用户名: 密码: 验证码:
RNAi沉默Notch1、Notch2对人胶质瘤U251细胞增殖的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经胶质瘤是最常见的颅内肿瘤,高级别胶质瘤的预后通常很差,因此,探讨胶质瘤的分子机制,研究新的靶向治疗手段就显得十分重要。Notch信号是胶质瘤发病机制的新研究靶点。为深入了解Notch信号通路在神经胶质瘤发生中的作用,探讨沉默Notch治疗神经胶质瘤这一可能的基因治疗方法,本研究利用Notch1-shRNA慢病毒感染人胶质瘤U251细胞,筛选获得Notch1基因稳定沉默的胶质瘤细胞单克隆,对其体内外增殖能力进行研究,并采用基因表达谱芯片技术,分析沉默Notch1对胶质瘤U251细胞的基因表达谱的影响。此外,本研究合成了Notch2的特异siRNA序列,并采用慢病毒介导的RNAi技术研究Notch2基因沉默对胶质瘤U251细胞的体外增殖能力影响,以比较Notch1与Notch2在胶质瘤中功能的异同点。
     本研究的第一部分采用实时定量PCR筛选有效的Notch2 siRNA序列,构建Notch2-shRNA慢病毒载体,进行病毒包装,结果成功包装出表达Notch2-shRNA和阴性对照shRNA的慢病毒,滴度分别为3.7×10~5TU/ml和2.5×10~5TU/ml。
     本研究的第二部分采用本实验室原有的Notch1-shRNA慢病毒和第一部分生产的Notch2-shRNA慢病毒感染人胶质瘤U251细胞,筛选稳定低表达Notch1和Notch2的细胞单克隆,实时定量PCR检测Notch1和Notch2 mRNA的表达,Western-blot法检测细胞Notch1和Notch2蛋白的表达;结果成功筛选得到Notch1和Notch2稳定沉默的U251细胞单克隆。
     本研究的第三部分采用CCK-8法测定细胞生长;平板克隆形成实验和软琼脂克隆形成实验检测细胞的集落形成能力;裸鼠种植瘤模型观察Notch1沉默对种植瘤生长的影响。结果显示Notch1稳定沉默组的增殖与对照组相比明显减慢;Notch1沉默组的平板克隆形成率为(18.6±2.5)%,低于对照组(37.0±3.3)%;Notch1沉默组软琼脂集落形成率(51±5)%,低于对照组(80±4)%;Notch1沉默组裸鼠腋下种植瘤生长速度减慢,30天后瘤重(0.31±0.09)g,明显低于对照组(2.35±0.71)g;统计学分析均有显著意义。而Notch2沉默对细胞增殖无影响。
     本研究的第四部分采用基因芯片技术,分析Notch1稳定沉默对U251基因表达谱的影响。结果显示Notch1稳定沉默细胞与对照细胞间的差异表达基因共有775个,涉及细胞增殖与分化、细胞周期、细胞通讯与粘附、糖脂代谢、MAPK信号转导、TGF-β信号转导等多个方面,而Notch1沉默抑制肿瘤的机制可能和细胞周期调控以及TGF-β信号有关。
Gliomas are the most common intracranial tumors. The prognosis for patients with high-grade gliomas is generally poor. It is very important to analyze the molecular mechanisms of gliomas and to develop new treatments. Recently, the relationship of Notch signaling and gliomas was concerned and the Notch signaling was seemed to be a new target of glioma therapies. Therefore, we had interest of the role of Notch signaling in gliomas. We knocked down the Notch1 by lentivirus-mediated RNA interference technology and screened the stable transduced cell clones. After that we measured the cell proliferation of Notch1 knockdown clones in vitro and in vivo. We analyzed the different gene expression between the Notch1 knockdown clone and the control clone by cDNA microarray technology. We also knocked down the Notch2 expression by lentivirus-mediated RNA interference and measured the cell proliferation of Notch2 knockdown clones in vitro, in order to compare the Notch1 and Notch2 function in gliomas.
     In the first part of our study we screened effective Notch2 siRNA sequence by real-time PCR technology and we constructed Notch2-shRNA lentiviral vector for virus packaging. We succeeded in packing the Notch2-knockdown and negative control lentivirus. The titer of the viruses was 3.7×10~5 TU/ml and 2.5×10~5 TU/ml respectively.
     In the second part of our study we screened the cell clones of Notch1-knockdown and Notch2-knockdown. The human glioma U251 cells were infected with lentivirus expressing Notch1-shRNA or Notch2-shRNA. The knockdown effects of Notch1 or Notch2 of transduced U251 cell clones was detected by real-time PCR and Western blot.
     In the third part of our study we investigated the effects of Notch1 knockdown by RNA interference on proliferation of human glioma U251 cells. The cell growth viability was evaluated by CCK-8 assay. Colony formation assay and soft-agar colony formation were used to measure the colony formation ability of stably transduced cells. The influence of Notch1-knockdown on the implanted tumor growth was observed. The ability of growth in Notch1-knockdown cells was decreased significantly. The plate colony formation rate of Notch1-knockdown cells was (18.6±2.5)%, whereas the rate of control cells was (37.0±3.3)%. The soft-agar colony formation rate of Notch1-knockdown cells was (51±5)%, whereas the rate of control cells was (80±4)%. Implanted glioma mouse model was successively established. The tumor weight in Notch1-knockdown group was markedly lower than that in control group(0.31±0.09g vs 2.35±0.71g, P<0.01). But the Notch2 knockdown had no effect on cell proliferation.
     In the fourth part of our study we analyzed the different gene expression between the Notch1 knockdown clone and the control clone by cDNA microarray technology. The results showed that there are total of 775 differentially expressed genes related to cell proliferation and differentiation, cell cycle, cell communication and adhesion, lipid metabolism, MAPK signal transduction, TGF-βsignal transduction, etc. The inhibition of cell proliferation of Notch1 knockdown cell clone might be mediated by cell cycle regulation and TGF-βsignaling.
引文
1. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med. 2005; 10: 987–996.
    2. Gaiano N, Fishell G. The role of notch in promoting glial and neural stem cell fates[J]. Annu Rev Neurosci. 2002; 25: 471–490.
    3. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development[J]. Science. 1999; 5415: 770–776.
    4. Rehman AO, Wang CY. Notch signaling in the regulation of tumor angiogenesis[J]. Trends Cell Biol. 2006; 6: 293–300.
    5. Bolo′s V, Grego-Bessa J, Luis de la Pompa J. Notch signaling in development and cancer[J]. Endocr Rev. 2007; 28(3): 339–363.
    6.郑莺凤,郑志竑. Notch信号通路与神经系统肿瘤[J].中华肿瘤防治杂志, 2007,14:1029-1032.
    7. Mumm JS, Schroeter EH, Saxena MT, et al. Aligand-induced extracellular cleavage regulatesγ-secretase-like proteolytic activation of Notch1[J]. Mol Cell. 2000, 5:197–206.
    8. Parks AL, Klueg KM, Stout JR, et al. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway[J]. Development 2000, 127:1373–1385.
    9. Kopan R, Goate A Aph-2/Nicastrin: an essential component ofγ-secretase and regulator of Notch signaling and presenilin localization[J]. Neuron 2002, 33: 321–324.
    10. Oswald F, Winkler M, Cao Y, et al. RBP-Jκ/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes[J]. Mol Cell Biol 2005, 25:10379–10390
    11. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway[J]. J Cell Physiol. 2003; 3: 237–255.
    12. Kageyama R, Ohtsuka T, Hatakeyama J, et al. Roles of bHLH genes in neuralstem cell differentiation[J]. Exp Cell Res. 2005; 2: 343–348.
    13. Ge W, Martinowich K, Wu X, et al. Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation[J]. J Neurosci Res. 2002; 6: 848–860.
    14. Ronchini C, Capobianco AJ. Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic)[J]. Mol Cell Biol. 2001; 17: 5925–5934.
    15. Rangarajan A, Talora C, Okuyama R, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation[J]. EMBO J. 2001; 13: 3427–3436.
    16. Leong KG, Karsan A. Recent insights into the role of Notch signaling in tumorigenesis[J]. Blood. 2006, 107(6): 2223-2233.
    17. Purow BW, Haque RM, Noel MW, et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation[J]. Cancer Res. 2005; 6: 2353–2363.
    18.王春华,郑志竑,杨卫忠等。Notch1和Hes1、Hes5在星形细胞瘤中的表达及其相关性研究[J]。福建医科大学学报,2009,43(3):207-210.
    19. Sen GL, Blau HM. A brief history of RNAi: the silence of the genes[J]. FASEB J, 2006; 20: 1293-1299.
    20. Tuschl T, Borkhardt A. Small Interfering RNAs: A Revolutionary Tool for the Analysis of Gene Function and Gene Therapy[J]. Mol Interv, 2002; 2: 158.
    21. Park F. Lentiviral vectors: are they the future of animal transgenesis[J]? Physiol Genomics, 2007; 31: 159-173.
    22. Kraman M, McCright B. Functional conservation of Notch1 and Notch2 intracellular domains[J]. FASEB J 2005; (express article), 10.1096/fj.04-3407fje.
    23. Fan X, Mikolaenko I, Elhassan I, et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth[J]. Cancer Res. 2004; 21: 7787–7793.
    24. Geanacopoulos M. An introduction to RNA-mediated gene silencing[J]. Sci Prog, 2005, 88(Pt 1): 49-69.
    25.张燕,张明芳,林玲等。人Notch1-shRNA慢病毒表达载体的构建与鉴定[J]。福建医科大学学报,2009,43(3):211-216.
    26. Abbas-Terki T, Blanco-Bose W, Deglon N, et al. Lentiviral-mediated RNA interference[J]. Hum Gene Ther, Dec 2002; 13(18): 2197-201.
    27. Scherr M, Battmer K, Ganser A, et al. Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA[J]. Cell Cycle, 2003; 2(3): 251-257.
    28. Franken NA, Rodermond HM, Stap J, et al. Clonogenic assay of cells in vitro[J]. Nat Protoc. 2006, 1(5): 2315-2319.
    29. Wang Y, Thakur A, Sun Y, et al. Synergistic effect of cyclin D1 and c-myc leads to more aggressive and invasive mammary tumors in severe combined immunodeficient mice[J]. Cancer Res, 2007, 67(8): 3698-3707.
    30. Koch U, Radtke F. Notch and cancer: a double-edged sword[J]. Cell Mol Life Sci. 2007; 21: 2746–2762.
    31. Nicolas M, Wolfer A, Raj K, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003; 3: 416–421.
    32. Lasky JL, Wu H. Notch signaling, brain development, and human disease[J]. Pediatr Res. 2005; 5(pt 2): p104R–109R.
    33. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of highgrade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis[J]. Cancer Cell. 2006; 3: 157–173.
    34. Somasundaram K, Reddy SP, Vinnakota K, et al. Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma[J]. Oncogene. 2005; 47: 7073–7083.
    35. Wang ZW, Zhang YX, Li YW, et al. Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells[J]. Mol Cancer Ther 2006; 5(3): 483-493.
    36.杨清玲,丁勇兴,王惠等。RNAi抑制MCF-7细胞survivin基因及对多西他赛敏感性影响[J]。中国药理学通报,2008,24(6):792-796
    37.徐建敏,张红刚,费晓庆等。干扰hENT1表达增加5-FU在胰腺癌SW1990细胞内浓度[J]。中国药理学通报,2008,24(10):1351-1355
    38. Macgregor PF, Squire JA. Application of microarrays to the analysis of gene expression in cancer[J]. Clin Chem, 2002; 48: 1170-1177.
    39. Albertson DG, Pinkel D. Genomic microarrays in human genetic disease and cancer[J]. Hum Mol Genet, 2003; 12: R145-R152.
    40. Fan JQ, Ren Y. Statistical Analysis of DNA Microarray Data in Cancer Research[J]. Clin Cancer Res, 2006; 12: 4469-4473.
    41. Yang YH, Dudoit S, Luu P, et al, Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation[J], Nucl Acids Res, 2002, 30: e15
    42. Farley J, Ozbun L, Samimi G, et al. Cell cycle and related protein[J]. Dis Markers, 2007, 23(5-6):433-43.
    43. Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis[J]. Toxicology, 2002, 181-182:475-81.
    44. Golias CH, Charalabopoulos A, Charalabopoulos K. Cell proliferation and cell cycle control: a mini review[J]. Int J Clin Pract, 2004, 58(12):1134-41.
    45. Thiery JP. Epithelial-mesenchymal transitions in tumour progression[J]. Nat Rev Cancer, 2002, 2: 442–454
    46. Blokzijl A, Dahlqvist C, Reissmann E, et al.. Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3[J]. J Cell Biol. 2003; 163: 723–728.
    47. Itoh F, Itoh S, Goumans MJ, et al. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells[J]. EMBO J. 2004; 23: 541–551.
    48. Kluppel M, Wrana JL. Turning it up a Notch: cross-talk between TGF beta and Notch signaling[J]. Bioessays. 2005; 27: 115–118.
    49. Takizawa T, Ochiai W, Nakashima K, et al. Enhanced gene activation by Notch and BMP signaling cross-talk[J]. Nucleic Acids Res. 2003; 31: 5723–5731.
    50. Masuda S, Kumano K, Shimizu K, et al. Notch1 oncoprotein antagonizes TGF-β/Smad-mediated cell growth suppression via sequestration of coactivatorp300[J]. Cancer Sci, 2005, 96: 274–282
    51. Sun Y, Lowther W, Kato K, et al. Notch4 intracellular domain binding to Smad3 and inhibition of the TGF-βsignaling[J]. Oncogene, 2005, 24: 5365–5374
    52. Feng AH, Lin X, Derynck R. Smad2, Smad3 and Smad4 cooperate with sp1 to induce p15Ink4B transcription in response to TGF-β[J]. EMBO J, 2000, 19(19): 5178-5193
    53. Fu YX, Chang A, Chang L, et al. Differential regulation of transforming growth factor-βsignaling pathways by notch in human endothelial cells[J]. J Biol Chem, 2009, 284(29): 19452-19462
    54. Zavadil J, Cermak L, Soto-Nieves N, et al. Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-tomesenchymal transition[J]. EMBO J, 2004, 23: 1155–1165
    55. Niimi H, Pardali K, Vanlandewijck M, et al. Notch signaling is necessary for epithelial growth arrest by TGF-beta[J]. J Cell Biol. 2007;176:695–707.
    1. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med. 2005; 10: 987–996.
    2. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development[J]. Science. 1999; 5415: 770–776.
    3. Koch U, Radtke F. Notch and cancer: a double-edged sword[J]. Cell Mol Life Sci. 2007; 21: 2746–2762.
    4. Gaiano N, Fishell G. The role of notch in promoting glial and neural stem cell fates[J]. Annu Rev Neurosci. 2002; 25: 471–490.
    5. Rehman AO, Wang CY. Notch signaling in the regulation of tumor angiogenesis[J]. Trends Cell Biol. 2006; 6: 293–300.
    6. Fischer I, Gagner JP, Law M, et al. Angiogenesis in gliomas: biology and molecular pathophysiology[J]. Brain Pathol. 2005; 4: 297–310.
    7. Bolo′s V, Grego-Bessa J, Luis de la Pompa J. Notch Signaling in Development and Cancer[J]. Endocr Rev. 2007; 28(3): 339–363
    8. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway[J]. J Cell Physiol. 2003; 3: 237–255.
    9. Kageyama R, Ohtsuka T, Hatakeyama J, et al. Roles of bHLH genes in neural stem cell differentiation[J]. Exp Cell Res. 2005; 2: 343–348.
    10. Rangarajan A, Talora C, Okuyama R, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation[J]. EMBO J. 2001; 13: 3427–3436.
    11. Ge W, Martinowich K, Wu X, et al. Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation[J]. J Neurosci Res. 2002; 6: 848–860.
    12. Ronchini C, Capobianco AJ. Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation byNotch(ic)[J]. Mol Cell Biol. 2001; 17: 5925–5934.
    13. Lasky JL, Wu H. Notch signaling, brain development, and human disease[J]. Pediatr Res. 2005; 5(pt 2): p104R–109R.
    14. Morrison SJ, Perez SE, Qiao Z, et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells[J]. Cell. 2000; 5: 499–510.
    15. Maillard I, Pear WS. Notch and cancer: best to avoid the ups and downs[J]. Cancer Cell. 2003; 3: 203–205.
    16. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia[J]. Science. 2004; 5694: 269–271.
    17. Nicolas M, Wolfer A, Raj K, et al. Notch1 functions as a tumor suppressor in mouse skin[J]. Nat Genet. 2003; 3: 416–421.
    18. Fan X, Mikolaenko I, Elhassan I, et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth[J]. Cancer Res. 2004; 21: 7787–7793.
    19. Irvin DK, Zurcher SD, Nguyen T, et al. Expression patterns of Notch1, Notch2, and Notch3 suggest multiple functional roles for the Notch-DSL signaling system during brain development[J]. J Comp Neurol. 2001; 2: 167–181.
    20. Somasundaram K, Reddy SP, Vinnakota K, et al. Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma[J]. Oncogene. 2005; 47: 7073–7083.
    21. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of highgrade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis[J]. Cancer Cell. 2006; 3: 157–173.
    22. Ladi E, Nichols JT, Ge W, et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands[J]. J Cell Biol. 2005; 6: 983–992.
    23. Purow BW, Haque RM, Noel MW, et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation[J]. Cancer Res. 2005; 6: 2353–2363.
    24. Kanamori M, Kawaguchi T, Nigro JM, et al. Contribution of Notch signalingactivation to human glioblastoma multiforme[J]. J Neurosurg. 2007; 3: 417–427.
    25. Hulleman E, Quarto M, Vernell R, et al. A role for the transcription factor HEY1 in glioblastoma[J]. J Cell Mol Med. 2009; 13: 136–146.
    26. Yin D, Xie D, Sakajiri S, et al. DLK1: increased expression in gliomas and associated with oncogenic activities[J]. Oncogene. 2006; 13: 1852–1861.
    27. Weijzen S, Rizzo P, Braid M, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells[J]. Nat Med. 2002; 9: 979–986.
    28. Miyamoto Y, Maitra A, Ghosh B, et al. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis[J]. Cancer Cell. 2003; 6: 565–576.
    29. Zeng Q, Li S, Chepeha DB, et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling[J]. Cancer Cell. 2005; 1: 13–23.
    30. Androutsellis-Theotokis A, Leker RR, Soldner F, et al. Notch signaling regulates stem cell numbers in vitro and in vivo[J]. Nature. 2006; 7104: 823–826.
    31. Purow BW, Sundaresan TK, Burdick MJ, et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53[J]. Carcinogenesis. 2008; 5: 918–925.
    32. Zheng Y, Lin L, Zheng Z. TGF-alpha induces upregulation and nuclear translocation of Hes1 in glioma cell[J]. Cell Biochem Funct. 2008; 6: 692–700.
    33. Birlik B, Canda S, Ozer E. Tumour vascularity is of prognostic significance in adult, but not pediatric astrocytomas[J]. Neuropathol Appl Neurobiol. 2006; 5: 532–538.
    34. Poellinger L, Lendahl U. Modulating Notch signaling by pathway-intrinsic and pathway-extrinsic mechanisms[J]. Curr Opin Genet Dev. 2008; 18: 449–454.
    35. Zhu LL, Wu LY, Yew DT, et al. Effects of hypoxia on the proliferation and differentiation of NSCs[J]. Mol Neurobiol. 2005; 1–3: 231–242.
    36. Gale NW, Dominguez MG, Noguera I, et al. Haploinsufficiency of deltalike 4 ligand results in embryonic lethality due to major defects in arterial and vasculardevelopment[J]. Proc Natl Acad Sci USA. 2004; 45: 15949–15954.
    37. Patel NS, Li JL, Generali D, et al. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function[J]. Cancer Res. 2005; 19: 8690–8697.
    38. Noguera-Troise I, Daly C, Papadopoulos NJ, et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis[J]. Nature. 2006; 7122: 1032–1037.
    39. Ridgway J, Zhang G, Wu Y, et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis[J]. Nature. 2006; 7122: 1083–1087.
    40. Li JL, Sainson RC, ShiW, et al. Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo[J]. Cancer Res. 2007; 23: 11244–11253.
    41. Paris D, Quadros A, Patel N, et al. Inhibition of angiogenesis and tumor growth by beta and gamma-secretase inhibitors[J]. Eur J Pharmacol. 2005; 1: 1–15.
    42. Wong GT, Manfra D, Poulet FM, et al. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation[J]. J Biol Chem. 2004; 13: 12876–12882.
    43. Vredenburgh JJ, Desjardins A, Herndon JE, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma[J]. Clin Cancer Res. 2007; 4: 1253–1259.
    44. Poulsen HS, Grunnet K, Sorensen M, et al. Bevacizumab plus irinotecan in the treatment patients with progressive recurrent malignant brain tumours[J]. Acta Oncol. 2008; 48: 52–58.
    45. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy[J]. Nat Rev Cancer. 2008; 8: 592–603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700