(1), 38-46.
    [1] K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski, M. Haase, Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO_4: Ce, Tb nanocrystals, Angew. Chem. Int. Ed. 2001, 40(3), 573-76.
    [2] J.W. Stouwdam, F. van Veggel, Near-infrared emission of redispersible Er~(3+), Nd~(3+), and Ho~(3+) doped LaF_3 nanoparticles, Nano Lett. 2002, 2(7), 733-37.
    [3] G.S. Yi, H. C. Lu, S. Y. Zhao, G. Yue, W. J. Yang, D. P. Chen, L. H. Guo, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF_4: Yb, Er infrared-to-visible up-conversion phosphors, Nano Lett. 2004, 4(11), 2191-96.
    [4] W. F. Linke, Solubilities of Inorganic and Metal-Organic Compounds, Vol. 2, 4th ed., Washington, DC: American Chemical Society, 1965.
    [5] M.Y. Sharonov, Z. I. Zhmurova, E. A. Krivandina, A. A. Bystrova, I. I. Buchinskaya, B. P. Sobolev, Spectroscopic properties of nonstoichiometric multicomponent fluoride crystals with fluorite structure doped with Pr~(3+) ions, Opt. Commun. 1996, 124, 558-67.
    [6] T. Balaji, G. Lifante, E. Daran, R. Legros, G. Lacoste, Growth by molecular beam epitaxy and characterization of CaF_2: Pr~(3+) planar waveguides, Thin Solid Films 1999, 339(1-2), 187-93.
    [7] W.D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, New York: Wiley, 1976.
    [8] P.P. Gawryszewska, M. Pietraszkiewicz, J. P. Riehl, J. Legendziewicz, Investigations of the spectral properties of lanthanide(Ⅲ) complexes with 3,3'-bi-isoquinoline-2,2'-dioxide (biqO_2) and a biqO_2-cryptate in solution, solids, and gels, J. Alloy. Compd. 2000, 300, 283-88.
    [9] A. F. Kirby, F. S. Richardson, Detailed analysis of the optical absorption and emission spectra of Eu~(3+) in the trigonal (C_3) Eu(DBM)_3·H_2O system, J. Phys. Chem. 1983, 87(14), 2544-56.
    [10] P. Dorenbos, Space charges and dipoles in rare-earth-doped SrF_2, Phys. Rev. B 1985, 31(6), 3932-38.
    [11] S.W.S. McKeever, M. D. Brown, R. J. Abbundi, H. Chan, V. K. Mathur, Characterization of optically active sites in CaF_2:Ce, Mn from optical spectra, J. Appl. Phys. 1986, 60(7), 2505-10.
    [12] S. Robinet, D. Trottier, J. C. Tendil, J. C., Luminescence of (1-x)CaF_2-xEuF_3 with x=0.02-0.20, Eur. J. Solid State Inorg. Chem. 1994, 31(1), 47-59.
    [13] S. Robinet, D. Trottier, J. C. Tendil, J. C., Energy migration in Ca_(1-x)Eu_xF_(2+x) with x=0.02-0.20, Eur. J. Solid State Inorg. Chem. 1995, 32(2), 169-80.
    [14] W.P. Zhang, P. B. Xie, C. K. Duan, K. Yan, M. Yin, L. R. Lou, S. D. Xia, J. C. Krupa, Preparation and size effect on concentration quenching of nanocrystalline Y_2SiO_5: Eu, Chem. Phys. Lett. 1998, 292(1-2), 133-36.
    [15] X.C. Jiang, C. H. Yan, L. D. Sun, Z. G. Wei, C. S. Liao, Hydrothermal homogeneous urea precipitation of hexagonal YBO_3:Eu~(3+) nanocrystals with improved luminescent properties, J. Solid State Chem. 2003, 175(2), 245-51.
    [16] C.M. Bender, J. M. Burlitch, D. Barber, C. Pollock, Synthesis and fluorescence of neodymium-doped barium fluoride nanoparticles, Chem. Mater. 2000, 12(7), 1969-76.
    [17] A. Kaminskii, Laser Crystals, their physics and properties, New york: Springer, 1990.
    [18] O.V. Kudryavtseva, L. S. Garashina, K. K. Rivkina, B. P. Sobolev, Solubility of LnF_3 in lanthanum fluoride, Sov. Phys. Crystallogr. 1974, 18(4), 531.
    [19] R.D. Shannon, L. T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Cystallogr. Sect. B 1969, 25,925-46.
    [20] G.A. Kumar, R. Riman, E. Snitzer, J. Ballato, Solution synthesis and spectroscopic characterization of high Er~(3+) content LaF_3 for broadband 1.5μm amplification, J. Appl. Phys. 2004, 95(1), 40-47.
    [21] W.T. Carnall, G. L. Goodman, K. Rajnak, R. S. Rana, A systematic analysis of the spectra of the lanthanides doped into single-crystal LaF_3, J. Chem. Phys. 1989, 90(7), 3443-57.
    [22] M.J. Weber, in Optical Properties of Ions in Crystals (Eds.: H. M. Crosswhite, H. W. Moose), New York: Interscience, 1967, pp. 467-84.
    [23] U.V. Kumar, D. R. Rao, P. Venkateswarlu, Optical absorption and laser excited fluorescence spectra of LaF_3:Eu~(3+), J. Chem. Phys. 1977, 66(5), 2019-25.
    [24] M.J. Weber, Radiative and multiphoton relaxation of rare-earth ions in Y_2O_3, Phys. Rev. 1968, 171(2), 283-91.
    [25] R. Reisfeld, L. Boehm, Y. Eckstein, N. Lielich, Multiphonon relaxation of rare earth ions in Borate, Phosphate, Germanate and Tellurite glasses, J. Lumin. 1975, 10, 193-95.
    [26] H.W. Mosse, Spectroscopic Relaxation processes of rare earth ions in crystals, J. Lumin. 1970, 1-2, 106-21.
    [27] A. Zalkin, D. H. Templeton, The crystal structures of YF_3 and related compounds. J. Am. Chem. Soc. 1953, 75, 2453-58.
    [28] S. Fujihara, S. Koji, T. Kimura, Structure and optical properties of (Gd,Eu)F_3-nanocrystallized sol-gel silica films, J. Mater. Chem. 2004, 14(8), 1331-35.
    [29] R.T. Wegh, H. Donker, K. D. Oskam, A. Meijerink, Visible quantum cutting in Eu~(3+)-doped gadolinium fluorides via downconversion, J. Lumin. 1999, 82(2), 93-104.
    [30] Y. Cui, X. P. Fan, Z. L. Hong, M. Q. Wang, Synthesis and luminescence properties of lanthanide (Ⅲ)-doped YF_3 nanoparticies, J. Nanosci. Nanotechnol. 2006, 6(3), 830-36.
    [1] P. R. Diamente, F. van Veggel, Water-soluble Ln~(3+)-doped LaF_3 nanoparticles: Retention of strong luminescence and potential as biolabels, J. Fluoresc. 2005, 15(4), 543-51.
    [2] V. Sudarsan, F. van Veggel, R. A. Herring, M. Raudsepp, Surface Eu~(3+) ions are different than "bulk" Eu~(3+) ions in crystalline doped LaF_3 nanoparticles, J. Mater. Chem. 2005, 15(13), 1332-42.
    [3] 易宪武,黄春辉,王慰,无机化学丛书第七卷钪、稀土元素,北京:科学出版社,1998.
    [4] J.W. Stouwdam, G. A. Hebbink, J. Huskens, F. van Veggel, Lanthanide-doped nanoparticles with excellent luminescent properties in organic media, Chem. Mater. 2003, 15(24), 4604-16.
    [5] Y. Cui, X. P. Fan, Z. L. Hong, M. Q. Wang, Synthesis and luminescence properties of lanthanide (Ⅲ)-doped YF_3 nanoparticies, J. Nanosci. Nanotechnol. 2006, 6(3), 830-36.
    [6] R.D. Shannon, L. T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Cystallogr. Sect. B 1969, 25, 925-46.
    [7] K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski, M. Haase, Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO_4: Ce,Tb nanocrystals, Angew. Chem.Int. Ed. 2001, 40(3), 573-76.
    [8] H. Meyssamy, K. Riwotzki, A. Kornowski, S, Naused, M. Haase, Wet-chemical synthesis of doped colloidal nanomaterials: Particles and fibers of LaPO_4: Eu, LaPO_4: Ce, and LaPO_4: Ce, Tb, Adv. Mater 1999, 11(10), 840-44.
    [9] V. Buissette, M. Moreau, T. Gacoin, J. P. Boilot, J. Y. Chane-Ching, T. Le Mercier, Colloidal synthesis of luminescent rhabdophane LaPO_4:Ln~(3+)·xH_2O (Ln=Ce, Tb, Eu; x≈0.7) nanocrystals, Chem. Mater. 2004, 16(19), 3767-73.
    [10] S. Dhami, A. J. Demello, G. Rumbles, S. M. Bishop, D. Phillips, A. Beeby, Phthalocyanine fluorescence at high-concentration-Dimers or reabsorption effect, Photochem. Photobiol. 1995, 61(4), 341-46.
    [11] W. H. Melhuish, Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute, J. Phys. Chem. 1961, 65,229-35.
    [12] R.M. Tyrrell, S. M. Keyse, New trends in photobiology-The interaction of UVA radiation with cultured-cells, J. Photochem. Photobiol. B-Biol. 1990, 4(4), 349-61.
    [13] M.L. Cunningham, J. S. Johnson, S. M. Giovanazzi, M. J. Peak, Photosensitised production of superoxide anion by monochromatic (290-405 nm) ultraviolet irradiation of NADH and NADPH coenzymes, Photochem. Photobiol. 1985, 42(2), 125-28.
    [14] K. Kuningas, T. Rantanen, T. Ukonaho, T. Lovgren, T. Soukka, Homogeneous assay technology based on upconverting phosphors, Anal. Chem. 2005, 77(22), 7348-55.
    [15] S.I. Klink, G. A. Hebbink, L. Grave, F. Van Veggel, D. N. Reinhoudt, L. H. Slooff, A. Polman, J. W. Hofstraat, Sensitized near-infrared luminescence from polydentate triphenylene-functionalized Nd~(3+), Yb~(3+), and Er~(3+) complexes, J. Appl. Phys. 1999, 86(3), 1181-85.
    [16] K. Konig, Multiphoton microscopy in life sciences, J. Microsc.-Oxf. 2000, 200, 83-104.
    [1] F. Meiser, C. Cortez, F. Caruso, Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles, Angew. Chem. Int. Ed. 2004, 43(44), 5954-57.
    [2] E. Beaurepaire, V. Buissette, M. P. Sauviat, D. Giaume, K. Lahlil, A. Mereuri, D. Casanova, A. Huignard, J. L. Martin, T. Gacoin, J. P. Boilot, A. Alexandrou, Functionalized fluorescent oxide nanoparticles: Artificial toxins for sodium channel targeting and Imaging at the single-molecule level, Nano Lett. 2004, 4(11), 2079-83.
    [3] X.T. Yang, Y. Zhang, Encapsulation of quantum nanodots in polystyrene and silica micro-/nanoparticles, Langmuir 2004, 20(15), 6071-73.
    [4] P. Calvo, C. RemunanLopez, J. L. VilaJato, M. J. Alonso, Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers, J. Appl. Polym. Sci. 1997, 63(1), 125-32.
    [5] S. Miyazaki, K. Ishii, T. Nadai, The use of chitin and chitosan as drug carriers, Chem. Pharm. Bull, 1981, 29(10), 3067-69.
    [6] S. Miyazaki, H. Yamaguchi, M. Takada, W. M. Hou, Y. Takeichi, H. Yasubuchi, Pharmaceutical application of bio-medical polymers.29. Preliminary-Study on film dosage form prepared from chitosan for oral-drug delivery, Acta Pharm. Nord. 1990, 2(6), 401-06.
    [7] R. Muzzarelli, G. Biagini, A. Pugnaloni, O. Filippini, V. Baldassarre, C. Castaldini, C. Rizzoli, Reconstruction of parodontal tissue with chitosan, Biomaterials 1989, 10(9), 598-603.
    [8] M.N.V.R. Kumar, A review of chitin and chitosan applications, React. Funct. Polym. 2000, 46(1), 1-27.
    [9] W.B. Tan, Y. Zhang, Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications, J. Biomed. Mater. Res. Part A 2005, 75A(1), 56-62.
    [10] H. Jiang, W. Su, S. Caracci, T. J. Bunning, T. Cooper, W. W. Adams, Optical waveguiding and morphology of chitosan thin films, J. Appl. Polym. Sci. 1996, 61(7), 1163-71.
    [11] N. Kubota, Permeability properties of chitosan-transition metal complex membranes, J. Appl. Polym. Sci. 1997, 64(4), 819-22.
    [12] X.B. Zeng, Y. F. Zhang, Z. Q. Shen, Ring opening polymerization of propylene oxide by chitosan-supported rare earth catalytic system and its kinetics, J. Polym. Sci. Pol. Chem. 1997, 35(11), 2177-82.
    [13] K.W. Kramer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, S. R. Luthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors, Chem. Mater. 2004, 16, 1244-51.
    [14] S. Kobayashi, K. Hiroishi, M. Tokunoh, T. Saegusa, Chelating properties of linear and branched poly(ethylenimines), Macromolecules 1987, 20(7), 1496-500.
    [15] R.S. Juang, G. S. Yan, Enhanced flux and selectivity of metals through a dialysis membrane by addition of complexing agents to receiving phase, J. Membre Sci. 2001, 186(1), 53-61.
    [16] S.B. Deng, Y. P. Ting, Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(Ⅵ) anions: Sorption capacity and uptake mechisms, Environ. Sci. Technol. 2005, 39(21), 8490-96.
    [17] S. Babacan, P. Pivamik, S. Letcher, A. G. Rand, Evaluation of antibody immobilization methods for piezoelectric biosensor application, Biosens. Bioelectron. 2000, 15(11-12), 615-21.
    [18] R. Bahulekar, N. R. Ayyangar, S. Ponrathnam, Polyethyleneimine in immobilization of biocatalysts, Enzyme Microb. Technol. 1991, 13(11), 858-68.
    [19] A. Baker, M. Saltik, H. Lehrmann, I. Killisch, V. Mautner, G. Lamm, G. Christofori, M. Cotten, Polyethylenimine (PEI) is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery, Gene There 1997, 4(8), 773-82.
    [20] R. Kircheis, L. Wightman, E. Wagner, Design and gene delivery activity of modified polyethylenimines, Adv. Drug Deliv. Rev. 2001, 53(3), 341-58.
    [21] Y. Lvov, K. Ariga, I. Ichinose, T. Kunitake, Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption, J. Am. Chem. Soc. 1995, 117(22), 6117-23.
    [22] O. Boussif, F. Lezoualch, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, J. P. Behr, A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo-Polyethylenimine, Proc. Natl. Acad. Sci. U. S. A. 1995, 92(16), 7297-301.
    [23] M. Thomas, Q. Ge, J. J. Lu, J. Z. Chen, A. M. Klibanov, Cross-linked small polyethylenimines: While still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo, Pharm. Res. 2005, 22(3), 373-80.
    [1] K. Kuningas, T. Rantanen, T. Ukonaho, T. Lovgren, T. Soukka, Homogeneous assay technology based on upconverting phosphors, Anal. Chem. 2005, 77(22), 7348-55.
    [2] K. Konig, Multiphoton microscopy in life sciences, J. Microsc.-Oxf. 2000, 200, 83-104.
    [3] D.R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, Water-soluble quantum dots for multiphoton fluorescence imaging in vivo, Science 2003, 300(5624), 1434-36.
    [4] W. Denk, J. H. Strickler, W. W. Webb, 2-Photon Laser Scanning Fluorescence Microscopy, Science 1990, 248(4951), 73-76.
    [5] H. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala, H. J. Tanke, Detection of cell and tissue surface antigens using up-converting phosphors: A new reporter technology, Anal. Biochem. 1999, 267(1), 30-36.
    [6] F. van de Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, H. J. Tanke, Up-converting phosphor reporters for nucleic acid microarrays, Nat. Biotech. 2001, 19(3), 273-76.
    [7] R.S. Niedbala, H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle, R. Vallejo, Detection of analytes by immunoassay using up-converting phosphor technology, AnaL Biochem. 2001, 293(1), 22-30.
    [8] P.T.C. So, C. Y. Dong, B. R. Masters, K. M. Berland, Two-photon excitation fluorescence microscopy, Annu. Rev. Biomed. Eng. 2000, 2, 399-429.
    [9] T. Soukka, K. Kuningas, T. Rantanen, V. Haaslahti, T. Lovgren, Photochemical characterization of up-converting inorganic lanthanide phosphors as potential labels, J. Fluoresc. 2005, 15(4), 513-28.
    [10] F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids, Chem. Rev. 2004, 104(1), 139-73.
    [11] G.S. Yi, B. Q. Sun, F. Z. Yang, D. P. Chert, Y. X. Zhou, J. Cheng, Synthesis and characterization of high-efficiency nanocrystal up-conversion phosphors: Ytterbium and erbium codoped lanthanum molybdate, Chem. Mater. 2002, 14(7), 2910-14.
    [12] T. Hirai, T. Orikoshi, I. Komasawa, Preparation of Y_2O_3: Yb,Er infrared-to-visible conversion phosphor fine particles using an emulsion liquid membrane system, Chem. Mater. 2002, 14(8), 3576-83.
    [13] T. Hirai, T. Orikoshi, Preparation of yttrium oxysulfide phosphor nanoparticles with infrared-to-green and -blue upconversion emission using an emulsion liquid membrane system, J. Colloid Interface Sci. 2004, 273(2), 470-77.
    [14] S. Heer, O. Lehmann, M. Haase, H. U. Gudel, Blue, green, and red upconversion emission from lanthanide-doped LuPO_4 and YbPO_4 nanocrystals in a transparent colloidal solution, Angew. Chem. lnt. Ed. 2003, 42(27), 3179-82.
    [15] J.H. Zeng, J. Su, Z. H. Li, R. X. Yan, Y. D. Li, Synthesis and upconversion luminescence of hexagonal-phase NaYF_4: Yb, Er~(3+), phosphors of controlled size and morphology, Adv. Mater. 2005, 17(17), 2119-23.
    [16] G.S. Yi, H. C. Lu, S. Y. Zhao, G. Yue, W. J. Yang, D. P. Chen, L. H. Guo, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF_4: Yb,Er infrared-to-visible up-conversion phosphors, Nano Lett. 2004, 4(11), 2191-96.
    [17] H.X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, C. H. Yan, High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties, J. Am. Chem. Soc. 2006, 128(19), 6426-36.
    [18] S. Heer, K. Kompe, H. U. Gudel, M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF_4 nanocrystals, Adv. Mater 2004, 16(23-24), 2102-05.
    [19] J.F. Suyver, J. Grimm, K. W. Kramer, H. U. Gudel, Highly efficient near-infrared to visible up-conversion process in NaYF_4: Er~(3+), Yb~(3+), J. Lumines. 2005, 114(1), 53-59.
    [20] X. E Fan, D. B. Pi, F. Wang, J. R. Qiu, M. Q. wang, Hydrothermal synthesis and luminescence behavior of lanthanide-doped GdF_3 nanoparticles, IEEE Trans. Nanotechnol. 2006, 5(2), 123-28.
    [21] K.W. Kramer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen, S. R. Luthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors, Chem. Mater. 2004, 16, 1244-51.
    [22] L.Y. Wang, R. X. Yan, Z. Y. Hao, L. Wang, J. H. Zeng, H. Bao, X. Wang, Q. Peng, Y. D. Li, Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles, Angew. Chem. Int. Ed. 2005, 44(37), 6054-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700