用户名: 密码: 验证码:
ROCK抑制剂法舒地尔对脂多糖致大鼠肺微血管内皮细胞损伤的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌性脓毒症及其伴随的严重的并发症是临床常见的、威胁生命的疾病。而所有这些并发症的一个共同点就是内皮细胞损伤和功能障碍。肺微血管内皮细胞(PMVECs)是肺组织的重要实质细胞,在肺损伤过程中既是首位受损伤的靶细胞,又是活跃的炎症细胞和效应细胞,在疾病发生发展中起关键作用。因此,深入探讨PMVECs损伤机制在肺循环疾病的研究中至关重要。
     感染尤其是革兰氏阴性菌脓毒症是急性肺损伤/急性呼吸窘迫综合征(ALI/ARDS)等肺循环疾病的主要病因。细菌脂多糖(LPS)作为革兰阴性杆菌外膜上的一种糖蛋白,在体内可引起强烈的炎症反应,直接或间接损伤PMVECs,在感染性ALI/ARDS的病理过程中起关键作用。炎性刺激下PMVECs损伤的调控机制涉及复杂的信号转导途径。研究发现,在ALI/ARDS、肺动脉高压、肺癌等疾病的发生发展中均有RhoA/Rho激酶(ROCK)信号通路的参与。RhoA/ROCK通路作为体内普遍存在的一条信号通路,在细胞的信号转导过程中起着信号转换器或分子开关的作用,能够诱发肌动蛋白细胞骨架重排、调控基因转录及细胞周期进程等。然而,RhoA/ROCK通路在LPS诱导的大鼠PMVECs损伤中的调节机制以及与其他信号通路的交叉反应尚需进一步研究。因此,本实验以LPS诱导大鼠PMVECs损伤为模型,观察RhoA/ROCK通路在PMVECs损伤中的变化。并通过细胞免疫化学、流式细胞术、激光共聚焦及细胞分子生物学等技术研究ROCK抑制剂法舒地尔对LPS诱导的大鼠PMVECs损伤的影响,深入探讨其下游信号转导机制。第一部分RhoA/ROCK通路参与LPS诱导的大鼠肺微血管内皮细胞损伤
     目的:研究RhoA/ROCK通路在LPS诱导的大鼠PMVECs损伤中的变化及可能机制。
     方法:组织贴块法原代培养大鼠PMVECs,Ⅷ因子相关抗原免疫细胞化学染色及透射电镜观察细胞超微结构鉴定大鼠PMVECs;MTT及乳酸脱氢酶(LDH)法测定PMVECs细胞活力;RT-PCR检测RhoA、ROCK1mRNA的表达;Western blot检测MYPT1磷酸化水平。
     结果:1PMVECs体外培养及鉴定
     采用组织贴块法并加以改良成功培养出大鼠PMVECs,去除组织块继续培养3~5天后,基本形成细胞单层,汇合呈典型的铺路鹅卵石状排列。VIII因子相关抗原免疫细胞化学染色表明,约95%的细胞表现为阳性。电镜结果表明:多数细胞均可观察到质膜突起,即微绒毛;在细胞浆中还观察到W-P小体;另外有大量的质膜小泡(又称吞饮小泡)存在于细胞浆内,上述结构符合典型的内皮细胞超微结构特征。结合我们的取材部位为肺外边缘组织,因此可以证实分离培养的细胞的确为肺微血管内皮细胞。2LPS对大鼠PMVECs细胞生长的影响及法舒地尔的干预作用
     MTT实验结果表明:与对照组(OD值为0.95±0.12)相比,0.01、0.1、1μg/ml LPS对大鼠PMVECs生长没有明显影响;而10、100μg/ml LPS处理组OD值分别降为0.75±0.19(P <0.05)和0.50±0.12(P <0.01),细胞生长明显抑制。10μg/ml LPS能明显造成PMVECs损伤,但又不至于导致损伤过重,仍留有足够数量的细胞进行后续实验,因此,初步选定用10μg/ml LPS制作PMVECs损伤模型。10μg/ml LPS作用6h和12h时对细胞生长没有明显影响,作用24h时OD值为0.73±0.19,与LPS作用0h(OD值为0.93±0.15)相比,PMVECs生长明显受到抑制(P <0.05),在48h和72h时,仍处于较低水平。25,50μM法舒地尔预处理对LPS作用24h导致的细胞损伤有不同程度的改善(与LPS组相比,P <0.05)。3LPS对大鼠PMVECs LDH活性的影响及法舒地尔的干预作用
     对照组上清液中LDH活性为127.6±17.3U/L,0.1、1、10、100μg/mlLPS作用24h均不同程度地引起LDH的活性升高,分别升至155.1±23.4U/L(P <0.05)、162.3±34.3U/L(P <0.05)、189.1±25.1U/L(P <0.01)及194.7±22.7U/L(P <0.01)。10μg/ml LPS作用6h时LDH活性明显升至139.7±19.2U/L,与LPS作用0h(LDH活性114.1±21.1U/L)相比差异显著(P <0.05),随着作用时间延长,LDH活性持续增高,说明PMVECs受损越来越严重。不同浓度(10,25,50μM)法舒地尔预处理组上清液中LDH活性均有不同程度地下降(P <0.05或P <0.01),进一步说明法舒地尔在一定程度上减少了LDH的释放,改善了LPS诱导的PMVECs损伤。4LPS诱导的PMVECs损伤中RhoA、ROCK1mRNA表达的变化
     与对照组(LPS0min)相比,10μg/ml LPS作用15min即开始明显诱导大鼠PMVECs中RhoA mRNA的表达(P <0.05),作用5min即明显诱导ROCK1mRNA的表达(P <0.05)。随着作用时间的延长,RhoA、ROCK1mRNA的表达逐渐升高,RhoA mRNA的表达在LPS作用60min时达到最高(P <0.01),ROCK1mRNA的表达在LPS作用15min和60min时出现两次表达高峰(P <0.01)。随后,RhoA、ROCK1mRNA的表达虽有所下降,但直到240min仍显著高于对照组(LPS0min)(P <0.01)。表明RhoA/ROCK信号通路可能参与了LPS诱导的大鼠PMVECs损伤。5LPS对PMVECs中MYPT1磷酸化水平的影响及法舒地尔的干预作用
     ROCK活化后,进一步磷酸化其下游底物MYPT1,因此,MYPT1磷酸化水平的高低反映了ROCK的活化程度。Western blot结果显示,10μg/ml LPS在作用5min即明显诱导了大鼠PMVECs中p-MYPT1的表达(P <0.05),且在15min时MYPT1磷酸化水平达到最高(P <0.01)。随后,p-MYPT1的表达虽有不同程度地下降,但直到120min仍显著高于对照组(LPS0min)(P <0.01)。法舒地尔10、25、50μM预处理不同程度地降低LPS作用15min诱导的p-MYPT1的表达(P <0.05或P <0.01)。
     结论:本实验成功分离和培养了原代大鼠PMVECs。LPS明显诱导了大鼠PMVECs损伤,RhoA/ROCK信号通路参与了LPS诱导的大鼠PMVECs损伤。
     第二部分法舒地尔对LPS致大鼠PMVECs凋亡、骨架重排的影响及机制研究
     目的:探讨ROCK抑制剂法舒地尔对LPS致大鼠PMVECs凋亡及骨架重排的影响及作用机制。
     方法:AnnexinV/PI及Hoechst33258荧光染色法检测大鼠PMVECs凋亡;F-actin免疫荧光染色观察PMVECs骨架结构的改变;Western blot检测ERK1/2、JNK1/2/3、p38的磷酸化水平以及Bax、Bcl-2凋亡相关蛋白的表达。
     结果:
     1法舒地尔对LPS诱导的大鼠PMVECs凋亡的影响
     1.1LPS作用不同时间对大鼠PMVECs凋亡的影响
     结果显示:10μg/ml LPS作用6h对凋亡没有明显影响。与对照组(LPS0h,早期和晚期凋亡率分别为3.1±0.7%和1.0±0.3%)相比,LPS作用12、24、48、72h各时间点的早期凋亡率分别增至15.1±3.8%(P <0.01),24.3±3.6%(P <0.01),34.8±4.5%(P <0.01)和43.2±8.2%(P <0.01)。晚期凋亡率分别增至2.1±0.9%(P <0.05),9.6±2.1%(P <0.01),12.2±4.7%(P <0.01),29.1±7.4%(P <0.01),均有不同程度的增加,说明LPS明显诱导了大鼠PMVECs凋亡。
     1.2法舒地尔明显降低了LPS诱导的大鼠PMVECs凋亡
     与对照组(早期和晚期凋亡率分别为2.1±0.7%和3.0±0.7%)相比,LPS作用24h早期和晚期凋亡率分别增至37.8±8.1%(P <0.01)和10.7±2.6%(P <0.01)。10,25和50μM法舒地尔预处理明显降低了LPS诱导的PMVECs凋亡,早期凋亡率分别降至27.7±4.6%(P <0.05),21.8±5.9%(P <0.01)和18.6±3.9%(P <0.01);而晚期凋亡率分别降至7.5±1.3%(P <0.05),6.4±1.3%(P <0.05)和5.3±1.4%(P <0.01),与LPS组相比差异显著,说明法舒地尔明显干预了LPS诱导的大鼠PMVECs凋亡。
     1.3法舒地尔改善了LPS诱导的大鼠PMVECs凋亡形态的改变
     采用Hoechst33258染色观察了PMVECs凋亡的形态学改变。结果可见,正常对照组细胞核呈较规整的圆形或椭圆形,边缘整齐,呈弥漫均匀的低强度蓝色荧光,无明显的调亡细胞;10μg/ml LPS处理24h后,细胞核致密浓染,核固缩,呈月牙形,并呈高亮度荧光,部分核染色质高度凝聚、边缘化,表明LPS明显诱导了PMVECs凋亡。10,25和50μM法舒地尔干预后核浓染、固缩等具有明显凋亡形态的细胞与LPS组相比均有不同程度的减少,进一步说明法舒地尔能明显干预LPS诱导的大鼠PMVECs凋亡。
     1.4法舒地尔对凋亡相关蛋白Bax和Bcl-2表达的影响
     与对照组相比,10μg/ml LPS作用24h明显上调了Bax的蛋白表达(P <0.01),同时也显著降低了Bcl-2的蛋白表达(P <0.01)。而不同浓度(10,25,50μM)的法舒地尔预处理明显逆转了LPS诱导的Bax和Bcl-2的表达失衡情况,不同程度的抑制了Bax的表达,升高了Bcl-2的表达(P <0.05或P <0.01),表明法舒地尔可能通过调节抗凋亡蛋白和促凋亡蛋白的表达抑制LPS诱导的大鼠PMVECs凋亡。
     2法舒地尔对PMVECs骨架蛋白F-actin分布的影响
     正常对照组可见少量的肌动蛋白纤维丝,主要分布在细胞周边,且线条完整连续。10μg/ml LPS处理后,胞浆F-actin纤维丝明显增多,大多沿细胞呈纵轴排列。细胞周边的F-actin逐渐断裂消失,胞浆中出现密集的束状应力纤维。且随着LPS作用时间的延长,F-actin在细胞内杂乱无章、弥散分布,甚至细胞间失去正常连接结构。而在预处理了ROCK抑制剂法舒地尔(10,25,50μM)的细胞中,LPS诱导的PMVECs应力纤维形成和细胞骨架形态改变的现象均被不同程度地抑制,F-actin表达及荧光强度也明显减弱,说明法舒地尔能明显抑制LPS诱导的PMVECs骨架结构的改变。
     3法舒地尔对LPS诱导的大鼠PMVECs中MAPKs活化的影响
     LPS(10μg/ml)在作用15min时即开始明显诱导大鼠PMVECs中ERK1/2磷酸化水平明显升高,且在60min时ERK1/2磷酸化水平达到最高。相同实验条件下,预先加入不同浓度的法舒地尔预处理,并没有改变LPS诱导的ERK1/2磷酸化水平的升高,说明在LPS诱导的大鼠PMVECs凋亡中ERK1/2并不是RhoA/ROCK的下游信号。另外,从JNK1/2/3及p38MAPKs的活化程度来看,LPS(10μg/ml)在作用5min时即开始明显诱导大鼠PMVECs中JNK1/2/3及p38磷酸化水平增高,且在30min时二者的磷酸化水平均达到最高。相同实验条件下,预先加入不同浓度(10,25,50μM)的法舒地尔预处理,均不同程度地抑制了LPS作用30min诱导的JNK1/2/3及p38磷酸化水平的增高(P <0.05或P <0.01)。说明JNK1/2/3及p38可能作为RhoA/ROCK的下游信号分子参与了LPS诱导的大鼠PMVECs凋亡。
     4JNK和p38MAPKs的活化参与了LPS诱导的大鼠PMVECs凋亡
     为进一步阐明JNK和p38的活化参与了LPS诱导的大鼠PMVECs凋亡。我们在接下来的实验中观察了SB203580(p38抑制剂)以及SP600125(JNK抑制剂)对LPS诱导的大鼠PMVECs凋亡及凋亡相关蛋白表达的影响。SB203580(10μM)、SP600125(20μM)预处理分别明显抑制了LPS诱导的p38和JNK1/2/3磷酸化水平的增高(P <0.01),说明SP600125和SB203580能分别起到抑制JNK1/2/3和p38MAPKs活化的作用。凋亡检测结果表明,SB203580和SP600125预处理明显抑制了LPS诱导的PMVECs凋亡,早期和晚期凋亡率有不同程度下降(P <0.05或P <0.01)。同时,SB203580及SP600125预处理还明显逆转了LPS诱导的凋亡相关蛋白Bax和Bcl-2的表达失衡情况,抑制了Bax的表达,升高了Bcl-2的表达(P <0.01),进一步说明JNK和p38的活化参与了LPS诱导的大鼠PMVECs凋亡。
     结论:JNK1/2/3和p38MAPKs作为ROCK的下游信号分子参与了LPS诱导的大鼠PMVECs凋亡。法舒地尔作为唯一在临床应用的ROCK抑制剂,明显干预了LPS诱导的凋亡、骨架蛋白重排等细胞损伤,这一保护作用与其抑制ROCK通路及其下游JNK1/2/3和p38MAPKs信号分子活化有关。
     第三部分法舒地尔对LPS诱导的大鼠PMVECs炎性因子表达的影响及机制研究
     目的:研究法舒地尔对LPS诱导的大鼠PMVECs炎性因子表达的影响,并从氧化损伤角度出发探讨其作用机制。
     方法:RT-PCR检测IL-6、TNF-α及MCP-1mRNA的表达;ELISA法检测上清液中IL-6和MCP-1的含量;激光共聚焦检测PMVECs中ROS的产生;试剂盒测定PMVECs中SOD、GSH-PX活力及MDA含量;Westernblot法测定PMVECs全蛋白及核蛋白中NF-κB p65的表达。
     结果:
     1法舒地尔对PMVECs中IL-6、TNF-α及MCP-1mRNA表达的影响与对照组(LPS0h)相比,10μg/ml LPS在作用3h时IL-6和MCP-1mRNA的表达即开始明显升高(P <0.01),6h时MCP-1mRNA表达水平达到最高,12h时IL-6mRNA表达水平达到最高,一直到48h,IL-6和MCP-1mRNA仍处于高表达水平(P <0.01)。10、25、50μM的法舒地尔预处理,均明显抑制了LPS作用12h诱导的IL-6mRNA的表达(P <0.01),也不同程度地抑制了LPS作用6h诱导的MCP-1mRNA的表达(P <0.05或P<0.01)。然而,LPS对TNF-α mRNA的表达没有明显影响。
     2法舒地尔对LPS诱导大鼠PMVECs分泌IL-6及MCP-1的影响
     与对照组(LPS0h, IL-6和MCP-1的分泌量分别为475±76pg/ml、1.082±0.389μg/ml)相比,LPS在作用3h时IL-6蛋白分泌量即开始明显升高(P<0.05),12h时分泌量达最高(1098±81pg/ml,P <0.01),一直到48h仍处于较高水平(P <0.01)。而MCP-1分泌量在LPS作用3、6、12h分别升至1.988±0.017μg/ml(P <0.05)、2.026±0.066μg/ml(P <0.05)、2.038±0.072μg/ml(P <0.05)。而且,LPS处理不同时间组与相应各时间点的对照组相比,IL-6和MCP-1蛋白分泌量均明显升高(P <0.05或P <0.01)。10、25、50μM的法舒地尔预处理,均不同程度地降低了LPS作用不同时间点诱导的IL-6和MCP-1的蛋白分泌水平(P <0.05或P <0.01)。
     3LPS诱导的大鼠PMVECs中ROS的生成及法舒地尔对此的影响
     与对照组(LPS0h)相比,10μg/ml的LPS作用从3h到48h,荧光强度均不同程度地增强(P <0.01),表明细胞内活性氧生成量明显升高,其中LPS处理6h时荧光强度达最高水平,12h时仍维持在接近于最高水平,随后各时间点(LPS处理24h和48h)荧光强度有所减弱,但仍明显高于对照组(P <0.01)。与LPS作用6h组相比,10,25,50μM的法舒地尔预处理组,细胞内荧光强度均明显降低(P <0.01),说明法舒地尔明显抑制了LPS诱导的PMVECs内ROS的生成。
     4法舒地尔对PMVECs中SOD、GSH-PX活性和MDA含量的影响
     与对照组(LPS0h)相比,10μg/ml LPS作用3、6、12、24、48h各时间点组,SOD活性均表现出不同程度的下降(P <0.05或P <0.01),其中,LPS作用12h组SOD活性降至最低。而GSH-PX活性在LPS作用6h时即开始有所下降(P <0.05),LPS作用12、24和48h时GSH-PX活性均处于较低水平(P <0.01)。相反,MDA的含量随着LPS作用时间的延长明显升高,在LPS作用6h时即开始明显升高(P <0.01),12h时达最高值,一直到48h,仍处于较高水平。而10,25,50μM法舒地尔预处理均不同程度地逆转了LPS作用12h诱导的PMVECs中SOD和GSH-PX活性的降低(P <0.05或P<0.01);同时也不同程度地降低了MDA的含量(P <0.05或P <0.01)。
     5法舒地尔对LPS作用下大鼠PMVECs中NF-κB p65核转位的影响
     与对照组(LPS0h)相比,在LPS作用不同时间点,全蛋白中NF-κB p65的蛋白表达没有明显变化。而PMVECs细胞核内NF-κB p65的蛋白表达水平在LPS作用3h即明显升高(P <0.01),12h时表达水平最高,直到48h仍有较高的表达水平(P <0.01)。10,25,50μM法舒地尔预处理均明显降低了细胞核内NF-κB p65的蛋白表达(P <0.01),推测法舒地尔可能通过抑制NF-κB p65核转位从而降低了LPS诱导的炎性因子的表达。6N-acetylcysteine对LPS作用下大鼠PMVECs中IL-6、MCP-1mRNA表达及NF-kB p65核转位的影响
     5、10mM N-acetylcysteine均不同程度地降低了LPS作用12h诱导的细胞核内NF-kB p65的蛋白表达(P <0.05或P <0.01),对LPS诱导的NF-kBp65核转位有一定的抑制作用。同时,5、10mM N-acetylcysteine还明显降低了LPS诱导的IL-6和MCP-1mRNA的表达(P <0.05或P <0.01)。
     结论:(1)LPS作用下大鼠PMVECs中ROS的生成增多,炎性因子IL-6和MCP-1的表达升高。ROS抑制剂N-acetylcysteine明显抑制了LPS诱导的NF-κB核转位以及炎性因子的表达,表明ROS信号参与了LPS诱导的PMVECs炎性损伤。(2)法舒地尔抑制了LPS诱导的ROS的生成,逆转了LPS诱导的MDA水平的升高以及SOD和GSH-PX活性的下降,还降低了NF-κB核转位以及炎性因子IL-6和MCP-1的表达,说明法舒地尔通过其抗氧化作用干预了LPS诱导的大鼠PMVECs炎性损伤。
Bacterial sepsis and its more severe complications are clinically commonand potentially lethal diseases. The common denominator for all of thesecomplications is injury or dysfunction of pulmonary microvascular endothelialcells (PMVECs). PMVECs are not only the primary targets of injury, but alsothe active and effective inflammatory cells, which play an important role inthe development of diseases. So, it is crucial in the study of pulmonarycirculation diseases to further study the mechanisms of PMVEC injury.
     Infection, especially gram negative sepsis, is a major cause of pulmonarydiseases such as ALI/ARDS. Bacterial lipopolysaccharide (LPS), a kind ofglycoprotein on the outer membrane of gram negative bacilli, can cause astrong inflammatory response in the body, damage the PMVECs directly orindirectly, and play a key role in the pathological process of ALI/ARDS.Complex signaling pathways are involved in the injury of PMVECs inducedby inflammation. Studies suggested that RhoA/ROCK pathway was involvedin the occurrence and development of ALI/ARDS, pulmonary arterialhypertension (PAH) and lung cancer. RhoA/ROCK signaling pathway caninduce the rearrangement of the actin cytoskeleton, regulate the genetranscription and cell cycle progression, and act as the signal converter ormolecular switch in the cell signal transduction. However, further studies arerequired for full understanding of the mechanisms of RhoA/ROCK pathway inthe damage of rat PMVECs induced by LPS, as well as the cross-talk ofRhoA/ROCK pathway with other signaling pathways. So, in the present study,LPS were used to induce the model of PMVEC damage and to investigate thechanges of RhoA/ROCK pathway in the process. Moreover,immunocytochemistry, flow cytometry, confocal laser and molecular cell biology technology were also used to investigate the influence of ROCKinhibitor fasudil on LPS-induced PMVECs damage, and to further discuss themechanisms of downstream signal transduction.
     Part1RhoA/ROCK pathway is involved in LPS-induced damage of ratPMVECs
     Objective: To study the changes of RhoA/ROCK pathway inLPS-induced damage of rat PMVECs and the mechanism of action.
     Methods: The tissue-explant technique was used to culture the primaryrat PMVECs. The identification of rat PMVECs was carried out byimmunocytochemical staining of factor Ⅷrelated antigen and transmissionelectron microscope. The viability of PMVECs was determined by MTT andlactate dehydrogenase (LDH) method. The mRNA expression of RhoA andROCK1was detected by RT-PCR. The phosphorylation of MYPT1wasanalyzed by Western blot.
     Results:
     1The culture and identification of rat PMVECs
     We successfully cultured rat PMVECs by tissue-explant technique withsome modification. After removal of explants, the PMVECs were cultured for3~5days and displayed the shape of paving stone at this moment. The resultsof immunocytochemical staining of factor Ⅷ related antigenshowed thatabout95%of the cells were positive. The results of electron microscopeshowed that the plasma membrane protrusions, also namely microvilli, couldbe observed in most cells, W-P bodies were also observed in the cytoplasm. Inaddition, a large number of plasma membrane vesicles (also called pinocytoticvesicles) were found in the cytoplasm of cells. All the above structures wereconsistent with the typical endothelial cell ultrastructure. Considering that thetissue explants were obtained from the lung edge, it could be confirmed thatthe cultured cells were indeed PMVECs.
     2Effect of LPS on the viability of rat PMVECs and the intervention effect offasudil
     MTT results suggested that the OD value in control group was0.95± 0.12,0.01,0.1and1μg/ml of LPS had no obvious effect on the viability ofPMVECs, while the OD value in LPS10and100μg/ml groups decreased to0.75±0.19(P <0.05) and0.50±0.12(P <0.01) respectively. LPS10μg/mlcould cause the injury of PMVECs, but sufficient cells were still existed forsubsequent test. So, LPS (10μg/ml) was used to induce the damage ofPMVECs. Compared with the OD value (0.93±0.15) in LPS10μg/ml (0h)group, the OD value did not change obviously at6h and12h after LPStreatment, but decreased significantly at24h (0.73±0.19), and stillmaintained at the low level at48h and72h. Fasudil (25,50μM) improved theLPS-induced injury of PMVECs in different degree (compared with the LPSgroup,P <0.05).
     3Effect of LPS on the activity of LDH and the intervention effect of fasudil
     The activity of LDH in control group was127.6±17.3U/L, which wasincreased to155.1±23.4U/L (P <0.05),162.3±34.3U/L (P <0.05),189.1±25.1U/L (P <0.01) and194.7±22.7U/L (P <0.01) respectively after thecells had been treated with LPS0.1,1,10and100μg/ml for24h. The LDHrelease began to increase at6h after the cells had been treated with LPS10μg/ml and the activity of LDH increased to139.7±19.2U/L, which wassignificantly higher (P <0.05) than that (114.1±21.1U/L) before LPStreatment. With the time prolongation, the activity of LDH increasedcontinuously, suggesting that PMVECs were damaged increasingly. Fasudil(10,25and50μM) pretreatment significantly decreased the LDH activity inthe supernatant (P <0.05or P <0.01), which suggested that fasudil inhibitedthe release of LDH, reduced the injury of PMVECs induced by LPS.
     4The changes of mRNA expression of RhoA and ROCK1in LPS-inducedinjury of rat PMVECs
     Compared with the control group (LPS0min), the mRNA expression ofRhoA began to increase at15min after LPS (10μg/ml) treatment (P <0.05),and reached the highest level at60min. While the mRNA expression ofROCK1began to increase after LPS (10μg/ml) treatment for5min (P <0.05),and appeared two peaks at15min and60min respectively (P <0.01). With the prolongation of time, the RhoA and ROCK1mRNA expression slightlydecreased, but still maintained at a higher level than that in the control group(LPS0min) at240min after LPS treatment, suggesting that RhoA/ROCKsignal pathway might be involved in the injury of PMVECs induced by LPS.
     5Effect of LPS on the phosphorylation of MYPT1and the intervention effectof fasudil
     Activated ROCK can further phosphorylate the downstream substrateMYPT1. Therefore, the phosphorylation level of MYPT1reflects the degreeof activation of ROCK. Western blot analysis showed that the phosphorylationof MYPT1began to increase after LPS (10μg/ml) treatment for5min (P <0.05), and reached the highest level at15min (P <0.01). With theprolongation of time, the expression of p-MYPT1slightly decreased, but stillhigher than that of the control group (LPS0min) at120min after LPStreatment (P <0.01). Fasudil (10,25and50μM) pretreatment significantlydecreased the expression of p-MYPT1induced by LPS treatment for15min(P <0.05or P <0.01).
     Conclusion: The primary rat PMVECs were successfully cultured bytissue-explant technique in the present experiment. LPS markedly induced thedamage of rat PMVECs, and RhoA/ROCK signaling pathway was involved inthe process.
     Part2Protective effect of fasudil against LPS-induced apoptosis andcytoskeleton rearrangement of rat PMVECs and the underlyingmechanisms
     Objective: To study the effects of ROCK inhibitor fasudil onLPS-induced apoptosis and cytoskeleton rearrangement and the underlyingmechanisms.
     Methods: The apoptosis of PMVECs was evaluated by AnnexinV/PI andHoechst33258fluorescent staining assay. The change of cytoskeleton wasdetected by F-actin staining. The phosphorylation of ERK1/2, JNK1/2/3, p38and the expression of apoptosis related proteins Bax and Bcl-2were detectedby Western blot.
     Results:
     1Effect of fasudil on LPS-induced apoptosis of rat PMVECs
     1.1Effect of different duration of LPS exposure on apoptosis of rat PMVECs
     The results of AnnexinV-FITC staining showed that compared with thecontrol group (LPS0h,the early apoptosis rate was3.1±0.7%and lateapoptosis rate was1.0±0.3%),10μg/ml LPS treatment for6h did not affectthe apoptosis of PMVECs. While the early apoptosis rate of PMVECsincreased to15.1±3.8%(P <0.01),24.3±3.6%(P <0.01),34.8±4.5%(P<0.01) and43.2±8.2%(P <0.01), and the late apoptosis rate increased to2.1±0.9%(P <0.05),9.6±2.1%(P <0.01),12.2±4.7%(P <0.01),29.1±7.4%(P <0.01) respectively at12,24,48and72h after LPS treatment,which suggested that LPS obviously induced the apoptosis of rat PMVECs.
     1.2Fasudil decreased LPS-induced apoptosis of PMVECs significantly
     Compared with the control group (the early apoptosis rate and lateapoptosis rate were2.1±0.7%and3.0±0.7%respectively), the earlyapoptosis rate increased to37.8±8.1%(P <0.01) and the late apoptosis rateincreased to10.7±2.6%(P <0.01) after LPS treatment for24h, which weredecreased in different degree by fasudil pretreatment. The early apoptosis ratedecreased to27.7±4.6%(P <0.05),21.8±5.9%(P <0.01) and18.6±3.9%(P<0.01), and the late apoptosis rate decreased to7.5±1.3%(P <0.05),6.4±1.3%(P <0.05) and5.3±1.4%(P <0.01) respectively after10,25and50μM of fasudil pretreatment, suggesting that fasudil has some interventioneffect on LPS-induced apoptosis injury of rat PMVECs.
     1.3Fasudil improved LPS-induced apoptotic morphological changes of ratPMVECs
     From the results of Hoechst33258staining we observed that the nucleusof PMVECs in control group was round or oval with neat edge withhomogeneous and low-intensity blue fluorescence. No obvious apoptotic cellswere found in control group. After treatment with LPS for24h, the nucleus ofPMVECs was condensed and hyperchromatic with high-brightnessfluorescence. Part of nuclear chromatin condensed highly and marginalized, and the number of PMVECs with crescent-shaped nuclei increased, whichsuggested that LPS induced apoptosis of rat PMVECs significantly. Fasudil(10,25and50μM) pretreatment significantly weakened the apoptoticmorphological changes of PMVECs induced by LPS, further illustrating thatfasudil can prevent the apoptosis of rat PMVECs induced by LPS.
     1.4Effect of fasudil on the expression of Bax and Bcl-2proteins
     Compared with the control group, treatment of PMVECs with10μg/mlLPS increased the protein expression of Bax (P <0.01) and decreased theprotein expression of Bcl-2(P <0.01). Fasudil (10,25and50μM)pretreatment significantly reversed the imbalance of protein expression of Baxand Bcl-2caused by LPS, with the decreased Bax expression and increasedBcl-2expression (P <0.05or P <0.01), which indicated that fasudil mightinhibit LPS-induced apoptosis of rat PMVECs by regulating the expression ofanti-apoptotic and pro-apoptotic proteins.
     2Effect of fasudil on the distribution of skeleton protein F-actin in ratPMVECs
     There are a few of actin filaments in the control group, which mainlydistributed in the periphery of cells. After treatment with LPS, the cytoplasmicF-actin fibers increased significantly, and most of them arranged along thelongitudinal of PMVECs. The F-actin fibers around the cells graduallydisappeared, and intensive fasciculate stress fibers appeared in the cytoplasm.With the prolongation of time, the arrangement of F-actin became more andmore disorderly and dispersive, and the normal connections between cellswere almost lost. Meanwhile, the formation of stress fiber and themorphological changes of cytoskeleton induced by LPS were inhibited by10,25and50μM of fasudil pretreatment in different degree, and fasudil alsoreduced the fluorescence intensity of F-actin.
     3Effect of fasudil on the activation of MAPKs in LPS-treated rat PMVECs
     LPS (10μg/ml) caused obvious phosphorylation of ERK1/2at15minafter treatment and with a peak arrived at60min (P <0.01). Whereas,pretreatment with10,25and50μM of fasudil did not inhibit the ERK1/2 phosphorylation, suggesting that ERK1/2was not as the downstream signal ofRhoA/ROCK in LPS-induced apoptotic injury. In addition, thephosphorylation of JNK1/2/3and p38began to increase after LPS treatmentfor5min and with the highest level both arrived at30min, which was allinhibited by fasudil (10,25and50μM) pretreatment (P <0.05or P <0.01),suggesting that JNK1/2/3and p38might act as the downstream signals ofRhoA/ROCK in LPS-induced apoptotic injury.
     4The activation of JNK and p38MAPKs participated in the apoptotic injuryinduced by LPS in rat PMVECs
     In order to further clarify that JNK and p38were involved inLPS-induced apoptosis of rat PMVECs, we observed the effects of SB203580(p38inhibitor) and SP600125(JNK inhibitor) on apoptosis and the expressionof apoptosis-related proteins induced by LPS. SB203580(10μM) andSP600125(20μM) pretreatment significantly reduced the phosphorylation ofp38and JNK MAPKs respectively, suggesting that SB203580and SP600125can inhibite the activation of p38and JNK MAPKs respectively. MeanwhileSB203580and SP600125pretreatment significantly inhibited the apoptosisinduced by LPS in rat PMVECs, and the early apoptosis rate and lateapoptosis rate were all decreased (P <0.05or P <0.01). SB203580andSP600125pretreatment also reversed the imbalance of the expression of Baxand Bcl-2proteins induced by LPS, with a decreased expression of Bax and anincreased expression of Bcl-2(P <0.01), further suggesting that activation ofJNK and p38participated in the LPS-induced apoptosis of rat PMVECs.
     Conclusion: Activation of JNK and p38MAPKs, the downstreamsignaling molecules of RhoA/ROCK signaling pathway, played an importantrole in LPS-induced apoptosis of rat PMVECs. Fasudil, a potent and selectiveinhibitor of ROCK, exerted an anti-apoptotic effect and inhibited thecytoskeletal rearrangement in rat PMVECs, which were mediated by theinhibition of RhoA/ROCK and its downstream JNK and p38MAPKs.
     Part3Effects of fasudil on the expression of inflammatory factorsinduced by LPS in rat PMVECs and the underlying mechanisms
     Objective: To study the effects of fasudil on the expression ofinflammatory factors induced by LPS in rat PMVECs and the antioxidativemechanisms.
     Methods: The mRNA expression of IL-6, TNF-αand MCP-1wasevaluated by RT-PCR; The content of IL-6and MCP-1in supernatant wasdetermined by ELISA assay kit; ROS was measured by confocal microscopywith DCFH-DA staining. The activity of SOD and GSH-PX and content ofMDA were measured using kits supplied by Nanjing JianchengBiotechnological Company. Western blot analysis was used to determine theprotein expression of NF-κB p65in the cytoplasm and nucleus.
     Results:
     1Effects of fasudil on the mRNA expression of IL-6, TNF-αand MCP-1induced by LPS in rat PMVECs
     Compared with the control group (LPS0h), the mRNA expression ofIL-6and MCP-1began to increase after LPS treatment for3h (P <0.01), andmaintained at a higher level until the end of the experiment. The highest levelof mRNA expression of MCP-1arrived at6h, and that of IL-6arrived at12h,which were both reduced by10,25and50μM of fasudil pretreatment (P <0.05or P <0.01). LPS exerted no obvious effect on the expression of TNF-α.
     2Effect of fasudil on the secretion of IL-6and MCP-1induced by LPS in ratPMVECs
     Compared with the control group (LPS0h, the concentration of IL-6andMCP-1was475±76pg/ml and1.082±0.389μg/ml respectively), thesecretion of IL-6began to increase after LPS treatment for3h (P <0.05), andmaintained at a high level until48h (P <0.01), with the highest level arrivedat12h (1098±81pg/ml, P <0.01). The secretion of MCP-1also increased to1.988±0.017μg/ml (P <0.05),2.026±0.066μg/ml (P <0.05) and2.038±0.072μg/ml (P <0.05) at3,6and12h respectively. Meanwhile, the contentof both IL-6and MCP-1increased at different time points after LPS treatmentcompared with that in the corresponding control group (P <0.05or P <0.01).Fasudil (10,25and50μM) pretreatment decreased the secretion of IL-6and MCP-1induced by LPS at different time points (P <0.05or P <0.01).
     3Effect of LPS on the production of ROS in rat PMVECs and the interventioneffect of fasudil
     Compared with the control group (LPS0h), the fluorescence intensity ofROS was significantly increased from3h to48h after LPS treatment, andwith the highest level arrived at6h. After that, the fluorescence intensity hadsome decrease at24h and48h after LPS treatment, but still stronger than thatin control group (P <0.01), suggesting that the production of ROS increasedobviously after the cells were treated with LPS. Compared with the LPS (6h)group, pretreatment with fasudil (10,25and50μM) obviously reduced thefluorescence intensity of ROS induced by LPS treatment for6h (P <0.01),which suggested that fasudil significantly inhibited the production of ROSinduced by LPS in rat PMVECs.
     4Effect of fasudil on the activity of SOD and GSH-PX and the content ofMDA
     Compared with the control group (LPS0h), the activity of SODdecreased significantly from3h to48h after LPS treatment (P <0.05or P <0.01), and the lowest level arrived at12h. The activity of GSH-PX began todecrease at6h (P <0.05), and maintained the low level at12,24and48hafter LPS treatment (P <0.01). On the contrary, the content of MDA began toincrease after LPS treatment for6h (P <0.01), and reached the highest levelat12h (P <0.01), which maintained until48h after LPS treatment. Whilefasudil (10,25and50μM) pretreatment increased the activity of SOD andGSH-PX reduced by LPS treatment for12h (P <0.05or P <0.01), anddecreased the content of MDA in different degree (P <0.05or P <0.01).
     5Effect of fasudil on the nuclear translocation of NF-κB p65induced by LPS
     Compared with the control group (LPS0h), the expression of NF-κB p65in the whole cell extracts of rat PMVECs showed no obvious changes afterLPS treatment for different time, while that in the nuclear proteins wasobviously increased after LPS treatment for3h (P <0.01). The expression ofNF-κB p65in the nuclear proteins arrived the highest level at12h, and maintained at a high level until48h after LPS treatment (P <0.01).Meanwhile, fasudil (10,25and50μM) pretreatment significantly decreasedthe expression of NF-κB p65in the nuclear proteins of rat PMVECs, whichsuggested it might be through inhibiting the nuclear translocation of NF-κBp65that fasudil reduced the secretion of inflammatory factors.
     6Effects of N-acetylcysteine on the mRNA expression of IL-6and MCP-1and the nuclear translocation of NF-κB p65induced by LPS
     N-acetylcysteine (5,10mM) pretreatment significantly decreased theexpression of NF-κB p65in the nuclear proteins of rat PMVECs induced byLPS treatment for12h (P <0.05or P <0.01). Meanwhile, the mRNAexpression of IL-6and MCP-1induced by LPS was also reduced byN-acetylcysteine (5,10mM) pretreatment (P <0.05or P <0.01).
     Conclusion:(1) N-acetylcysteine, the inhibitor of ROS, obviouslyinhibited the production of ROS and the expression of IL-6and MCP-1induced by LPS in rat PMVECs, which suggested that ROS was involved inLPS-induced inflammatory injury of rat PMVECs.(2) Fasudil inhibited theproduction of ROS. The increased level of MDA and the decreased activity ofSOD and GSH-PX induced by LPS were reversed by fasudil. Meanwhile,fasudil decreased the expression of IL-6and MCP-1by inhibiting the nucleartranslocation of NF-κB p65, suggesting that fasudil ameliorated theinflammatory injury induced by LPS through its antioxidant effect.
引文
1Hewett PW. Vascular endothelial cells from human micro-and macrovessels:isolation, characterisation and culture. Methods Mol Biol,2009,467:95-111
    2Figueroa XF, Chen CC, Campbell KP, et a1. Are voltage dependent ionchannels involved in the endothelial cell control of vasomotor tone. Am JPhysiol Heart Circ Physiol,2007,293(9):1371-1383
    3Kuebler WM. Inflammatory pathways and microvascular responses in thelung. Pharmacol Rep,2005,57:196-205
    4Janz DR, Ware LB. Biomarkers of ALI/ARDS: pathogenesis, discovery, andrelevance to clinical trials.Semin Respir Crit Care Med,2013,34(4):537-548
    5Yang Y, Li Q, Deng Z, et al. Protection from lipopolysaccharide-inducedpulmonary microvascular endothelial cell injury by activation of hedgehogsignaling pathway. Mol Biol Rep,2011,38(6):3615-3622
    6Shumay E, Tao J, Wang HY, et al. Lysophosphatidic acid regulatestrafficking of beta2-adrenergic receptors: the Galpha13/p115RhoGEF/JNKpathway stimulates receptor intemalization. J Biol Chem,2007,282(29):21529-21541
    7Porchia F, Papucci M, Gargini C, et al. Endothelin-1up-regulatesp115RhoGEF in embryonic rat cardiomyocytes during the hypertrophicresponse. J Recept Signal Transduct Res,2008,28(3):265-283
    8柏桦,海春旭,张晓迪,等.组织块法培养大鼠肺微血管内皮细胞的方法研究。科学技术与工程,2008,l8(5):1160-1164
    9时全星,孙新,李娟,等.肺微血管内皮细胞的原代培养。现代生物医学进展,2010,10(19):3609-3612
    10Siner JM, Bhandari V, Engle KM, et al. Elevated serum angiopoietin-2levels are associated with increased mortality in sepeis. Shock,2009,31(4):348-353
    11Bazzoni G. Endothelial tight junctions: permeable barriers of the vesselwall. Thromb Haemost,2006,95(1):36-42
    12Lorraine B. Pathophysiology of acute lung injury and the acute respiratorydistress syndrome. Semin Respiratory Critical Care Med,2006,27(4):337-349
    13Chen C, Zhang Y, Du Z, et al. Vagal efferent fiber stimulation amelioratespulmonary microvascular endothelial cell injury by downregulatinginflammatory responses. Inflammation,2013,36(6):1567-1575
    14Lou JN, Mili N, Decrind C, et al. An improved method for isolation ofmicrovascular endothelial cells from normal and inflamed human lung. InVitro Cell Dev Biol Anim,1998,34(7):529-536
    15Fujino N, Kubo H, Ota C, et al. A novel method for isolating individualcellular components from the adult human distal lung. Am J Respir CellMol Biol,2012,46(4):422-430
    16Mizumura K, Gon Y, Kumasawa F, et al. Apoptosis signal-regulatingkinase1-mediated signaling pathway regulates lipopolysaccharide-inducedtissue factor expression in pulmonary microvasculature. IntImmunopharmacol,2010,10(9):1062-1067
    17Kim I, Kim HG, So JN, et al. Angiopoietin-1regulates endothelial cellsurvival through the phosphatidylinositol3'-kinase/Akt signal transductionpathway. Circ Res,2000,86(1):24-29
    18张竞丹,杨丹凤,曹燕卿,等.低温低氧复合应激对大鼠肺微血管内皮细胞的损伤作用研究。中国应用生理学杂志,2013,29(3):219-223
    19Kato T, Hashikabe H, Iwata C, et al. Statin blocks Rho/Rho kinasesignalling and disrupts the actin cytoskeleton: relationship to enhancementof LPS-mediated nitricoxide synthesis in vascular smooth muscle cells.Biochim Biophys Acta,2004,1689(3):267-272
    20Rousseau M, Gaugler MH, Rodallec A, et al. RhoA GTPase regulatesradiation-induced alterations in endothelial cell adhesion and migration.Biochem Biophys Res Commun,2011,414(4):750-755
    21Mong PY, Wang Q. Activation of Rho Kinase isoforms in lung endothelialcells during inflammation. J Immunol,2009,182(4):2385-2394
    22Noma K, Kihara Y, Higashi Y. Striking crosstalk of ROCK signaling withendothelial function. J Cardiol,2012,60(1):1-6
    23Essler M, Staddon JM, Weber PC, et al. Cyclic AMP blocks bacteriallipopolysaccharide-induced myosin light chain phosphorylation inendothelial cells through inhibition of Rho/Rho kinase signaling. JImmunol,2000,164(12):6543-6549
    24Han YL, Yu HB, Yan CH, et al. Serum response factor participates inRhoA-induced endothelial cell F-actin rearrangements. Acta Physiol Sin,2005,57(3):295-302
    25Ito M, Nakano T, Erdodi F, et al. Myosin phosphatase: structure, regulationand function. Mol Cell Biochem,2004,259(1-2):197-209
    1Antoniu SA. Targeting RhoA/ROCK pathway in pulmonary arterialhypertension. Expert Opin Ther Targets,2012,16(4):355-363
    2Zhao Y, Gorshkova IA, Berdyshev E, et al. Protection of LPS-inducedmurine acute lung injury by sphingosine-1-phosphate lyase suppression.Am J Respir Cell Mol Biol,2011,45(2):426-435
    3Giannoudis PV, Tosounidis TI, Kanakaris NK, et al. Quantification andcharacterisation of endothelial injury after trauma. Injury,2007,38(12):1373-1381
    4Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascularpermeability. J Appl Physiol,2001,91(4):1487-1500
    5Marinissen MJ, Chiariello M, Tanos T, et al. The small GTP-bindingprotein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol Cell,2004,14(1):29-41
    6Shimada H, Rajagopalan LE. Rho-kinase mediates lysophosphatidicacid-induced IL-8and MCP-1production via p38and JNK pathways inhuman endothelial cells. FEBS Lett,2010,584(13):2827-2832
    7Nwariaku FE, Rothenbach P, Liu Z, et al. Rho inhibition decreasesTNF-induced endothelial MAPK activation and monolayer permeability. JAppl Physiol,2003,95(5):1889-1895
    8Schildberg FA, Schulz S, Dombrowski F, et al. Cyclic AMP alleviatesendoplasmic stress and programmed cell death induced bylipopolysaccharides in human endothelial cells. Cell Tissue Res,2005,320(1):91-98
    9Thambiayya K, Wasserloos KJ, Huang Z, et al. LPS-induced decrease inintracellular labile zinc,[Zn]i, contributes to apoptosis in cultured sheeppulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol,2011,300(4): L624-632
    10Jin Y, Choi AM. Cross talk between autophagy and apoptosis in pulmonaryhypertension. Pulm Circ,2012,2(4):407-414
    11Jurasz P, Courtman D, Babaie S, et al. Role of apoptosis in pulmonaryhypertension: from experimental models to clinical trials. Pharmacol Ther,2010,126(1):1-8
    12Suzuki K, Murakami T, Kuwahara-Arai K, et al. Human anti-microbialcathelicidin peptide LL-37suppresses the LPS-induced apoptosis ofendothelial cells. Int Immunol,2011,23(3):185-193
    13Bannerman DD, Goldblum SE. Mechanisms of bacteriallipopolysaccharide-induced endothelial apoptosis. Am J Physiol Lung CellMol Physiol,2003,284(6): L899-914
    14Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms,molecules and clinical significance. Trends Immunol,2009,30(10):475-487
    15Arai S, Harada N, Kubo N, et al. Induction of inducible nitric oxidesynthase and apoptosis by LPS and TNF-alpha in nasal microvascularendothelial cells. Acta Otolaryngol,2008,128(1):78-85
    16Shi J, Wei L. Rho kinase in the regulation of cell death and survival. ArchImmunol Ther Exp (Warsz).2007,55(2):61-75
    17Croft DR, Coleman ML, Li S, et al. Actin-myosin-based contraction isresponsible for apoptotic nuclear disintegration. J Cell Biol,2005,168(2):245-255
    18Moore M, Marroquin BA, Gugliotta W. Rho kinase inhibition initiatesapoptosis in human airway epithelial cells. Am J Respir Cell Mol Biol,2004,30(3):379-387
    19Jiao P, Zhou YS, Yang JX, et al. MK-2206induces cell cycle arrest andapoptosis in HepG2cells and sensitizes TRAIL-mediated cell death. MolCell Biochem,2013,382(1-2):217-224
    20Mertens HJ, Heineman MJ, Evers JL. The expression of apoptosis relatedproteins Bcl-2and Ki67in endometrium of ovulatory menstrual cycles.Gynecol Obstet Invest,2002,53(4):224-230
    21Cory S, Huang DC, Adams JM. The Bcl-2family: roles in cell survival andoncogenesis. Oncogene,2003,22(53):8590-8607
    22Gao C, Li R, Liu Y, et al. Rho-kinase-dependent F-actin rearrangement isinvolved in the release of endothelial microparticles during IFN-α-inducedendothelial cell apoptosis. J Trauma Acute Care Surg,2012,73(5):1152-1160
    23Chountala M, Vakaloglou KM, Zervas CG. Parvin overexpression uncoverstissue-specific genetic pathways and disrupts F-actin to induce apoptosis inthe developing epithelia in drosophila. Plos One,2012,7(10): e47355
    24Van der Heijden M, Versteilen AM, Sipkema P, et al. Rho-kinase-dependent F-actin rearrangement is involved in the inhibition ofPI3-kinase/Akt during ischemia-reperfusion-induced endothelial cellapoptosis. Apoptosis,2008,13(3):404-412
    25Wang Y, Zhang MX, Meng X, et al. Atorvastatin suppresses LPS-inducedrapid upregulation of Toll-like receptor4and its signaling pathway inendothelial cells. Am J Physiol Heart Circ Physiol,2011,300(5):H1743-1752
    26Chi G, Wei M, Xie X, et al. Suppression of MAPK and NF-κB pathways bylimonene contributes to attenuation of lipopolysaccharide-inducedinflammatory responses in acute lung injury. Inflammation,2013,36(2):501-511
    27Rashed LA, Hashem RM, Soliman HM. Oxytocin inhibits NADPH oxidaseand P38MAPK in cisplatin-induced nephrotoxicity. Biomed Pharmacother,2011,65(7):474-480
    28Chiariello M, Vaqué JP, Crespo P, et al. Activation of Ras and RhoGTPases and MAP Kinases by G-protein-coupled receptors. Methods MolBiol,2010,661:137-150
    29Ventura JJ, Hübner A, Zhang C, et al. Chemical genetic analysis of the timecourse of signal transduction by JNK. Mol Cell,2006,21(5):701-710
    30Nwariaku FE, Chang J, Zhu X, et al. The role of p38map kinase in tumornecrosis factor-induced redistribution of vascular endothelial cadherin andincreased endothelial permeability. Shock,2002,18(1):82-85
    1Lee IT, Yang CM. Role of NADPH oxidase/ROS in pro-inflammatorymediators-induced airway and pulmonary diseases. Biochem Pharmacol,2012,84(5):581-590
    2Frey RS, Ushio-Fukai M, Malik AB. NADPH oxidase-dependent signalingin endothelial cells: role in physiology and pathophysiology. AntioxidRedox Signal,2009,11(4):791-810
    3Shi X, Ding M, Chen F, et al. Reactive oxygen species and molecularmechanism of silica-induced lung injury. Environ Pathol Toxicol Oncol,2001,20:85-93
    4Rahman I. Oxidative stress in pathogenesis of chronic obstructivepulmonary disease: cellular and molecular mechanisms. Cell BiochemBiophys,2005,43:167-188
    5Bogdan C. Nitric oxide and the immune response. Immunol,2001,2(10):907-916
    6Das A, Gopalakrishnan B, Voss OH, et al. Inhibition of ROS-inducedapoptosis in endothelial cells by nitrone spin traps via induction of phase IIenzymes and suppression of mitochondria-dependent pro-apoptoticsignaling. Biochem Pharmacol,2012,84(4):486-497
    7Brigham KL, Meyrick B, Berry LC Jr, et al. Antioxidants protect culturedbovine lung endothelial cells from injury by endotoxin. J Appl Physiol,1987,63(2):840-850
    8Kim KY, Shin HK, Choi JM, et al. Inhibition of lipopolysaccharide-induced apoptosis by cilostazol in human umbilical vein endothelial cells. JPharmacol Exp Ther,2002,300:709-715
    9Wong HR, Mannix RJ, Rusnak JM, et al. The heat-shock responseattenuates lipopolysaccharide-mediated apoptosis in cultured sheeppulmonary artery endothelial cells. Am J Respir Cell Mol Biol,1996,15(6):745-751
    10Kim KY, Kim BG, Kim SO, et al. Prevention of lipopolysaccharide-induced apoptosis by (2S,3S,4R)-N-cyano-N-(6-amino-3,4-dihydro-3-hydroxyl-2-methyl-2-dimethoxymethyl-2H-benzopyran-4-yl)-N-benzylguanidine, a benzopyran analog, in endothelial cells. J Pharmacol Exp Ther,2002,300(2):535-542
    11Lee EJ, Lee YR, Joo HK, et al. Arginase II inhibited lipopolysaccharide-induced cell death by regulation of iNOS and Bcl-2family proteins inmacrophages. Mol Cells,2013,35(5):396-401
    12Takeyama N, Miki S, Hirakawa A, et al. Role of the mitochondrialpermeability transition and cytochrome crelease in hydrogen peroxide-induced apoptosis. Exp Cell Res,2002,274(1):16-24
    13Buttenschoen K, Kornmann M, Berger D, et al. Endotoxemia andendotoxin tolerance in patients with ARDS. Langenbecks Arch Surg,2008,393(4):473-478
    14Chen H, Bai C, Wang X. The value of the lipopolysaccharide-inducedacute lung injury model in respiratory medicine. Expert Rev Respir Med,2010,4(6):773-783
    15Cruces P, Erranz B, Donoso A, et al. Mild hypothermia increasespulmonary anti-inflammatory response during protective mechanicalventilation in a piglet model of acute lung injury. Paediatr Anaesth,2013,23(11):1069-1077
    16Ni L, Li T, Liu B, et al. The protective effect of Bcl-xl overexpressionagainst oxidative stress-induced vascular endothelial cell injury and therole of the Akt/eNOS pathway. Int J Mol Sci,2013,14(11):22149-22162
    17Kiningham KK, Oberley TD, Lin S, et al. Overexpression of manganesesuperoxide dismutase protects against mitochondrial-initiated poly(ADP-ribose) polymerase-mediated cell death. FASEB J,1999,13(12):1601-1610
    18Mo Y, Wan R, Chien S, et al. Activation of endothelial cells after exposureto ambient ultrafine particles: the role of NADPH oxidase. Toxicol ApplPharmacol,2009,236(2):183-193
    19Teke T, Maden E, Kiyici A, et al. Cigarette smoke and bleomycin-inducedpulmonary oxidative stress in rats. Exp Ther Med,2012,4(1):121-124
    20Xiong XQ, Wang WT, Wang LR, et al. Diabetes increases inflammationand lung injury associated with protective ventilation strategy in mice. IntImmunopharmacol,2012,13(3):280-283
    21Huang WD, Wang JZ, Lu YQ, et al. Lysine acetylsalicylate ameliorateslung injury in rats acutely exposed to paraquat. Chin Med J (Engl),2011,124(16):2496-2501
    22Han W, Li H, Cai J, et al. NADPH oxidase limits lipopolysaccharide-induced lung inflammation and injury in mice through reduction-oxidationregulation of NF-κB activity. J Immunol,2013,190(9):4786-4794
    23Awad EM, Khan SY, Sokolikova B, et al. Cold induces reactive oxygenspecies production and activation of the NF-kappa B response inendothelial cells and inflammation in vivo. J Thromb Haemost,2013,11(9):1716-1726
    24Imanifooladi AA, Yazdani S, Nourani MR. The role of nuclearfactor-kappaB in inflammatory lung disease. Inflamm Allergy Drug Targets,2010,9(3):197-205
    1Bull TM, Golpon H, Hebbel RP, et al. Circulating endothelial cells inpulmonary hypertension. Thromb Haemost,2003,90(4):698-703
    2Figueroa XF, Chen CC, Campbell KP, et al. Are voltage-dependent ionchannels involved in the endothelial cell control of vasomotor tone? Am JPhysiol Heart Circ Physiol,2007,293(9): H1371-1383
    3Delaguillaumie A, Lagaudriere-Gesbert C, Popoff MR, et al. Rho GTPaseslink cytoskeletal rearrangements and activation processes induced via thetetraspanin CD82in T lymphocytes. J Cell Sci,2002,115(Pt2):433-443
    4Shalom R, Barki L, Rimon G. Interaction between prostaglandin E2and1-cis-diltiazem, a specific blocker of cyclic nucleotide gated channels inbovine aortic endothelial cells. Eur J Pharmacol,2006,543(8):8-13
    5Langleben D. Endothelin receptor antagonists in the treatment ofpulmonary arterial hypertension. Clin Chest Med,2007,28(1):117-25
    6Izikki M, Guignabert C, Fadel E, et al. Endothelial-derived FGF2contributes to the progression of pulmonary hypertension in humans androdents. J Clin Invest,2009,119(3):512-523
    7Grimminger F, Schermuly RT. PDGF receptor and its antagonists: role intreatment of PAH. Adv Exp Med Biol,2010,661(6):435-446
    8Long L, Crosby A, Yang X, et al. Altered bone morphogenetic protein andtransforming growth factor-beta signaling in rat models of pulmonaryhypertension: potential for activin receptor-like kinase-5inhibition inprevention and progression of disease. Circulation,2009,119(4):566-576
    9Yoshida H, Kitaichi T, Urata M, et al. Syngeneic bone marrowmononuclear cells improve pulmonary arterial hypertension throughvascular endothelial growth factor upregulation. Ann Thorac Surg,2009,88(2):418-424
    10Kim I, Moon SO, Park SK, et al. Angiopoietin-l reduces VEGF stimulatedleukocyte adhesion to endothelial cells by reducing ICAM-l, VCAM-l, andE-selectin expression. Cire Res,2001,89(6):477-479
    11Sadeghi MM, Collinge M, Pardi R. Simvastatin modulatescytokine-mediated endothelial cell adhesion molecule induetion:involvement of an inhibitory G protein. J Immunol,2000,165(5):2712-2718
    12Star GP, Giovinazzo M, Langleben D. Bone morphogenic protein-9stimulates endothelin-1release from human pulmonary microvascularendothelial cells: a potential mechanism for elevated ET-1levels inpulmonary arterial hypertension. Microvasc Res,2010,80(3):349-354
    13Usatyuk PV, Natarajan V. Role of mitogen-activated protein kinases in4-hydroxy-2-nonenal-induced actin remodeling and barrier function inendothelial cells. J Biol Chem,2004,279(12):11789-11797
    14Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction inpulmonary hypertension. Circulation,2004,109(2):159-165
    15Yee HF, Melton AC, Tran BN. RhoA/rho-associated kinase mediatesfibroblast contractile force generation. Biochem Biophys Res Commun,2001,280(5):1340-1345
    16Siddiqui SS, Siddiqui ZK, Uddin S, et al. p38MAPK activation coupled toendocytosis is a determinant of endothelial monolayer integrity. Am JPhysiol Lung Cell Mol Physiol,2007,292(1): L114-124
    17Paria BC, Vogel SM, Ahmmed GU, et al. Tumor necrosis factor-alpha-induced TRPC1expression amplifies store-operated Ca2+influx andendothelial permeability. Am J Physiol Lung Cell Mol Physiol,2004,287(6): L1303-1313
    18Kolosova IA, Ma SF, Adyshev DM, et al. Role of CPI-17in the regulationof endothelial cytoskeleton.Am J Physiol Lung Cell Mol Physiol,2004,287(5): L970-980
    19Haworth SG. Role of the endothelium in pulmonary arterial hypertension.Vascul Pharmacol,2006,45(5):317-325
    20Sim JY. Nitric oxide and pulmonary hypertension. Korean J Anesthesiol,2010,58(1):4-14
    21Lee C, Mitsialis SA, Aslam M, et al. Exosomes mediate the cytoprotectiveaction of mesenchymal stromal cells on hypoxia-induced pulmonaryhypertension. Circulation,2012,27,126(22):2601-2611
    22Adnot S, Raffestin B. Pulmonary hypertension: NO therapy? Thorax,1996,51(7):762-764
    23Barst RJ, Channick R, Ivy D, et al. Clinical perspectives with long-termpulsed inhaled nitric oxide for the treatment of pulmonary arterialhypertension. Pulm Circ,2012,2(2):139-147
    24Huang H, Zhang P, Wang Z, Tang F, et al. Activation of endothelin-1receptor signaling pathways is associated with neointima formation,neoangiogenesis and irreversible pulmonary artery hypertension in patientswith congenital heart disease. Circ J,2011,75(6):1463-1471
    25Shao D, Park JE, Wort SJ. The role of endothelin-1in the pathogenesis ofpulmonary arterial hypertension. Pharmacol Res,2011,63(6):504-511
    26Boniface S, Reynaud-Gaubert M. Endothelin receptor antagonists-their rolein pulmonary medicine. Rev Mal Respir,2011,28(8): e94-107
    27Sauvageau S, Thorin E, Villeneuve L, et al. Change in pharmacologicaleffect of endothelin receptor antagonists in rats with pulmonaryhypertension: role of ETB-receptor expression levels. Pulm PharmacolTher,2009,22(4):311-317
    28Ruan CH, Dixon RA, Willerson JT, et al. Prostacyclin therapy forpulmonary arterial hypertension. Tex Heart Inst J,2010,37(4):391-399
    29Fukushima H, Kosaki K, Sato R, et al. Mechanisms underlying earlydevelopment of pulmonary vascular obstructive disease in Down syndrome:An imbalance in biosynthesis of thromboxane A2and prostacyclin. Am JMed Genet A,2010,152A(8):1919-1924
    30Delannoy E, Courtois A, Freund-Michel V, et al. Hypoxia-inducedhyper-reactivity of pulmonary arteries: role of cyclooxygenase-2,isoprostanes, and thromboxane receptors. Cardiovasc Res,2010,85(3):582-592
    31贾晓民,赵杰,王海清.碱性成纤维细胞生长因子对肺癌A549细胞pim-3表达影响的实验研究。南京医科大学学报(自然科学版),2009,29(6):845-847
    32Tu L, Dewachter L, Gore B, et al. Autocrine fibroblast growth factor-2signaling contributes to altered endothelial phenotype in pulmonaryhypertension. Am J Respir Cell Mol Biol,2011,45(2):311-322
    33Schermuly RT, Dony E, Ghofrani HA, et al. Reversal of experimentalpulmonary hypertension by PDGF inhibition. J Clin Invest,2005,115(10):2811-2821
    34Hassoun PM, Mouthon L, BarberàJA, et al. Inflammation, growth factors,and pulmonary vascular remodeling. J Am Coll Cardiol,2009,54(1Suppl):S10-19
    35Raghavendran K, Davidson BA, Mullan BA. Acid and particulate inducedaspiration lung injury in mice: importance of MCP-1. Am J Physiol LungCell Mol Physiol,2005,289(1): L134-143
    36Johnson SR,Mehta S,Granton JT. Anticoagulation in pulmonary arterialhypertension: a qualitative systematic review. Eur Respir J,2006,28(5):999-1004
    37Maeda NY, Carvalho JH, Otake AH, et al. Platelet protease-activatedreceptor1and membrane expression of P-selectin in pulmonary arterialhypertension. Thromb Res,2010,125(1):38-43
    38孔晋星.糖尿病肾病血管内皮细胞损伤及凝血纤溶功能变化实验研究.昆明医学院学报,2007,28(2B):171-174
    39Smadja DM, Mauge L, Sanchez O, et al. Distinct patterns of circulatingendothelial cells in pulmonary hypertension. Eur Respir J,2010,36(6):1284-1293
    40Taraseviciene-Stewart L, Kasahara Y, Alger L, et al. Inhibition of theVEGF receptor2combined with chronic hypoxia causes celldeath-dependent pulmonary endothelial cell proliferation and severepulmonary hypertension. FASEB J,2001,15(2):427-438
    41Sahara M, Sata M, Morita T, et al. Nicorandil attenuates monocrotaline-induced vascular endothelial damage and pulmonary arterial hypertension.PLoS One,2012,7(3): e33367
    42Yang X, Long L, Reynolds PN, et al. Expression of mutant BMPR-II inpulmonary endothelial cells promotes apoptosis and a release of factorsthat stimulate proliferation of pulmonary arterial smooth muscle cells.Pulm Circ,2011,1(1):103-110
    43Jurasz P, Courtman D, Babaie S, et al. Role of apoptosis in pulmonaryhypertension: from experimental models to clinical trials. Pharmacol Ther,
    2010,126(1):1-8
    44Zeng WJ, Sun YJ, Gu Q, et al. The impact of pulmonary arterialhypertension-targeted therapy on survival in Chinese patients withidiopathic pulmonary arterial hypertension. Pulm Circ,2012,2(3):373-378
    45Katsiki N, Wierzbicki AS, Mikhailidis DP. Pulmonary arterial hypertensionand statins: an update. Curr Opin Cardiol,2011,26(4):322-326
    46El Chami H, Hassoun PM. Immune and inflammatory mechanisms inpulmonary arterial hypertension. Prog Cardiovasc Dis,2012,55(2):218-228
    47Anjum F, Joshi K, Grinkina N, et al. Role of sphingomyelin synthesis inpulmonary endothelial cell cytoskeletal activation and endotoxin-inducedlung injury. Am J Respir Cell Mol Biol,2012,47(1):94-103
    48Ribeiro AL, Shimada AL, Hebeda CB, et al. In vivo hydroquinoneexposure alters circulating neutrophil activities and impairs LPS-inducedlung inflammation in mice. Toxicology,2011,288(1-3):1-7
    49Kim I, Moon SO, Park SK, et al. Angiopoietin-l reduces VEGF stimulatedleukocyte adhesion to endothelial cells by reducing ICAM-l, VCAM-l, andE-selectin expression. Cire Res,2001,89(6):477-479
    50Sadeghi MM, Collinge M, Pardi R. Simvastatin modulatescytokine-mediated endothelial cell adhesion molecule induction:involvement of an inhibitory G protein. J Immunol,2000,165(5):2712-2718
    51McLaughlin VV, Shillington A, Rich S. Survival in primary pulmonaryhypertension: the impact of epoprostenol therapy. Circulation,2002,106(12):1477-1482
    52Montalescot G, Drobinski G, Meurin P, et al. Effects of prostacyclin on thepulmonary vascular tone and cardiac contractility of patients withpulmonary hypertension secondary to end-stage heart failure. Am J Cardiol,1998,82(6):749-755
    53D'Alto M, Romeo E, Argiento P, et al. Bosentan-sildenafil association inpatients with congenital heart disease-related pulmonary arterialhypertension and Eisenmenger physiology. Int J Cardiol,2012,155(3):378-382
    54Bradford CN, Ely DR, Raizada MK. Targeting the vasoprotective axis ofthe renin-angiotensin system: a novel strategic approach to pulmonaryhypertensive therapy. Curr Hypertens Rep,2010,12(4):212-219
    55Schermuly RT, Kreisselmeier KP, Ghofrani HA, et al. Chronic sildenafiltreatment inhibits monocrotaline-induced pulmonary hypertension in rats.Am J Respir Crit Care Med,2004,169(1):39-45
    56Fujita H, Fukumoto Y, Saji K, et al. Acute vasodilator effects of inhaledfasudil, a specific Rho-kinase inhibitor, in patients with pulmonary arterialhypertension. Heart Vessels,2010,25(2):144-149
    57Wang XX, Zhang FR, Shang YP, et al. Transplantation of autologousendothelial progenitor cells may be beneficial in patients with idiopathicpulmonary arterial hypertension: a pilot randomized controlled trial. J AmColl Cardiol,2007,49(14):1566-1571
    58Takemiya K, Kai H, Yasukawa H, et al. Mesenchymal stem cell basedprostacyclin synthase gene therapy for pulmonary hypertension rats. BasicRes Cardiol,2010,105(3):409-417
    59Sanchez O, Sitbon O, Ja s X, et al. Immunosuppressive therapy inconnective tissue diseases-associated pulmonary arterial hypertension.Chest,2006,130(1):182-189
    60Voelkel NF, Tuder RM, Bridges J, et al. Interleukin-1receptor antagonisttreatment reduces pulmonary hypertension generated in rats bymonocrotaline. Am J Respir Cell Mol Biol,1994,11(6):664-675

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700