用户名: 密码: 验证码:
低维半导体材料若干性能的尺寸和界面效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着低维半导体材料尺寸的减小,表面/体积比急剧增大,表面和界面对半导体材料性能的影响显著增加。本文根据近电子自由理论以及熔化温度的尺寸效应模型,建立了低维半导体能隙的尺寸效应模型。该模型形式简单且无任何可调参数,能预测不同物质、不同维数的低维半导体能隙随尺寸的变化趋势。在此基础上,系统讨论了低维半导体单质以及化合物的尺寸和界面效应、低维半导体固溶体介电常数的尺寸和成分效应以及体等离子能的尺寸效应。此外,根据经典热力学和弹性理论,分别研究了半导体非晶薄膜厚度对晶化动力学的影响,以及半导体外延生长薄膜应变层的临界厚度。以上模型的预测结果与相应的实验以及理论预测结果符合的很好。
In the past 20 years, low dimension semiconductor materials have attracted a great deal of attentions in science studies and technological applications. As the size of low dimension materials approaches to the nanometers scales, they display novel optical, electronic and thermodynamic properties, which are dramatically different from their bulk counterparts. As the promising application, these nanocrystals can be found in many fields, such as solar cells, high energy density (rechargeable) batteries, single-electron transistors and fluorescent biological labels et al. Many of these applications are related to the optical and electronic properties which are usually size dependent. For many semiconductors, since the optical and electronic properties are induced by the edge transitions of the bandgap, Thus, studying the size dependence of the bandgap and the related exciton energy is one of the most important topics in low dimension semiconductor materials research. Besides the size effect, many optical and electronic properties are also influenced by the shape of the corresponding low dimension materials.
     Most important chemical and physical processes of low dimension materials occur at the surface and interface and most important chemical and physical phenomenon are related to the surface and interface of materials. When the size of materials is in the nanoscale regime, there will be more surfaces and interfaces. However the energetic states of the atoms at the surfaces and interfaces are different from that within the bulk materials which maybe influence the behaviors of low dimension materials. Thus, the surface or interface situation should be an important object to be considered.
     Latterly, in our work, there have some efforts to study the size and interface effect on optical and electronic properties of low dimension semiconductor materials, including bandgap, dielectric constant and volume plasmon energy. The established models without any adjusting parameters, are not only simple, but also proved to be reasonable in the full size range when compared with other experimental and theoretical results. In addition, according to classical thermodynamic and elastic theory, the influence of phase-change layer thickness on the crystallization kinetics and the critical layer number of epitaxial grown ultrathin films on semiconductor substrates, are also studied. The model predictions are confirmed to be valid.
     In this thesis, the studies of the size and interface effect on low dimension semiconductor materials are listed as follows:
     1. Low dimension semiconductor materials, with the tunable electronic and optical properties have attracted considerable interest as technologically important materials. With the size decreasing, the bandgap increasing is one of the important issue. According to the nearly free electron approach, the bandgap can be considered to be proportional to the cohesive energy, while cohesive energy is also proportional to melting temperature. Based on hereinbefore relationships and the established size effect melting temperature model, we established a simple model to predict the size dependent bandgap. It was found that the bandgap will increase with the dropping of size. When the size of crystal is in several nanometers range, the bandgap will increase dramatically due to increasing of surface/volume ratio (A/V). In addition, for nanocrystals with different shapes, they have different bandgaps even with the same crystal size. The ratio of the bandgap increasing is 3:2:1 for nanoparticles, nanowires and films, respectively. These differences should be attributed to the different surface/volume ratio of A/V = 6/D, 4/D, 2/D for nanoparticles, quasi-dimension nanoparticles or nanowires and thin films with d = 0, 1, 2, respectively. The model prediction results are in good agreement with the corresponding experimental and stimulant result of Si, II-VI and III-V semiconductor nanoparticles and nanowires.
     2. Based on the established size dependent bandgap model and relevant relationships between bandgap and dielectric constant, the size and interface effect dielectric constant model can also be obtained. The model suggests that dielectric constant will increase or decrease with the size dropping, relying on the interface situation between crystals and surroundings. If the interaction on the crystal/substance interface is stronger than that within the crystal, the interface effect is dominant and there is an increasing trend for the dielectric constant with size decreasing. By contraries, dielectric constant will decrease with the size dropping when the crystal/substance interface is weak. Moreover, we also established a model to resolve the size and component effect on dielectric constant of solid solutions. For solid solutions, there exists a bowing behavior instead of the linear behavior. When the size is in several nanometers scale, the bowing behavior is weak and the dielectric constant is almost a linear of component x with the size decreasing. However when the size is larger than dozens of nanometers, the size effect is weak and the bowing behavior can be considered as bulk value. This provides an insight for materials design. The validity of the model is confirmed by the corresponding experimental results.
     3. The size dependent volume plasmon energy model is established by incorporating the models of size dependent bandgap and lattice contraction model. It predicts that volume plasmon energy increases with the size decreasing. It also implies that the increasing volume plasmon energy is a result of blue shift of bandgap and lattice contraction. The model prediction results are in accordance with the available experimental results of Ge nanopaeticles and nanowires.
     4. For the phase-change discs, the crystallization rate of the phase-change materials determines the maximum achievable data transfer rate and thickness dependent crystallization rate is due to a variation of the crystallization speed. According to the equation of crystallization speed, the energy barrier for crystallization is the only thickness dependent parameter. Analysis of the Gibbs free energy of a crystallite embedded in a thin amorphous film indicates that with the reduction of the film thickness, the energy barrier drops firstly, while it will increase steeply when the thickness of the film is further decreased. This is the result of the competition between film/substance and crystal/amorphous interface energy. The obtained results indicate the presence of an optimum film thickness where crystallization rate is maximized. The predicted optimum thickness of Ge2Sb2Te5 phase-change film is consisted with the experimental results.
     5. As a critical situation for the stability of the epitaxial grown films on semiconductor substrates, the balance between molar elastic energy and molar interface energy for epitaxial grown films is assumed. The value of the elastic energy and interface energy can be easily determined by the known classic elastic theory and the established interface energy model, respectively. According to the above assumption, the critical thickness of epitaxial grown films on semiconductor substances is obtained. It is found that a smaller strain and a larger melting enthalpy are required to obtain a larger critical thickness. The predicted results are in accordance with the experimental results.
引文
[1] TANIGUCHI N. On the basic concept of nanotechnology, Proc. Int. Conf. Prod. Eng., Tokyo, 1974 [C]. Tokyo: JSPE, 18-23.
    [2] Gleiter H, Hansen N, Horsewell A, et al. in Proceedings of the second Risφinternational symposium on metallurgy and materials science [M], RisφNat. Laboratory Roskilde, Denmark, 1981:15.
    [3] GLEITER H. Nanostructured materials: Basic concept and microstructure [J]. Acta Materialia, 2000, 48:1-29.
    [4] EDELATEINA S, CAMMARATA R C. Nanomaterials: synthesis, properties and applications [C]. I Bristol: nst Phys, 1996:105.
    [5] GLEITER H. Nanocrystalline materials [J]. Progress in Materials Science, 1989, 33:223-315.
    [6] LU L, SUI M L, LU K. Superplastic extensibility of nanocrystalline copper at room temperature [J]. Science, 2000, 287:1463-1466.
    [7] MINTOVA S, OLSON N H, VALTCHEV V, et al. Mechanism of zeolite A nanocrystal growth from colloids at room temperature [J]. Science, 1999, 283:958-960.
    [8] HORCh S, LORENSEN H T, HELVEG S, et al. Enhancement of surface selfdiffusion of platinum atoms by adsorbed hydrogen [J]. Nature, 1999, 398:134-136.
    [9] TAN O K, ZHU W, YAN Q, et al. Size effect and gas sensing characteristics of nanocrystalline SnO2-(1_x)a-Fe2O3 ethanol sensors [J]. Sensor Actuat B, 2000, 65:361-365.
    [10] RAO C N R, KULKARNI G U, THOMAS P J, et al. Size-dependent chemistry: properties of nanocrystals [J]. Chemistry European Journal, 2002, 8:28-35.
    [11] GOLDSTEIN N, ECHER C M, ALIVISTOS A P. Melting in semiconductor nanocrystals [J]. Science, 1992, 256:1425-1427.
    [12] CHRISTENSON H K. Confinement effects on freezing and melting [J]. Journal of Physics: Condensed Matter, 2000, 13:95-133.
    [13] ZHANG Z, LI J C, JIANG Q. Modelling for size-dependent and dimension-dependent melting of nanocrystals [J]. Journal Physics D: Applied Physics, 2000, 33:2653-2656.
    [14] Buuren T V, DINH L N, CHASE L L, et al. Changes in the electronic properties of Si nanocrystals as a function of particle size [J]. Physical Review Letters, 1998, 80:3803-3806.
    [15] YOFFE A D. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems [J]. Advances in Physics, 2001, 50:1-208.
    [16] CAVICCHI R E, SILSBEE R H. Coulomb suppression of tunneling rate from small metal particles [J]. Physical Review Letters, 1984, 52:1453-1456.
    [17] TAKAGI M. Electron-diffraction study of liquid-solid transition of thin metal films [J]. Journal of Physical Society, 1954, 9:359-363.
    [18] ALLEN G L, BAYLES R A, GILES W W, et al. Small particle melting of pure metals [J]. Thin Solid Films, 1986, 144:297-308.
    [19] SKRIPOV V P, KOVERDA V P, SKOKOV V N. Size effect on melting of small particles [J]. Physica. Status Solidi A, 1981, 66:109-118.
    [20] SAKA H, NISHIKAWA Y, IMURA T. Melting temperature of In particles embedded in an Al matrix [J]. Philosophical Magazine A, 1988, 57:895-906.
    [21] LU K, JIN Z H. Melting and superheating of low-dimensional materials [J]. Current Opinion in Solid State & Materials Science, 2001, 5:39-44.
    [22] BALL P, GARWIN L. Science at the atomic scale [J]. Nature, 1992, 355:761-766.
    [23] GLEITER H. Nanocrystalline materials [J]. Progress in Materials Science, 1989, 33:223-315.
    [24] LU L, SUI M L, LU K. Superplastic extensibility of nanocrystalline copper at room temperature [J]. Science, 2000, 287:1463-1466.
    [25] LINDEMANN F A.üder die berechnung molekularer eigenfrequenzen [J]. Physics Z, 1910, 11:609-612.
    [26] BORN M. Thermodynamics of crystals and melting [J]. Chemical Physics. 1939, 7:91-603.
    [27] GORECKI T. Vacancies for solid krypton bubble copper, nickel and gold particles [J]. Zeitschrift für Metallkunde, 1974, 65(6): 426-431.
    [28] DASH J G. History of the search for continuous melting [J]. Reviews Modem Physics, 1999, 71:1737-1743.
    [29] RUBCIC A, RUBCIC J B. Simple Model for Volume Change at Melting of Elements [J]. Fizika, 1978, 10:294-299.
    [30] BEN DAVID T, LEREAH Y, DEUTSCHER G, et al. Solid-liquid transition in ultra-fine lead particles [J]. Philosophical Magazine A, 1995, 71:1135-1143.
    [31] DEFAY R, PRIGOGINE I. Surface Tension and adsorption [M]. Wiley: New York, 1951: 27.
    [32] ZHANG M, EFREMOV M Y, SCHIETTEKATTE F, et al. Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements [J]. Physical Reviews B, 2000, 62: 10548-10557.
    [33] PETERS K F, COHEN J B, CHUNG Y W. Melting of Pb nanocrystals [J]. Physical Reviews B, 1998, 57:13430-13438.
    [34] BUFFAT P, BOREL J P. Size effect on the melting temperature of gold clusters [J]. Physical Reviews A, 1976, 13:2287-2298.
    [35] PAWLOW P.über die abn?ngikeit des schmelzpunktes von der oberfl?chenenergie eines festen k?rpers [J]. Zeitschrift Physikalische Chemie, 1909, 65:545-548.
    [36] SAKAI H. Surface-induced melting of small particles [J]. Surface Science, 1996, 351 (1-3): 285-291.
    [37] REISS H, WILSON I B. The effects of size on melting point [J]. Jourmal of Colloid Science 1948, 3:551-561.
    [38] WRONSKI C R M. The size dependence of the melting point of small particles of tin [J]. Journal of Applied Physics, 1967, 18:1731-1737.
    [39] HANSZEN K J. The melting points of small spherules [J]. Zeitschrift für Metallkunde, 1960, 157:523-553.
    [40] REISS H, MIRABEL P, WHETTEN R L. Quantitative analysis of the SH intensity change by a premelting model [J]. Journal of Physics Chemistry. 1988, 92:7241-7250.
    [41] COUCHMAN P R, JESSER W A. Thermodynamic theory of size dependence of melting temperature in metals [J]. Nature, 1977, 269:481-483.
    [42] VANFLEET R R, MOCHEL J M. Thermodynamics of melting and freezing in small particles [J]. Surface Science, 1995, 341:40-50.
    [43] JOHARI G, P. Thermodynamic contributions from pre-melting or pre-transformation of finely dispersed crystals [J]. Philosophical Magazine A, 1998, 77: 1367-1380.
    [44] JONES D R H. Review: The free energies of solid-liquid interfaces [J]. Journal of Materials Science, 1974, 9:1-17.
    [45] GRABACK L, BOHR J. Superheating and supercooling of lead precipitates in aluminum [J]. Physical Review Letters, 1990, 64:934-937.
    [46] LU K, LI Y. Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystals [J] Physical Review Letters, 1998, 80:4474-4477.
    [47] ZHANG D L, CANTOR B. Melting behaviour of In and Pb particles embedded inan Al matrix [J]. Acta Materialia, 1991, 39:1595-1602.
    [48] SHENG H W, REN G, PENG L M, et al. Superheating and melting-point depression of Pb nanoparticles embedded in Al matrixes [J]. Philosophical Magazine Letters, 1996, 73:179-186.
    [49] GOSWAMI R, CHATTOPADHYAY K. The superheating of Pb embedded in a Zn matrix: the role of interface melting [J]. Philosophical Magazine Letters, 1993, 68:215-223.
    [50] SHENG H W, REN G, PENG L M. et al. Melting process of nanometer-sized In particles embedded in an Al matrix synthesized by ball milling [J]. Journal of Materials Research, 1996, 11:2841-2851.
    [51] ZHANG L, JIN Z H, ZhANG L H, et al. Superheating of confined Pb thin films [J]. Physical Review Letters, 2000, 85:1484-1487.
    [52] SEMENCHENKO V K. Surface Phenomena in Metals and Alloys [M], Oxford: Pergamon, 1961: 281.
    [53] JIANG Q, ZHANG Z, LI J C. Size-dependent superheating of nanocrystals embedded in matrix [J]. Chemical Physics Letters, 2000, 322:549-552.
    [54] JIANG Q, ZHANG Z, LI J C. Melting thermodynamics of nanocrystals embedded in matrix [J]. Acta Materialia, 2000, 48:4791-4795.
    [55] JIANG Q, LIANG L H, LI J C. Thermodynamic superheating and relevant interface stability of low-dimensional metallic crystals [J]. Journal of Physics: Condensed. Matter, 2001, 13:565-571.
    [56] JIANG Q, LIANG L H, ZHAO M. Modeling of the melting temperature of nano-ice in MCM-41 pores [J]. Journal of Physics: Condensed Matter, 2001, 13:L397-L401
    [57] JIANG Q, SHI H X, ZHAO M. Melting thermodynamics of organic nanocrystals [J]. Journal of Chemical Physics, 1999, 111:2176-2180.
    [58] http://www.webelements.com/
    [59] KING H. W., in: R. W. Cahn, P. Hassen, Physical Metallurgy [M]. third edition. Amsterdam: North-Holland Physics, 1983: 59-63.
    [60] Periodic Table of the Elements [M], Illinois: Sargent-Welch Scientific Company, 1980.
    [61] KRAUSCH G, DETZEL T, BIELEFELDT H N, et al. Growth and melting behavior of thin In films on Ge (100) [J]. Applied Physics A, 1991, 53:324-329.
    [62] GLINKA Y D, LIN S H, HWANG L P, et al. Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials [J]. Physical Review B 2001, 64:085421-11.
    [63] SCHUPPLER S, FRIEDMAN SL, MARCUS MA, et al. Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si [J]. Physical Review B 1995, 52:4910-4925.
    [64] HEIKKILA L, KUUSELA T, HEDMAN H P. Electroluminescence in Si/SiO2 layer structures [J]. Journal of Applied Physics, 2001, 89:2179-2184.
    [65] GARRIDO B, LOPEZ M, GONZALEZ O, et al. Correlation between structural and optical properties of Si nanocrystals embedded in SiO2: the mechanism of visible light emission [J]. Applied Physics Letters, 2000, 77:3143-3145.
    [66] TOMASULO A, RAMAKRISHNA M V. Quantum confinement effects in semiconductor clusters II [J]. Journal of Chemical Physics, 1996, 105:3612-3626.
    [67] JAIN S C, WILLANDER M, NARAYAN J, et al. IIIdnitrides: growth, characterization, and properties [J]. Journal of Applied Physics, 2000, 87:965-1006.
    [68] RAMVALL P, TANAKA S, NOMURA S, et al. Observation of confinement-dependent exciton binding energy of GaN quantum dots [J]. Applied Physics Letters, 1998, 73:1104-1106.
    [69] GUZELIAN A A, BANIN U, KADAVANICH A V, et al. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots [J]. AppliedPhysics Letters, 1996, 69:1432-1434.
    [70] MICIC O I, SPRAGUE J, LU Z, et al. Highly efficient band-edge emission from InP quantum dots. Applied Physics Letters, 1996, 68:3150-3152.
    [71] FERREYRA J M, PROETTO C R. Quantum size effects on excitonic Coulomb and exchange energies in finite-barrier semiconductor quantum dots [J]. Physical Review B, 1999, 60:10672-10675.
    [72] WANG Y, HERRON N. Quantum size effects on the exciton energy of CdS clusters [J]. Physical Review B, 1990, 42:7253-7255.
    [73] KRISHNA M V R, FRIESNER R A. Exciton spectra of semiconductor clusters [J]. Physical Review Letters, 1991, 67:629-632.
    [74] LIPPENS P E, LANNOO M. Comparison between calculated and experimental values of the lowest excited electronic state of small CdSe crystallites [J]. Physical Review B, 1989, 41:6079-6081.
    [75] CHU D S, DAI C M. Quantum size effects in CdS thin films [J]. Physical Review B, 1992, 45:11805-11810.
    [76] ALBE V, JOUANIN C, BERTHO D. Confinement and shape effects on the optical spectra of small CdSe nanocrystals [J]. Physical Review B, 1998, 58:4713-4720.
    [77] BAWENDI M G, WILSON W L, ROTHBERG L, et al. Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters [J]. Physical Review Letters, 1990, 65:1623-1626.
    [78] HAYASHI S, SANDA H, AGATA M, et al. Resonant Raman scattering from ZnTe microcrystals: evidence for quantum size effects [J]. Physical Review B, 1989, 40:5544-5548.
    [79] LI J, WANG L W. Band-structure-corrected local density approximation study of semiconductor quantum dots and wiresPhys [J]. Physical Review B, 2005, 72:25325.
    [80] FANG B, LO W, CHIEN T, et al. Surface band structures on Nb (001) [J]. Physical Review B, 1994, 50:11093-11101.
    [81] SCHMEI?ER D, B?HME O, YFANTIS A, et al. Dipole moment of nanoparticles at interfaces [J]. Physical Review Letters, 1999, 83:380-383.
    [82] TSU R, BABIC D, LORIATTI JR L. Simple model for the dielectric constant of nanoscale silicon particle [J]. Journal of Applied Physics, 1997, 82:1327-1329.
    [83] SUN C Q, SUN X W, TAY B K, et al. Dielectric suppression and its effect on photoabsorption of nanometric semiconductors [J]. Journal Physics D, 2001, 34:2359-2362.
    [84] ALLAN G, DELERUE C, LANNOO M, et al. Hydrogenic impurity levels, dielectric constant, and Coulumb charging effects in silicon crystallites [J]. Physics Review B, 1995, 52:11982-11988.
    [85] CHEN X S, ZHAO J J, WANG G H, et al. The effect of size distributions of nanoclusters on photoluminescence from ensembles of Si nanoclusters [J]. Physics Letters A, 1996, 212:285-289.
    [86] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271:933-937.
    [87] PAN L K, SUN C Q, TAY B K, et al. Photoluminescence of Si nanosolids near the lower end of the size limit [J]. Journal of Physical Chemistry B, 2002, 106:11725-11727.
    [88] SUN C Q, LI S, TAY B K, et al. Upper limit of blue shift in the photoluminescence of CdSe and CdS nanosolids [J]. Acta Materialia, 2002, 50:4687-4693.
    [89] SUN C Q, PAN L K, FU Y Q, et al. Size dependence of the 2p-level shift of nanosolid silicon [J]. Journal of Physical Chemistry B, 2003, 107:5113-5115.
    [90] SUN C Q. Oxygen-reduced inner potential and work function in VLEED [J]. Vacuum, 1997, 48:865-869.
    [91] OVER H, KLEINLE G, ERTL G, et al. Leed structural analysis of the Co(101_0) surface. Surf Sci 1991, 254(1–3):L469-L474.
    [92] JENNINGS PJ, Sun C Q. In the surface analysis methods in materials science [M]. 4th ed. NewYork: Springer-Verlag, 1992.
    [93] REDDY D R, REDDY B K. Laser-like mechanoluminescence in ZnMnTe-diluted magnetic semiconductor [J]. Applied Physics Letters, 2002, 81(3):460-462.
    [94] ZHANG J Y, WANG X Y, XIAO M. Lattice contraction in free-standing CdSe nanocrystals [J]. Applied Physics Letters, 2002, 81(11):2076-2078.
    [95] YU X F, LIU X, ZHANG K, et al. The lattice contraction of nanometer-sized Sn and Bi particlesproduced by an electrohydrodynamic technique [J]. Journal of Physics: Condensed Matter, 1999, 11:937-944.
    [96] STONEHAM A M. Comment on: the lattice contraction of nanometersized Sn and Bi particles [J]. Journal of Physics: Condensed Matter, 1999, 11:8351-8352.
    [97] NANDA K K, BEHERA S N, SAHU S N. Comment on: the lattice contraction of nanometer sized Sn and Bi particles [J]. Journal of Physics: Condensed Matter, 2001, 13:2861-2864.
    [98] BORG H, SCHIJNDEL M, RIJPERS J C N, et al, Phase-Change Media for High-Numerical-Aperture and Blue-Wavelength Recording [J]. Journal of Applied Physics, 2001, 40:1592-1597.
    [99] MIJIRITSKII A, HELLMIG J, BORG H, et al, Development of Recording Stacks for a Rewritable Dual-Layer Optical Disc [J]. Journal of Applied Physics, 2002, 41:1668-1673.
    [100] HELLMIG J, MIJIRITSKII A V, BORG H J, et al Dual-Layer Blu-ray Disc Based on Fast-Growth Phase-Change Materials [J]. Journal of Applied Physics, 2003, 42:848-851.
    [101] WRIGHT E M, KHULBE P K, MANSURIPUR M. Dynamic theory ofcrystallization in Ge2Sb2.3Te5 phase-change optical recording media [J]. Applied Optics, 2000, 39:6695-6701.
    [102] WEIDENHOF V, FRIEDRICH I, ZIEGLER S, et al. Laser induced crystallization of amorphous Ge2Sb2Te5 films [J]. Journal of Applied Physics, 2001, 89:3168.
    [103] RUITENBERG G, PETFORD-LONG A K, DOOLE R C. Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films [J], Journal of Applied Physics, 2002, 92:3168-3176.
    [104] KOJIMA R, OKABAYASHI S, KASHIHARA T, et al. Nitrogen Doping Effect on Phase Change Optical Disks [J]. Journal of Applied Physics, 1998, 37:2098-2103.
    [105] BRUCHEZ M, MORONNE M, GIN P, et al. Semiconductor nanocrystals as fluorescent biological labels [J], Science, 1998, 281:2013-2016.
    [106] TRWOGA P F, KENYON A J, PITT C W. Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters [J]. Journal of Applied Physics, 1998, 83:3789-3794.
    [107] EFROS A L, EFROS A L. Interband absorption of light in a semiconductor sphere [J]. Soviet Physics– Semiconducetors, 1982, 16:772-775.
    [108] FU H, ZUNGER A. Local-density-derived semiempirical nonlocal pseudopotentials for InP with applications to large quantum dots [J]. Physics Review B, 1997, 55:1642-1653.
    [109] MI?I? I, CHEONG H M, FU H, et al. Size-dependent spectroscopy of InP quantum dots [J], Journal of Physical Chemistry B, 1997, 101:4904-4912.
    [110] RANJAN V, SINGH V A, JOHN G C. Effective exponent for the size dependence of luminescence in semiconductor nanocrystallites [J], Physics Review B, 1998, 58:1158-1161.
    [111] KANEMITSU Y, UTO H, MASUMOTO Y, et al. Microstructure and optical properties of free-standing porous silicon films: size dependence of absorption spectra in Si nanometer-sized crystallites [J]. Physics Review B, 1993, 48:2827-2830.
    [112] SUN C Q. Oxidation electronics: bond-band-barrier correlation and its applications [J]. Progress in Materials Science, 2003, 48:521-685.
    [113] QIN G G, SONG H Z, ZHANG B R, et al. Experimental evidence for luminescence from silicon oxide layers in oxidized porous silicon [J]. Physics Review B, 1996, 54:2548-2555.
    [114] HONG J, SONG H W, CHOI J, et al. Dependence of ferroelectricity on film thickness in nano-scale Pb(Zr,Ti)O-3 thin films [J]. Integrated Ferroelectrics, 2004, 68:157-167.
    [115] KOCH F, PETROVA-KOCH V, MUSCHIK T, et al. Microcrystalline semiconductors: materials science and devices [C]. Pittsburgh PA: Materials Research Society, 1993: 197.
    [116] JIANG Q, LI, J C, CHI B Q. Size-dependent cohesive energy of nanocrystals [J]. Chemical Physics Letters. 2002, 366:551-554.
    [117] REGEL A R, GLAZOV V M. Entropy of melting of semiconductors, Semiconductors [J]. 1995, 29:405-417.
    [118] ZHAO M, ZHOU X H, JIANG Q. Comparison of different models for melting point change of metallic nanocrystals [J] Journal of Materials Research, 2001, 16:3304-3308.
    [119] M. ZHAO, Q. JIANG, Melting and surface melting of low-dimensional In crystals, Solid State Commun. 2004, 130, 37-39.
    [120] SHARMA A C. Size-dependent energy band gap and dielectric constant within the generalized Penn model applied to a semiconductor nanocrystallite [J]. Journalof Applied Physics, 2006, 100:084301-8.
    [121] MANASREH M O. Optical absorption near the band edge in GaN grown by metalorganic chemical-vapor deposition [J]. Physics Review B, 1996, 53:16425-16428.
    [122] MASUMOTO Y, SONOBE K. Size-dependent energy levels of CdTe quantum dots [J]. Physics Review B, 1997, 56:9734-9737.
    [123] Palmer D W. 2003 http://www.semiconductors.co.uk/
    [124] XIAO J P, XIE Y, TANG R et al. Benzene Thermal Conversion to Nanocrystalline Indium Nitride from Sulfide at Low Temperature [J]. Inorganic Chemistry, 2003, 42:107-111.
    [125] DORIGONI L, BISI O, Bernardini F, et al. Electron states and luminescence transition in porous silicon [J]. Physics Review B, 1996, 53:4557-4564.
    [126] MA D D D, LEE C S, AU F C K, et al. Small-Diameter Silicon Nanowire Surfaces [J]. Science, 2003, 299:1874-1877.
    [127] ZHAO X Y, WEI C M, YANG L, et al. Quantum confinement and electronic properties of silicon nanowires [J]. Phys. Rev. Lett., 2004, 92: 236805-4.
    [128] YEH C Y, ZHANG S B, ZUNGER A. Confinement, surface, and chemisorption effects on the optical properties of Si quantum wires [J]. Physics Review B, 1994, 50:14405-14415.
    [129] VOSSMEYER T, KATSIKAS L, GIERSIG M, et al. CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift [J]. Journal of Physical Chemistry, 1994, 98:7665-7673.
    [130] TORIMOTO T, KONTANI H, SHIBUTANI Y, et al. Characterization of Ultrasmall CdS Nanoparticles Prepared by the Size-Selective Photoetching Techniquen [J]. Journal of Physical Chemistry B, 2001, 105:6838-6845.
    [131] NANDA J, KURUVILLA B A, SARMA D D. Photoelectron spectroscopic study of CdS nanocrystallites [J]. Physics Review B, 1999, 59:7473-7479.
    [132] RAO C N R, KULKARNI G U, THOMAS P J, et al. Size-dependent chemistry: properties of nanocrystals [J]. Chemistry - A European Journal, 2002, 8:29-35.
    [133] ROGACH A L, KORNOWSKI A, GAO M, et al. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals [J]. Journal of Physical Chemistry B, 1999, 103:3065-3069.
    [134] GORER S, HODES G. Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films [J]. Journal of Physical Chemistry, 1994, 98:5338-5346.
    [135] DABBOUSI B O, MURRAY C B, RUBNER M F, et al. Langmuir-Blodgett Manipulation of Size-Selected CdSe Nanocrystallites [J]. Chemistry of Materials, 1994, 6:216-219.
    [136] MASTAI Y, HODES G. Size Quantization in Electrodeposited CdTe Nanocrystalline Films [J]. Journal of Physical Chemistry B, 1997, 101:2685-2690.
    [137] ARIZPE-CHREZ H, RAMREZ-BON R, ESPINOZA-BETRN F J, et al. Quantum confinement effects in CdTe nanostructured films prepared by the RF sputtering technique [J]. Journal of Physics and Chemistry of Solids, 2000, 61:11-518.
    [138] NAKAOKA Y, NOSAKA Y. Electron Spin Resonance Study of Radicals Produced by Photoirradiation on Quantized and Bulk ZnS Particles [J]. Langmuir, 1997, 13:708-713.
    [139] ROSSETTI R, HULL R, GIBSON J M, et al. Excited electronic states and optical spectra of ZnS and CdS crystallites in the 15 to 50 ? size range: Evolution from molecular to bulk semiconducting properties [J]. Journal of Chemical Physics, 1985, 82:552-559.
    [140] INOUE H, ICHIROKU N, TORIMOTO T, et al. Photoinduced Electron Transfer from Zinc Sulfide Microcrystals Modified with Various Alkanethiols [J]. Langmuir, 1994, 10:4517-4522.
    [141] YANAGIDA S, YOSHIYA M, SHIRAGAMI T, et al Semiconductor photocatalysis. I. Quantitative photoreduction of aliphatic ketones to alcohols using defect-free zinc sulfide quantum crystallites [J]. Journal of Physical Chemistry, 1990, 94:3104-3011.
    [142] QUINLAN F T, KUTHER J, TREMEL W, et al. Reverse Micelle Synthesis and Characterization of ZnSe Nanoparticles [J]. Langmuir, 2000, 16:4049-4051.
    [143] MAZHER J, SHRIVASTAV A K, NANDEDKAR R V, et al. Strained ZnSe nanostructures investigated by x-ray diffraction, atomic force microscopy, transmission electron microscopy and optical absorption and luminescence spectroscopy [J]. Nanotechnology, 2004, 15:572-580.
    [144] HINES M A, GUYOT-SIONNEST P. Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals [J]. Journal of Physical Chemistry B, 1998, 102:3655-3657.
    [145] SAPRA S, SARMA D D. Evolution of the electronic structure with size in II-VI semiconductor nanocrystals [J]. Physics Review B, 2004, 69:125304-7.
    [146] JUN Y W, CHOI C S, CHEON J. Size and shape controlled ZnTe nanocrystals with quantum confinement effect [J]. Chemical Communications, 2001, 1:101-102.
    [147] YU H, LI J B, LOOMIS R A, et al. Cadmium Selenide Quantum Wires and the Transition from 3D to 2D Confinement [J]. Journal of the American Chemical Society, 2003, 125:16168-16169.
    [148] LI L S, HU J, YANG W, et al. ALIVISATOS, Band gap variation of size- and shape-controlled colloidal CdSe and quantum dots [J]. Nano Letters, 2001, 1:349-351.
    [149] OLSHAVSKY M A, GOLDSTEIN A N, ALIVISATOS A P. Organometallicsynthesis of gallium-arsenide crystallites, exhibiting quantum confinement [J]. Journal of the American Chemical Society, 1990, 112:9438-9439.
    [150] UCHIDA H, CURTIS C J, NOZIK A J. Gallium arsenide nanocrystals prepared in quinoline [J]. Journal of Physical Chemistry, 1991, 95:5382-5384.
    [151] MALIK M A, BRIEN P O, NORAGER S, at al. Gallium arsenide nanoparticles: synthesis and characterization [J]. Journal of Materials Chemistry, 2003, 13:591-2595.
    [152] YU H, LI J B, LOOMIS R A, et al. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots [J]. Nature Materials, 2003, 2:517-520.
    [153] MI?I? O I, JONES K M, CAHILL A, et al. Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots [J]. Journal of Physical Chemistry B, 1998, 102:9791-9796.
    [154] NANDA K K, KRUIS F E, FISSAN H. Effective mass approximation for two extreme semiconductors: Band gap of PbS and CuBr nanoparticles [J]. Journal of Applied Physics, 2004, 95:5035-5041.
    [155] PAN L K, SUN C Q, CHEN T P, et al. Dielectric suppression of nanosolid silicon [J]. Nanotechnology, 2004, 15:1802-1806.
    [156] WALTER J P, COHEN M L. Wave-Vector-Dependent Dielectric Function for Si, Ge, GaAs, and ZnSe [J]. Physical Review B, 1970, 2:1821-1826.
    [157] WANG L W, ZUNGER A. Dielectric constants of silicon quantum dots [J]. Physical Review Letters, 1994, 73:1039-1042.
    [158] LANNOO M, DELERUE C, ALLAN G. Screening in Semiconductor Nanocrystallites and Its Consequences for Porous Silicon [J]. Physical Review Letters, 1995, 74:3415-3418.
    [159] DELERUE C, LANNOO M, ALLAN G. Concept of dielectric constant fornanosized systems [J]. Physical Review B, 2003, 68:115411-4.
    [160] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. Journal of the American Chemical Society, 1993, 115:8706 -8715.
    [161] WANG L W, ZUNGER A. Pseudopotential calculations of nanoscale CdSe quantum dots [J]. Physical Review B, 1996, 53:9579-9582.
    [162] LEE B T, HWANG C S. Influences of interfacial intrinsic low-dielectric layers on the dielectric properties of sputtered (Ba,Sr)TiO3 thin films [J]. Applied Physics Letters, 2000, 77:124-126.
    [163] ZHOU C, NEWNS D M. Intrinsic dead layer effect and the performance of ferroelectric thin film capacitors [J]. Journal of Applied Physics, 1997, 82:3081-3088.
    [164] HWANG C S. Thickness-dependent dielectric constants of (Ba,Sr)TiO3 thin films with Pt or conducting oxide electrodes [J]. Journal of Applied Physics, 2002, 92:432-437.
    [165] CHEN B, YANG H, ZHAO L, et al. Thickness and dielectric constant of dead layer in Pt/(Ba0.7Sr0.3)TiO3/YBa2Cu3O7?x capacitor [J]. Applied Physics Letters, 2004, 84:583-585.
    [166] KIM L, KIM J, JUNG D, et al. Strain effect on dielectric property of SrTiO3 lattice: first-principles study [J]. Thin Solid Films, 2005, 475:97-101.
    [167] CARTOIXàX, WANG L W. Microscopic dielectric response functions in semiconductor quantum dots [J]. Physical Review Letters, 2005, 94:236804-4.
    [168] FLAVIO S D, RITA C S L, LAURO T K. Determination of Thickness, Dielectric Constant of Thiol Films, and Kinetics of Adsorption Using Surface Plasmon Resonance [J]. Langmuir, 2005, 21:602-609.
    [169] PENN D R, Wave-Number-Dependent Dielectric Function of Semiconductors [J]. Physical Review, 1962, 128:2093-2097.
    [170] TSU R, BABIC D. Doping of a quantum dot [J]. Applied Physics Letters, 1994, 64:1806-1808.
    [171] CHEN T P, LIU Y, TSE M S, et al. Dielectric functions of Si nanocrystals embedded in a SiO2 matrix. Physical Review B, 2003, 68:153301-4.
    [172] YOO H G., FAUCHET P M. Dielectric functions of Si nanocrystals embedded in a SiO2 matrix [J]. Physical Review B, 2008, 77:115355-4.
    [173] GIUSTINO F, PASQUARELLO A. Theory of atomic-scale dielectric permittivity at insulator interfaces [J]. Physical Review B, 2005, 71:144104-13.
    [174] NANDA J, SAPRA S, SARMA D D, et al. Size-Selected Zinc Sulfide Nanocrystallites: Synthesis, Structure, and Optical Studies [J]. Chemistry of Materials, 2000, 12:1018-1024.
    [175] TALAPIN D V, POZNYAK S K, GAPONIK N P, et al. Synthesis of surface-modified colloidal semiconductor nanocrystals and study of photoinduced charge separation and transport in nanocrystal-polymer composites [J]. Physica E, 2002, 14:237-241.
    [176] BANIN U, CAO Y W, KATZ D, et al. Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots [J]. Nature, 1990, 400: 542-544.
    [177] KAN S H, MOKARI T, ROTHENBERG E, et al. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods [J]. Nature Materials, 2003, 2:155-158.
    [178] MI?I? O I, AHRENKIEL S P, NOZIK A J. Synthesis of extremely small InP quantum dots and electronic coupling in their disordered solid films [J]. Applied Physics Letters, 2001, 78:4022-4024.
    [179] DONNAY J D H, ONDIK H M. Crystal Data Determinative Tables [M]. 3rd ed.Washington DC: U. S. Department of commerce and JCPDS, 1972: A-3.
    [180] KIRK J S, BOHN P W. Surface Adsorption and Transfer of Organomercaptans to Colloidal Gold and Direct Identification by Matrix Assisted Laser Desorption/Ionization Mass Spectrometry [J]. Journal of the American Chemical Society, 2004, 126:5920-5926.
    [181] http://fajerpc.magnet.fsu.edu/Education/2010/Lectures/3_Chemical_Bonds.htm
    [182] NION A, JIANG P, POPOFF A, et al. Rectangular Nanostructuring of Au(111) Surfaces by Self-assembly of Size-Selected Thiacrown Ether Macrocycles[J]. Journal of the American Chemical Society, 2007, 129:2450-2451.
    [183] RICHARDSON D, HILL R. Dielectric function variations in ternary zinc compound semiconductor alloy systems [J]. Journal of Physics C: Solid State Phys, 1973, 6:L131-L134.
    [184] LIANG L H, LIU D, JIANG Q. Size-dependent continuous binary solution phase diagram [J]. Nanotechnology, 2003, 7:438-442.
    [185] DENTON A R, ASHCROFT N W. Vegard’s law [J], Physical Review A, 1991, 43:3161-3164.
    [186] ZHONG X H, HAN M Y, DONG Z L, et al. Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability [J]. Journal of the American Chemical Society, 2003, 125:8589-8594.
    [187] BOUAMAMA K, DJEMIA P, LEBGA N, et al. Ab initio calculation of the elastic properties and the lattice dynamics of the Znx Cd1?x Se alloy [J]. Semiconductor Science and Technology, 2009, 24:045005-5.
    [188] SWAFFORD L A, WEIGAND L A, BOWERS M J. Homogeneously alloyed CdSxSe1-x nanocrystals: synthesis, characterization, and composition/size-dependent band gap [J]. Journal of the American Chemical Society, 2006, 128:12299-12306.
    [189] NOMURA S, KOBAYASHI T. Nonparabolicity of the conduction band in CdSe and CdSxSe1?x semiconductor microcrystallites [J]. Solid State Commun, 1991, 8:677-680.
    [190] LI Y C, ZHONG H Z, LI R, et al. High-Yield Fabrication and Electrochemical Characterization of Tetrapodal CdSe, CdTe, and CdSexTe1-x Nanocrystals [J]. Advanced Functional Materials, 2006, 16:1705-1716.
    [191] HANNACHI L, BOUARISSA N. Electronic structure and optical properties of CdSexTe1?x mixed crystals [J]. Superlattices and Microstructures, 2008, 44:94-801.
    [192] MITOME M, YAMAZAKI Y, TAKAGI H, et al. Size dependence of Plasmon energy in Si clusters [J]. Journal of Applied Physics, 1992, 72:812-814.
    [193] SANCHEZA A M, BEANLAND R, PAPWORTH A J, et al. Nanometer-scale strain measurements in semiconductors: An innovative approach using the plasmon peak in electron energy loss spectra [J]. Applied Physics Letters, 2006, 88:051917-3.
    [194] YAMADA S. Structure of germanium nanoparticles prepared by evaporation method [J]. Journal of Applied Physics, 2003, 94:6818-3821.
    [195] JIANG Q, LIANG L H, ZHAO D S. Lattice contraction and surface stress of fcc nanocrystals [J]. Journal of Physical Chemistry B, 2001, 105:6275-6277.
    [196] WEAST R C. CRC Handbook of Chemistry and physics [M]. 70th ed. Florida: CRC Press, 1989: E-106, E-110, B-67, B-224
    [197] HANRATH T, KORGEL B A. A Comprehensive Study of Electron Energy Losses in Ge Nanowires [J]. Nano Letters, 2004, 4:1455-1461.
    [198] IWASAKI H, HARIGAYA M, NONOYAMA O, et al. Completely Erasable Phase Change Optical Disc II: Application of Ag-In-Sb-Te Mixed-Phase System for Rewritable Compact Disc Compatible with CD-Velocity and Double CD-Velocity [J]. Journal of Applied Physics, 1993, 32:5241-5247.
    [199] COOMBS J H, JONGENELIS A P J, ES-SPIEKMAN W V, et al. Laser-inducedcrystallization phenomena in GeTe-based alloys. II. Composition dependence of nucleation and growth [J]. Journal of Applied Physics, 1995, 78:4918-4927.
    [200] YAMADA N, OHNO E, NISHIUCHI K, et al. Rapid-Phase Transitions of GeTe-Sb2 Te3 Pseudobinary Amorphous Thin Films for an Optical Disk Memory [J]. Journal of Applied Physics, 1991, 69:2849-2856.
    [201] COOMBS J H, JONGENELIS A P J M, ES-SPIEKMAN W V, et al. JACOBS, Laser-induced crystallization phenomena in GeTe-based alloys [J]. Journal of Applied Physics, 1995, 78:4906-4917.
    [202] MARTENS H C F, VLUTTERS R, PRANGSMA J C. Thickness dependent crystallization speed in thin phase change layersused for optical recording [J]. Journal of Applied Physics, 2004, 95:3977-3983.
    [203] MEINDERS E R, BORG H J, LANKHORST M H R, et al. Numerical simulation of mark formation in dual-stack phase-change recording [J]. Journal of Applied Physics, 2002, 91:9794-9802.
    [204] THOMPSON C V, SPAEPEN F. On the Approximation of the Free Energy Change on Crystallization [J]. Acta Metallurgica, 1979, 27:1855-1859.
    [205] NONAKA T, OHBAYASHI G, TORIUMI Y, et al. Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase [J]. Thin Solid Films, 2000, 370:258-261.
    [206] WANG Y R, DUKE C B. Atomic and electronic structure of ZnS cleavage surfaces [J]. Physical Review B, 1987, 36:2763-2769.
    [207] DREYSSE H, DEMANGEAT C. Theoretical approaches of magnetism of transition-metal thin films and nanostructures on semi-infinite substrate [J]. Surface Science, 1997, 28:65-122.
    [208] PEARTON S J, ABERNATHY C R, NORTON D P, et al. Advances in wide bandgap materials for semiconductor spintronics [J]. Materials Science and Engineering R, 2003, 40:137-068.
    [209] MEINEL K, WOLTER H, AMMER CH, et al. Metastable misfit-induced relaxation structures of close-packed heteroepitaxial films [J]. Surface Science, 1998, 401: 434-444.
    [210] JIANG Q, ZHAO D S, ZHAO M. Size-dependent interface energy and related interface stress [J]. Acta Materialia, 2001, 49:3143-3147.
    [211] XU Z H, WANG L S. Inorganic Thermochemistry Data Database [M]. Beijing: Science Press of China, 1987.
    [212] TSELEPI M, XU Y B, FREELAND D J, et al. Nucleation, growth and magnetic properties of Fe ultrathin films grown on InAs(1 0 0)-4×2 [J]. Journal of magnetism and Magnetic Materials, 2001, 226-230:1585-1587.
    [213] GESTER M, DABOO C, GRAY S J, et al. Formation of pyramid-like structures in the growth of epitaxial Fe/GaAs(001) films [J]. Journal of magnetism and Magnetic Materials, 1997, 165:242-245.
    [214] FISSEL A, AKHTARIEV R, KAISER U, et al. MBE growth of Si on SiC (0001): from superstructures to island [J]. Journal of Crystal Growth, 2001, 227:777-781.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700