用户名: 密码: 验证码:
苯扎贝特促进小鼠巨噬细胞胆固醇逆转运体内和体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     大量临床流行病学研究发现,人群中血浆高密度脂蛋白胆固醇(HDL-C)水平与冠心病发生率呈负相关,提示HDL具有抗动脉粥样硬化作用。胆固醇逆转运(RCT)是机体排出过多胆固醇的唯一途径,也是HDL抗动脉粥样硬化的重要机制之一。RCT指的是将外周组织细胞(包括巨噬细胞)游离胆固醇通过脂蛋白转运至肝脏,再通过肝脏排泄的过程。巨噬细胞是动脉粥样硬化病变的主要细胞成分,巨噬细胞过度荷脂转变为泡沫细胞,沉积于动脉壁形成早期的粥样斑块。因此,巨噬细胞RCT对动脉粥样硬化的发展起着最为关键的作用。三磷酸腺苷结合盒转运体超家族(ABCA1、ABCG1、ABCG5、ABCG8等)、B族清道夫受体Ⅰ(SR-BI)、胆固醇7α羟化酶(CYP7A1)等多种蛋白、受体、转运体参与RCT,并受肝X受体(LXRα)的调节。苯扎贝特是目前临床上常用的调血脂药物,可以明显降低甘油三酯(TG)和升高HDL-C。大规模临床研究证实苯扎贝特能有效延缓动脉斑块的形成,降低冠心病患者的临床终点事件发生的危险性。苯扎贝特抗动脉粥样硬化的机制除了其调节血脂如降低TG和升高HDL-C外,可能还具有调脂外的作用如抗炎、抗凝作用。对于RCT的作用的研究,苯扎贝特仅限于对RCT中转运蛋白如ABCA1、ABCG5的影响。然而,长期以来缺少对在体RCT的评价方法。本研究在Rader实验室的方法基础上建立了替代方法,观察苯扎贝特对巨噬细胞胆固醇逆转运体内、体外的影响,并探讨其可能的机制。
     目的
     观察苯扎贝特干预后小鼠血脂浓度变化,以及血清、肝脏及粪便中~3H-胆固醇占经腹腔注射~3H-胆固醇总量的百分比。研究苯扎贝特对小鼠体内巨噬细胞RCT的影响,苯扎贝特干预后小鼠血清及苯扎贝特对巨噬细胞内胆固醇流出的影响,探讨苯扎贝特调节巨噬细胞RCT的机制。
     方法
     以苯扎贝特(0.1%、0.25%、0.5%w/w)干预4周的C57BL/6J小鼠为模型,分别腹腔注射经乙酰化低密度脂蛋白(Ac-LDL)荷脂与~3H-胆固醇标记的巨噬细胞悬液,用液闪计数仪测定血清、肝脏、粪便中~3H-胆固醇的含量;收集0.25%苯扎贝特组小鼠血清孵育不同剂量的苯扎贝特(0、50、100、200μM)干预的RAW264.7巨噬细胞,测定细胞胆固醇流出;以RT-PCR方法检测肝组织CYP7A1、SR-BImRNA,肝脏和小肠ABCG5、LXRαmRNA,巨噬细胞SR-BI、ABCA1、ABCG1、LXRαmRNA的转录水平表达;再用Western-blot方法检测肝脏和小肠的ABCG5、LXRα,巨噬细胞ABCG1、LXRα的蛋白水平表达。
     结果
     1.小鼠经苯扎贝特(0.1%、0.25%、0.5%)干预4周后,血HDL-C升高,TG降低,这些作用呈剂量相关性趋势。0.5%苯扎贝特组HDL-C水平较对照组明显增高(P<0.01),增幅为26.4%;TG水平较对照组明显降低(P<0.01),降幅为34%。
     2.采用不同剂量苯扎贝特(0.1%、0.25%、0.5%)干预小鼠,与对照组相比,血~3H-胆固醇含量显著增加,增幅分别为100%、131%、110%;肝脏~3H-胆固醇含量也显著增加,增幅分别为86.4%、52.3%、51.6%;粪便~3H-胆固醇含量同样显著增加,增幅分别为110%、140%、160%。
     3.与对照组比较,苯扎贝特干预后的小鼠血清介导巨噬细胞内胆固醇流出明显增加(P<0.05)。
     4.苯扎贝特(0、50、100、200μM)呈剂量依赖性地增加血清诱导的巨噬细胞胆固醇流出率。
     5.体外试验显示,苯扎贝特(0、50、100、200μM)呈剂量依赖性地上调巨噬细胞ABCA1、ABCG1、SR-BImRNA表达及ABCG1蛋白的表达量;并呈剂量依赖性地增加巨噬细胞LXRαmRNA及蛋白的表达量。
     6.小鼠经苯扎贝特(0.1%,0.25%,0.5%)干预后,其肝脏SR-BI mRNA表达较对照组明显增加(P<0.05)。
     7.不同剂量苯扎贝特(0.1%,0.25%,0.5%)干预组小鼠肝脏、小肠ABCG5、LXRαmRNA表达与蛋白质表达较对照组明显增高(P<0.05)。
     8.各苯扎贝特(0.1%,0.25%,0.5%)干预组小鼠肝脏CYP7A1mRNA表达较对照组明显降低(P<0.05)。
     结论
     1.苯扎贝特具有以下作用:
     (1)降低小鼠血清TG,升高HDL-C。
     (2)促进小鼠体内巨噬细胞相关的胆固醇逆转运。
     (3)促进体外培养小鼠巨噬细胞胆固醇流出。
     2.苯扎贝特促进小鼠巨噬细胞RCT的机制:
     (1)通过增加ABCA1、ABCG1、SR-BI的表达,促进巨噬细胞胆固醇流出,可能与其上调LXRα表达有关。
     (2)通过上调肝脏SR-BImRNA的表达,增加肝脏对胆固醇酯的选择性吸收;通过上调肝脏、小肠LXRα表达,增加ABCG5表达,促进胆固醇向胆汁中排泄,减少肠内胆固醇吸收。
     (3)苯扎贝特促进巨噬细胞RCT可能与肝脏CYP7A1mRNA的表达无关。
Background
     It has been found from numerous clinical epidemiological studies that the risk of developing coronary heart disease(CHD) is inversely related to high-density lipoprotein-cholesterol(HDL-C),which implies that HDL plays a role on the anti-atherosclerosis.Reverse cholesterol transport(RCT) is the only pathway from human body for excess cholesterol and one of the key mechanisms of HDL anti-atherosclerosis. RCT is a process that free cholesterol in peripheral cells,including macrophages,is transported to the liver in the form of HDL and excreted from liver.Macrophages are major cellular components of atherosclerotic lesions.Continuous accumulation of excess cholesterol in macrophages eventually leads to the formation of foam cells,which deposit on the arterial wall to form the characteristics of early atherosclerotic plaque. Therefore,Macrophages reverse cholesterol transport is the most crucial factor to atherosclerotic progress.Many proteins,receptors and transporters,such as ATP binding cassette transporter family(ABCA1, ABCG1,ABCG5 and ABCG8 etc.),scavenger receptor BI(SR-BI) and cholesterol 7alpha-hydroxylase(CYP7A1),all participate in RCT.And they are regulated by liver X receptorα(LXRα).Bezafibrate is a commonly used medicine that can efficiently lower triglyceride and increase HDL-C.It has proven from numerous clinical studies that bezafibrate significantly retards atherosclerosis progression and reduces the CHD death.Besides the effect of regulating the blood lipid,such as lowering triglyceride and increasing HDL-C,Bezafibrate has other effects, e.g.anti-inflammatory and anti-coagulation.A few studies indicate that the effect of bezafibrate on RCT is limited to affecting ABCA1 and ABCG5.However,no effective approach to assess RCT in vivo has been reported.In this work,an alternative approach has been developed on the basis of methods employed by Rader laboratory.We have evaluated the effect of bezafibrate on macrophages RCT in vivo and in vitro and discussed its possible mechanism.
     Objectives
     The objectives of this thesis are to investigate the effect of bezafibrate on macrophage RCT in mice in vivo and the effects of bezafibrate and mice serum on cholesterol efflux from macrophage in vivo,by determining the changes of lipid concentration and the ratio of 3H-cholesterol in serum,liver and feces to the total dose of 3H-cholesterol intraperitoneally injected after treating mice with bezafibrate,and to discuss the possible mechanisms of bezafibrate promotes macrophage reverse cholesterol transport.
     Methods
     After being treated with bezafibrate(0.1%,0.25%,0.5%W/W) for 4 weeks,C57BL/6 mice were injected intraperitoneally with ~3H-cholesterol-labeled and cholesterol-loaded(Ac-LDL) macrophages. The concentration of ~3H-tracer in samples of serum,liver and feces were determined by using liquid scintillation counter.Cholesterol efflux from 3H-cholesterol prelabled RAW264.7 macrophages incubated from mice serum with 0.25%bezafibrate in vitro was measured after being treated with different concentrations of bezafibrate.Reverse transcription polymerase chain reaction(RT-PCR) was used to evaluate mRNA expression of CYP7A1 and SR-BI of liver,ABCG5 and LXRαof liver and intestine as well as SR-BI,ABCA1,ABCG1 and LXRαof macrophage.And protein expression of ABCG5 and LXRαof liver as well as ABCG1 and LXRαof macrophage was evaluated with western-blot method.
     Results
     1.Being treated by bezafibrate(0.1%,0.25%,0.5%) for 4 weeks,the level of triglyceride(TG) and HDL-C was correlated to the bezafibrate dose.Compared to the control,HDL-C level increased (P<0.01) by 26.4%,while TG level decreased(P<0.01) by 34%in 0.5%bezafibrate group.
     2.Compared to those in the control group,the ~3H-cholesterol levels in serum of the mice of treated group(0.1%,0.25%,0.5%) were significantly higher by 100%,131%and 110%,respectively. Similarly,the ~3H-cholesterol levels in liver and feces were significantly higher by 86.4%,52.3%and 51.6%,by 110%,140% and 160%,respectively.
     3.Being treated with bezafibrate,Cholesterol efflux from macrophages mediated by the mice serum increased significantly,compared to those from the control group(P<0.05).
     4.Bezafibrate(0,50,100,200μM) dose-dependently promoted cholesterol efflux from macrophages mediated by the mice serum.
     5.The experiements in vitro showed that the Bezafibrate(0,50,100, 200μM) with different concentrations dose-dependently increased the mRNA expression of ABCA1,ABCG1 and SR-BI as well as the protein expression of ABCG1,the mRNA and protein expression of LXRαof macrophages.
     6.The SR-BImRNA expression of liver was dose-dependently upregulated in mice treated with different dosage of bezafibrate (0.1%,0.25%,0.5%),compared to those in control group(P<0.05).
     7.For treated group(0.1%,0.25%,0.5%),mRNA and protein expression of ABCG5 and LXRαof liver and intestine increased significant(P<0.05),
     8.For treated group(0.1%,0.25%,0.5%,the CYP7A1mRNA expression of mice liver were dose-dependently lower than those of control group(P<0.05).
     Conclusions
     1.Bezafibrate has following effects:
     1) Reduced the triglyceride(TG) level and increased the HDL-C level.
     2) Promoted macrophages RCT in vivo in mice.
     3) Promoted the cholesterol efflux from the cultured macrophages.
     2.The key mechanisms of Bezafibrate promoting macrophages reverse cholesterol transport:
     1) Bezafibrate increased the expression of ABCA1,ABCG1 and SR-BI to promote cholesterol efflux,which might be due to the up-regulation of LXRα.
     2) Bezafibrate promoted macrophages reverse cholesterol transport in vivo possibly by upregulating the expression of SR-BImRNA to mediate the selective uptake of cholesteryl esters from HDL in the liver and through upregulating expression of ABCG5 of liver and intestine to promote cholesterol efflux via bile and to reduce uptake of cholesterol in intestine,which might be due to the up-regulation of LXRα.
     3) Bezafibrate promoting macrophages reverse cholesterol transport in vivo had no relation to the expression of liver CYP7A1mRNA in mice.
引文
[1] Navin K Kapur, Dominique Ashen, Roger S Blumenthal. High density lipoprotein cholesterol: an evolving target of therapy in the management of cardiovascular disease. Vascular Health and Risk Management. 2008; 4(1): 39-57
    [2] Danielle Duffy, MD; Daniel J. Rader, MD. Emerging Therapies Targeting High-Density Lipoprotein Metabolism and Reverse Cholesterol Transport. Circulation. 2006; 113; 1140-1150
    [3] Barter, P; Gotto, AM; LaRosa, JC, et al. Treating to New Targets Investigators. HDL cholesterol, very low levels of LDL cholesterol and cardiovascular events. N Engl J Med. 2007; 357:1301-1310.
    [4] Marina C, Daniel J, Rader. Macrophage reverse cholesterol transport key to the regression of atherosclerosis? J Circulation. 2006; 113; 2548-2555.
    [5] ZHAO Shui-Ping, WUZhi-Hong, HONG Shao-Cai, et al. Effect of atorvastatin on SR-BI expression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits. Clin Chim Acta. 2006; 365; 119-124
    [6] Yves L. Marcel, Mireille Ouimet, Ming-Dong Wang. Regulation of cholesterol efflux from macrophages. Curr Opin Lipidol. 2008; 9: 455-461
    [7] Duong M, Collins HL, Jin W, et al. Relative contributions of ABCA1 and SR-BI to cholesterol efflux to serum from fibroblasts and macrophages. Arterioscler Thromb Vase Biol. 2006; 26(3): 541-547.
    [8] Daniel J. Rader, Eric T. Alexander, Ginny L. Weibel, et al. Role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis 。 J Lipid Res. 2008 Dec 8. [Epub ahead of print]
    [9] Zhang Y, Zanotti I, Reilly MP, et al. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo.Circulation.2003; 108: 661-663.
    [10] Goldenberg I, Benderly M, Goldbourt U. Secondary prevention with bezafi brate therapy for the treatment of dyslipidemia. An extended follow-up of the Bezafbrate Infarction Prevention Study. J Am Coll Cardiol. 2008; 51(4): 459-465
    [11]Ruotolo G, Ericsson CG, Tettamanti C, et al. Treatment effects on serum lipoprotein lipids, apolipoproteins and low density lipoprotein particle size and relationships of lipoprotein variables to progression of coronary artery disease in the Bezafibrate Coronary Atherosclerosis Intervention Trial (BECAIT). J Am Coll Cardiol. 1998; 32(6): 1648-1656.
    [12] Xun Wang and Daniel J. Rader Molecular regulation of macrophage reverse cholesterol transport.Curr Opin Cardiol.2007; 22: 368-372.
    [13] Alam K, Meidell RS, Spady DK. Effect of up-regulating individual steps in the reverse cholesterol transport pathway on reverse cholesterol transport in normolipidemic mice.J Biol Chem. 2001; 276:15641-15649.
    [14] Goldenberg I; Benderly M; Goldbourt, U. Secondary prevention with bezafibrate therapy for the treatment of dyslipidemia.An extended follow-up of the Bezafbrate Infarction Prevention Study. J Am Coll Cardiol. 2008; 51(4): 459-65
    [15] Goldenberg, I; Goldbourt, U; Boyco, V, et al. Relationship between on-treatment increments in serum HDL levels and cardiac events in patients with coronary heart disease: an extended follow-up of the Bezafibrate Infarction Prevention Trial. Am J Cardiol. 2006; 97:466-471.
    [16] Goldenberg I, Benderly M, Goldbourt U. Update on the use of fibrates: focus on bezafibrate. Vasc Health Risk Manag. 2008; 4(1): 131-141.
    [17] Cabrero A, Cubero M, Llaverias G, et al.Differential effects of peroxisome proliferator-activated receptor activators on the mRNA levels of genes involved in lipid metabolism in primary human monocyte-derived macrophages.Metabolism.2003; 52(5): 652-7.
    [18] Kamisako T, Ogawa H. Effects of pravastatin and bezafibrate on biliary lipid excretion and hepatic expression of Abcg5 and Abcg8 in the rat. J Gastroenterol Hepatol. 2004; 19(8): 879-83.
    [19] Gary F. Lewis, Daniel J. Rader.New Insights Into the Regulation of HDL Metabolism and Reverse Cholesterol Transport.Circ Res. 2005; 96:1221-1232.
    [20] Saha SA, Kizhakepunnur LG, Bahekar A,et al.The role of fibrates in the prevention of cardiovascular disease-a pooled meta-analysis of long-term randomized placebo-controlled clinical trials. Am Heart J. 2007; 154(5): 943-253.
    [21] Chapman, MJ. Fibrates: therapeutic review.Br J Diabetes Vase Dis. 2006; 6: 11-18.
    [22] Goldenberg I, Benderly M, Sidi R, et al. Relation of clinical benefit of raising high-density lipoprotein cholesterol to serum levels of low-density lipoprotein cholesterol in patients with coronary heart disease (from the Bezafibrate Infarction Prevention Trial). Am J Cardiol. 2009; 103(1): 41-45.
    [23] Superko, RH; Berneis, KK; Williams, P, et al. Gemfibrozil reduces small low-density lipoprotein more in normolipemic subjects classified as low-density lipoprotein pattern B compared with pattern A. Am J Cardiol.2005; 96: 1266-1272.
    [24] Otvos JD, Collins D, Freedman DS, et al.Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial.Circulation. 2006; 113(12): 1556-1563.
    [25] Saku K, Zhang B, Jimi S, et al. High-density lipoprotein and apolipoprotein A-I deficiency induced by combination therapy with probucol and bezafibrate. Eur J Clin Pharmacol. 1995; 48(3-4): 209-15.
    [26] Cavigiolio G, Shao B, Geier EG,et al.The interplay between size, morphology, stability, and functionality of high-density lipoprotein subclasses. Biochemistry. 2008; 47(16): 4770-4779.
    [27] Adlouni A, El Messal M, Saile R, Parra H, et al. Probucol promotes reverse cholesterol transport in heterozygous familial hypercholesterolemia.Effects on apolipoprotein Al-containing lipoprotein particles.Atherosclerosis. 2000; 152(2):433-440.
    [28] Barter PJ, Caulfield M, Eriksson M, et al.Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007; 357: 2109-2122
    [29] Rader DJ. Illuminating HDL-Is it still a viable therapeutic target? N Engl J Med. 2007; 357: 2180-2183
    [30] Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007; 356: 1304-1316.
    [31] Kastelein JJ, Van Leuven SI, Burgess L, et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia.N Engl J Med. 2007; 356: 1620-1630.
    [32] Abbas A, Fadel PJ, Wang Z, et al. Contrasting effects of oral versus transdermal estrogen on serum amyloid A (SAA) and high-density lipoprotein-SAA in postmenopausal women. Arterioscler Thromb Vasc Biol. 2004; 24(10): el64-167.
    [1] Glomset JA. The plasma lecithins: cholesterol acyltransferase reaction.J Lipid Res. 1968; 9: 155-167.
    [2] Rader DJ, Alexander ET, Weibel GL, et al.Role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 2008 Dec 8. [Epub ahead of print]
    [3] Wendy Jessupa, Ingrid C. Gelissena, Katharina Gausa, et al. Roles of ATP binding cassette transporters Al and Gl, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages.Curr Opin Lipidol. 2006; 17: 247-257.
    [4] Mitro N, Godio C, De Fabiani E, et al. Insights in the regulation of cholesterol 7alpha-hydroxylase gene reveal a target for modulating bile acid synthesis. Hepatology. 2007; 46(3): 885-897.
    [5] Gilardi F, Mitro N, Godio C, et al. The pharmacological exploitation of cholesterol 7alpha-hydroxylase, the key enzyme in bile acid synthesis: from binding resins to chromatin remodelling to reduce plasma cholesterol. Pharmacol Ther. 2007; 116(3): 449-472.
    [6] Oram JF, Vaughan AM.ATP-Binding cassette cholesterol transporters and cardiovascular disease. CircRes. 2006; 99(10): 1031-1043.
    [7] W(?)jcicka G, Jamroz-Wisniewska A, Horoszewicz K, et al. Liver X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipid metabolism. Postepy Hig Med Dosw (Online). 2007; 61:736-759.
    [8] Pelton PD, Patel M, Demarest KT. Nuclear receptors as potential targets for modulating reverse cholesterol transport. Curr Top Med Chem. 2005; 5(3): 265-282.
    [9] Bertolotti M, Gabbi C, Anzivino C, et al. Nuclear receptors as potential molecular targets in cholesterol accumulation conditions: insights from evidence on hepatic cholesterol degradation and gallstone disease in humans. Curr Med Chem.2008; 15(22): 2271-2284.
    [10] Calpe-Berdiel L, Rotllan N, Fievet C, et al. Liver X receptor-mediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ABCG5/G8. J Lipid Res. 2008; 49(9): 1904-1911
    [11] Betowski J.Liver X Receptors (LXR) as Therapeutic Targets in Dyslipidemia. Cardiovasc Ther. 2008; 26(4): 297-316.
    [12] Zhang Y, Zanotti I, Reilly MP, Glick JM, Rothblat GH, Rader DJ. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation. 2003; 108: 661-663.
    [13] Zhang Y, Da Silva JR, Reilly M, et al. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest.2005; 115: 2870-2874.
    [14] Naik SU, Wang X, Da Silva JS, et al. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation.2006; 113: 90-97.
    [15] Goldenberg I; Benderly M; Goldbourt, U. Secondary prevention with bezafibrate therapy for the treatment of dyslipidemia.An extended follow-up of the Bezafbrate Infarction Prevention Study. J Am Coll Cardiol. 2007. J Am Coll Cardiol.2008; 51(4): 459-465
    [16] Goldenberg I, Benderly M, Goldbourt U. Update on the use of fibrates: focus on bezafibrate.Vasc Health Risk Manag. 2008; 4(1): 131-141.
    [17] Babaev VR, Ishiguro H, Ding L, et al. Macrophage expression of peroxisome proliferator-activated receptor-alpha reduces atherosclerosis in low-density lipoprotein receptor-deficient mice.Circulation. 2007; 116(12):1404-1412.
    [18] Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med. 2001; 7: 53-58.
    [19] Li AC, Binder CJ, Gutierrez A, et al. Differential inhibition of macrophage foamcell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest. 2004; 114:1564-1576.
    [20] Cabrero A, Cubero M, Llaverias G, et al.Differential effects of peroxisome proliferator-activated receptor activators on the mRNA levels of genes involved in lipid metabolism in primary human monocyte-derived macrophages. Metabolism.2003; 52(5): 652-657.
    [21] Rader, D.J. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest. 2006; 116: 3090-3100.
    [22] Xun Wang and Daniel J. Rader Molecular regulation of macrophage reverse cholesterol transport.Curr Opin Cardiol. 2007; 22: 368-372.
    [23] Fokko Zandbergen, Jorge Plutzky. PPARa in atherosclerosis and inflammation . Biochim Biophys Acta. 2007; 1771(8): 972-982.
    [24] Erickson SK, Lear SR, Deane S, et al. Hypercholesterolemia and changes in lipid and bile acid metabolism in male and female cyp7Al-deficient mice. J Lipid Res. 2003; 44(5): 1001-1009.
    [25] Ratliff EP, Gutierrez A, Davis RA.Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia. J Lipid Res.2006; 47(7): 1513-1520.
    [26] Miyake JH, Duong-Polk XT, Taylor JM, et al. Transgenic expression of cholesterol-7-alpha-hydroxylase prevents atherosclerosis in C57BL/6J mice.Arterioscler Thromb Vase Biol. 2002; 22(1): 121-126.
    [27] Ando H, Tsuruoka S, Yamamoto H, et al. Regulation of cholesterol 7alpha-hydroxylase mRNA expression in C57BL/6 mice fed an atherogenic diet. Atherosclerosis. 2005;178(2): 265-269.
    [28] Post SM, Groenendijk M, van der Hoogt CC, et al. Cholesterol 7alpha-hydroxylase deficiency in mice on an APOE~*3-Leiden background increases hepatic ABCA1 mRNA expression and HDL-cholesterol. Arterioscler Thromb Vase Biol. 2006; 26(12): 2724-2730.
    [29] Raedsch R, Plachky J, Wolf N, et al. Biliary lipids, lithogenic index and biliary drug concentrations during etofibrate and bezafibrate treatmentEur J Drug etab Pharmacokinet. 1995; 20(2): 113-118.
    [30] Stahlberg D, Reihner E, Rudling M, et al. Influence of bezafibrate on hepatic cholesterol metabolism in gallstone patients: reduced activity of cholesterol 7 alpha-hydroxylase. Hepatology. 1995; 21(4): 1025-1030.
    [31] Gbaguidi GF, Agellon LB. The inhibition of the human cholesterol 7alpha-hydroxylase gene (CYP7A1) promoter by fibrates in cultured cells is mediated via the liver x receptor alpha and peroxisome proliferator-activated receptor alpha heterodimer. Nucleic Acids Res. 2004; 32(3): 1113-1121.
    [32] A.Verschuren L, de Vries-van der Weij J, Zadelaar S, et al.LXR agonist suppresses atherosclerotic lesion growth and promotes lesion regression in ApoE~*3 Leiden mice: time course and potential mechanisms. J Lipid Res. 2008 Aug 30. [Epub ahead of print]
    [33] Naik SU, Wang X, Da Silva JS, et al. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 2006; 113: 90-97.
    [34] Zanotti I, Poti F, Pedrelli M, Favari E, et al. The LXR agonist T0901317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. J Lipid Res. 2008; 49(5): 954-960.
    [35] Ogata M, Tsujita M, Hossain MA, et al.On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis. 2009 Jan 19. [Epub ahead of print]
    [36] Groen AK, Oude Elferink RP, Verkade HJ, et al. The ins and outs of reverse cholesterol transport.Ann Med. 2004; 36: 135-145.
    [37] Sehayek E, Hazen SL.Cholesterol absorption from the intestine is a major determinant of reverse cholesterol transport from peripheral tissue macrophages. Arterioscler Thromb Vasc Biol. 2008; 28(7): 1296-1297.
    [38] Yu L, Li-Hawkins J, Hammer RE, et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest. 2002; 110(5): 671-680.
    [39] Roglans N, V(?)zquez-Carrera M, Al egret M, et al. Fibrates modify the expression of key factors involved in bile-acid synthesis and biliary-lipid secretion in gallstone patients. Eur J Clin Pharmacol. 2004; 59(12): 855-861.
    [40] Ueda Y, Gong E, Royer L, et al. Relationship between expression levels and atherogenesis in scavenger receptor class B, type Ⅰ transgenics. J Biol Chem.2000;275: 20368-20373.
    [41] Yesilaltay A, Morales MG, Amigo L, et al. Effects of hepatic expression of the high-density lipoprotein receptor SR-BI on lipoprotein metabolism and female fertility. Endocrinology. 2006; 147(4):1577-1588
    [42] Zhang Y, Da Silva JR, Reilly M, et al. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest. 2005 ; 115: 2870-2874.
    [43] Van Eck M, Twisk J, Hoekstra M, et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver .J Biol Chem. 2003; 278(26): 23699-23705.
    [44] Lopez D, McLean MP. Activation of the rat scavenger receptor class B type I gene by PPARalpha. Mol Cell Endocrinol. 2006; 251(1-2): 67-77.
    [1] Marina C, Daniel J, Rader. Macrophage reverse cholesterol transport key to the regression of atherosclerosis? J Circulation. 2006; 113: 2548-2555.
    [2] Yves L. Marcel, Mireille Ouimet, Ming-Dong Wang.Regulation of cholesterol efflux from macrophages.Curr Opin Lipidol. 2008; 9: 455-461
    [3] Daniel J. Rader, Eric T. Alexander, Ginny L. Weibel, et al Role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis。 J Lipid Res. 2008 Dec 8. [Epub ahead of print]
    [4] Pelton PD, Patel M, Demarest KT. Nuclear receptors as potential targets for modulating reverse cholesterol transport. Curr Top Med Chem. 2005; 5(3): 265-282.
    [5] W(?)jcicka G, Jamroz-Wisniewska A, Horoszewicz K, et al. Liver X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipid metabolism. Postepy Hig Med Dosw. 2007; 61: 736-759.
    [6] Goldenberg I, Benderly M, Goldbourt U. Update on the use of fibrates: focus on bezafibrate.Vasc Health Risk Manag. 2008; 4(1): 131-141.
    [7] Babaev VR, Ishiguro H, Ding L, et al. Macrophage expression of peroxisome proliferator-activated receptor-alpha reduces atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2007; 116(12): 1404-1412.
    [8] Cabrero A, Cubero M, Llaverias G, et al.Differential effects of peroxisome proliferator-activated receptor activators on the mRNA levels of genes involved in lipid metabolism in primary human monocyte-derived macrophages.Metabolism.2003; 52(5): 652-657.
    [9] Boden WE. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High-Density Lipoprotein Intervention Trial. Am J Cardiol. 2000;86:19L-22L.
    [10] Navin K Kapur, Dominique Ashen, Roger S Blumenthal. High density lipoprotein cholesterol: an evolving target of therapy in the management of cardiovascular disease. Vascular Health and Risk Management. 2008; 4(1): 39-57
    [11] Wendy Jessupa, Ingrid C. Gelissena, Katharina Gausa, et al. Roles of ATP binding cassette transporters Al and Gl, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages.Curr Opin Lipidol.2006; 17:247-257.
    [12] Fokko Zandbergen, Jorge Plutzky.PPARα in atherosclerosis and inflammation.Biochim Biophys Acta. 2007; 1771(8): 972-982.
    [13] Hirano K, Yamashita S, Nakagawa Y, et al. Expression of human scavenger receptor class B type I in cultured human monocyte-derived macrophages and atherosclerotic lesions.Circ Res 1999; 85:108-116.
    [14] Huang ZH, Gu D, Lange Y, Mazzone T. Expression of scavenger receptor BI facilitates sterol movement between the plasma membrane and the endoplasmic reticulum in macrophages. Biochemistry 2003; 42:3949-3955.
    [15] Patricia G. Yancey,l, W. Gray Jerome,Hong Yu,et al. Severely altered cholesterol homeostasis in macrophages lacking apoE and SR-BI. J Lipid Res. 2007. 48:1140-1149.
    [16] Zhang W, Yancey PG, Su YR, et al. Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 2003; 108:2258-2263.
    [17] Wang X, Collins HL, Ranalletta M, et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest.2007; 117: 2216-2224.
    [18] Yvan-Charvet L, Pagler TA, Wang N, et al.SR-BI inhibits ABCG1-stimulated net cholesterol efflux from cells to plasma HDL. J Lipid Res. 2008; 49(1): 107-114.
    [19] Lopez D, McLean MP. Activation of the rat scavenger receptor class B type I gene by PPARalpha.Mol Cell Endocrinol. 2006; 251(1-2): 67-77.
    [20] Kooistra T, Verschuren L, de Vries-van der Weij J, et al.Fenofibrate reduces atherogenesis in ApoE*3Leiden mice: evidence for multiple antiatherogenic effects besides lowering plasma cholesterol. Arterioscler Thromb Vase Biol. 2006; 26(10): 2322-2330.
    [21] Parhofer KG.Beyond LDL cholesterol: HDL cholesterol as target for atherosclerosis prevention.Exp clin End Diab. 2005; 113(8): 414-417.
    [22] Kielar D, Dietmaier W, Langmann T, et al. Rapid quantification of human ABCA1 mRNA in various cell types and tissues by real-time reverse transcription-PCR. Clin Chem 2001; 47: 2089-2097.
    [23] Adorni MP, Zimetti F, Billheimer JT, et al.The roles of different pathways in therelease of cholesterol from macrophages. J Lipid Res 2007; 48: 2453-2462.
    [24] Haghpassand M, Bourassa P-AK, Francone OL, et al. Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels. JClin Invest 2001; 108: 1315-1320.
    [25] Van Eck M, Singaraja RR, Ye D, et al. Macrophage ATP-binding cassette transporter A1 overexpression inhibits atherosclerotic lesion progression in low-density lipoprotein receptor knockout mice.Arterioscler Thromb Vase Biol. 2006; 26: 929-934.
    [26] Arakawa R, Tamehiro N, Nishimaki-Mogami T, et al.Fenofibric acid, an active form of fenofibrate, increases apolipoprotein A-I-mediated high-density lipoprotein biogenesis by enhancing transcription of ATP-binding cassette transporter A1 gene in a liver X receptor-dependent manner. Arterioscler Thromb Vase Biol. 2005; 25(6): 1193-1197.
    [27] Ogata M, Tsujita M, Hossain MA, et al.On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis. 2009 Jan 19. [Epub ahead of print]
    [28] Kennedy MA, Barrera GC, Nakamura K, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation.Cell Metab.2005; 1: 121-131.
    [29] WangM-D, KissRS, Franklin V, et al. Different intracellular trafficking of LDL- and acetylated LDL-derived cholesterol lead to distinct reverse cholesterol transport mechanisms. J Lipid Res 2007; 48: 633-645.
    [30] Mauldin JP, Nagelin MH, Wojcik AJ, et al.Reduced expression of ATP-binding cassette transporter G1 increases cholesterol accumulation in macrophages of patients with type 2 diabetes mellitus.Circulation. 2008; 117(21):2785-2792.
    [31] Gelissen IC, Harris M, Rye KA, et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I.Arterioscler Thromb Vasc Biol. 2006; 26: 534-540.
    [32] MyNgan D, Heidi LC, Weijun J, et al. Relative contributions of ABCA1 and SR-BI to cholesterol efflux to serum from fibroblasts and macrophages. J Arterioscler Thromb Vasc Biol. 2006; 26: 541-547
    [33] WangM-D, KissRS, Franklin V, et al. Different intracellular trafficking of LDL- and acetylated LDL-derived cholesterol lead to distinct reverse cholesterol transport mechanisms.J Lipid Res. 2007; 48: 633-645.
    [34] Schmitz G, Langmann T. Transcriptional regulatory networks in lipid metabolism control ABCA1 expression.Biochim Biophys Acta.2005;1735:1-19.
    [35]Thymiakou E,Zannis VI,Kardassis D.Physical and functional interactions between liver X receptor/retinoid X receptor and Sp1 modulate the transcriptional induction of the human ATP binding cassette transporter A1 gene by oxysterols and retinoids.Biochemistry 2007;46:11473-11483.
    [36]Zanotti I,Poti F,Pedrelli M,Favari E,et al.The LXR agonist promotes the reverse cholesterol transport from macrophages by increasing plasma effiux potential.Lipid Res.2008;49(5):954-960.
    [37]Chinetti G,Lestavel S,Bocher V,et al.PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway.Nat Med.2001;7:53-58.
    [38]Li AC,Binder CJ,Gutierrez A,et al.Differential inhibition of macrophage foameell formation and atherosclerosis in mice by PPARalpha,beta/delta,and gamma.J Clin Invest.2004;114:1564-1576.
    [39]Vu-Dae N,Chopin-Delannoy S,Gervois P,et al.The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates.J Biol Chem.1998;273:25713-25720.
    [40]Asztalos BF,Collins D,Cupples LA,et al.Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the Veterans Affairs HDL Intervention Trial.Arterioscler Thromb Vase Biol.2005;25(10):2185-2191
    [41]Otvos JD,Collins D,Freedman DS,et al.Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial.Circulation.2006;113(12):1556-1563.
    [42]Bela F.Asztalos,Margarita de la Llera-Moya,Gerard E.Dallal,et al Differential effects of HDL subpopulations on cellular ABCA1- and SR-BI-mediated cholesterol efflux.J Lipid Res.2005;46:2246-2253.
    [1]Danielle Duffy,Daniel J.Rader.Emerging Therapies Targeting High-Density Lipoprotein Metabolism and Reverse Cholesterol Transport.Circulation.2006;113;1140-1150
    [2]Barter P,Gotto AM,LaRosa JC,et al.Treating to New Targets Investigators.HDL cholesterol,very low levels of LDL cholesterol and cardiovascular events.N Engl J Med.2007;357:1301-10.
    [3]Goldenberg I,Benderly M,Goldbourt U.Secondary prevention with bezafibrate therapy for the treatment of dyslipidemia.An extended follow-up of the Bezafbrate Infarction Prevention Study.J Am Coil Cardiol.2008;51(4):459-465
    [4]Goldenberg I,Goldbourt U,Boyco,V,et al.Relationship between on-treatment increments in serum HDL levels and cardiac events in patients with coronary heart disease:an extended follow-up of the Bezafibrate Infarction Prevention Trial.Am J Cardiol.2006;97:466-471.
    [5]赵水平主编《临床血脂学》2006.12北京,人民卫生出版社
    [6]Chapman,MJ.Fibrates:therapeutic review.Br J Diabetes Vasc Dis.2006;6:11-18.
    [7]Steinmetz A,Schwartz T,Hehnke U,et al.Multicenter comparison of micronized fenofibrate and simvastatin in patients with primary type IIA or IIB hyperlipoproteinemia.J Cardiovasc Pharmacol.1996;27(4):563-570.
    [8]Staels B,Fruchart JC.Therapeutic roles of peroxisome proliferator-activated receptor agonists.Diabetes.2005;54:2460- 2470.
    [9]Fruchart JC,Duriez P.Mode of action of fibrates in the regulation of triglyceride and HDL-cholesterol metabolism.Drugs Today(Barc).2006;42(1):39-64.
    [10]Robert A,Hegele Rebecca L.Pollex.Apolipoprotein A-V Genetic Variation and Plasma Lipoprotein Response to Fibrates.Arterioscler Thromb Vasc.Biol.2007;27:1224-1227
    [11]唐伟,郑旭琴,刘超.贝特类药物在糖尿病及代谢综合征患者中的应用。实用临床医学杂志2007;11:2106-2108
    [12]Wang TD,Chen W J,Lin JW,et al.Efficacy of fenofibrate and simvastatin on endothelial function and inflammatory markers in patients with combined hyperlipidemia:relations with baseline lipid profiles.Atherosclerosis.2003;170(2):315-323.
    [13]Schoonjans K,Staels B,Auwerx,J.Role of the peroxisome proliferator-activated receptor(PPAR) in mediating the effects of fibrates and fatty acids on gene expression.J Lipid Res.1996b;37:907-25
    [14]Kiyanagi T;Miyazaki T;Kume A,et al.Decrease in CETP activity by fenofibrate may increase LDL particle size measured by HPLC method in patients with coronary artery disease.Atherosclerosis.2006;7(3 Suppl):559.
    [15]P.J.Barter.Antiatherogenic Properties of Fibrates Arterioscler.Thromb.Vasc.Biol.2005;25;1095-1096
    [16]刘玲,赵水平.贝特类调脂药物的研究及应用进展.中国新药与临床杂志2000;19(5):349-352.
    [17]Rizzo,M;Berneis,K.The clinical significance of the size of low-density-lipoproteins and the modulation of subclasses by fibrates.Curr Med Res Opin.2007;23:1103-1111.
    [18]Superko RH,Berneis KK,Williams P,et al.Gemfibrozil reduces small low-density lipoprotein more in normolipemic subjects classified as low-density lipoprotein pattern B compared with pattern A.Am J Cardiol.2005;96:1266-1272.
    [19]Otvos JD,Collins D,Freedman DS,et al.Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial.Circulation.2006;113(12):1556-1563.
    [20]Ye H J,Zhao SP.Anti-atherogenic properties of fibrates may be largely due to their anti-inflammatory effects.Med Hypotheses.2006;66(3):495-500.
    [21]Fokko Zandbergen,Jorge Plutzky.PPARα in atherosclerosis and inflammation.Biochim Biophys Acta.2007;1771(8):972-982.
    [22]Kleemann R,Gervois PP,Verschuren L,Staels B,Princen HM,Kooistra T.Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFkappa B-C/EBP-beta complex formation.Blood.2003;101:545-551.
    [23]Ye P,Fang H,Zhou X,et al.Effect of peroxisome proliferator-activated receptor activators on tumor necrosis factor-α expression in neonatal rat cardiac myocytes.Chin Med Sci J.2004;19:243-247.
    [24]Koh KK,Han SH,Quon M J,et al.Beneficial effects of fenofibrate to improve endothelial dysfunction and raise adiponectin levels in patients with primary hypertriglyceridemia.Diabetes Care.2005;28:1419-1424.
    [25]Staels B,Koenig W,Habib A,et al.Activation of human aortic smooth-muscle cells is inhibited by PPAR-α but,not by PPAR-αactivators.Nature.1998;393:790-793.
    [26]Koh KK,Aim JY,Han SH,et al.Effects of fenofibrate on lipoproteins,vasomotor function,and serological markers of inflammation,plaque stabilization,and hemostasis.Atherosclerosis.2004;174:379-83.
    [27] Okopien B, Huzarska M, Kulach A, et al. Hypolipidemic drugs affect monocyte IL-1β gene expression and release in patients with Ⅱa and Ⅱb dyslipidemia. J Cardiovasc Pharmacol.2005; 45: 160-164.
    [28] Lin R, Liu J, Gan W, et al. C-reactive protein-induced expression of CD40-CD40L and the effect of lovastatin and fenofibrate on it in human vascular endothelial cells. Biol Pharm Bull.2004; 27: 1537-1543.
    [29] Lin R, Liu JT, Gan WJ, Wang WR, et al. Fenofibrate inhibits tumor necrosis factor-alpha-induced expression of CD40 and matrix metalloproteinase in human vascular endothelial cells.Nan Fang Yi Ke Da Xue Xue Bao. 2006; 26(10):1383-1387
    [30] Wang T-D, Chen W-J, Lin J-W, et al. Efficacy of fenofibrate and simvastatin on endothelial function and inflammatory markers in patients with combined hyperlipidemia: relations with baseline lipid profiles.Atherosclerosis.2003;170:315-323.
    [31] Han CY, Chiba T, Campbell JS, et al. Reciprocal and coordinate regulation of serum amyloid A versus apolipoprotein A-Ⅰ and paraoxonase-1 by inflammation in murine hepatocytes. Arterioscler Thromb Vasc Biol. 2006; 26:1806-1813.
    [32] Gervois P, Kleemann R, Pilon A, et al. Global suppression of IL-6-induced acute phase response gene expression after chronic in vivo treatment with the peroxisome proliferator-activated receptor-alpha activator fenofibrate. J Biol Chem. 2004; 279: 16154-16160.
    [33] Kooistra T, Verschuren L, de Vries-van der Weij J, et al.Fenofibrate reduces atherogenesis in ApoE*3Leiden mice: evidence for multiple antiatherogenic effects besides lowering plasma cholesterol. Arterioscler Thromb Vasc Biol. 2006; 26(10): 2322-2330.
    [34] Kr(?)nke G, Kadi A, Ikonomu E,et al. Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors.Arterioscler Thromb Vase Biol. 2007; 27(6): 1276-1282.
    [35] Haluzik MM, Lacinova Z, Dolinkova M, Improvement of insulin sensitivity after peroxisome proliferator-activated receptor-alpha agonist treatment is accompanied by paradoxical increase of circulating resistin levels. Endocrinology. 2006; 147(9): 4517-4524
    [36] Chinetti G, Zawadski C, Fruchart JC, et al. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPAR-α, PPAR-γ, and LXR. Biochem Biophys Res Commun. 2004; 314: 151-158.
    [37] Shimomura K, Shimizu H, Ikeda M, et al. Fenofibrate, troglitazone, and 15-deoxy-A12,14-prostaglandin J2 close KATP channels and induce insulin secretion.J Pharmacol Exp Ther. 2004; 310:1273-1280.
    [38] Chan DC, Watts GF Pharmacological regulation of dyslipoproteinaemia in insulin resistant states . Curr Vase Pharmacol. 2008; 6(1): 67-77.
    [39] Hiuge A, Tenenbaum A, Maeda N, et al. Effects of peroxisome proliferator-activated receptor ligands, bezafibrate and fenofibrate, on adiponectin level. Arterioscler Thromb Vase Biol. 2007; 27(3): 635-641.
    [40] Han SH, Quon MJ, Koh KK.Beneficial vascular and metabolic effects of peroxisome proliferator-activated receptor-alpha activators. Hypertension 2005; 46:1086-1092.
    [41] Idzior-Walus B, Sieradzki J, et al. Effects of comicronised fenofibrate on lipid and insulin sensitivity in patients with polymetabolic syndrome X. Eur J Clin Invest. 2000; 30: 871-878.
    [42] Tenenbaum A, Fisman EZ, Boyko V, Attenuation of progression of insulin resistance in patients with coronary artery disease by bezafibrate. Arch Intern Med. 2006; 166(7): 737-741.
    [43] Koh KK, Quon MJ, Han SH, et al. Additive beneficial effects of fenofibrate combined with atorvastatin in treatment of combined hyperlipidemia. J Am Coll. Cardiol. 2005;45: 1649-1653.
    [44] Kilicarslan A, Yavuz B, Guven GS,et al. Fenofibrate improves endothelial function and decreases thrombin-activatable fibrinolysis inhibitor concentration in metabolic syndrome. Blood Coagul Fibrinolysis. 2008; 19(4): 310-314.
    [45] Delerive P, Martin-Nizard F, Chinetti G et al..Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res. 1999; 85: 394-402.
    [46] Martin-Nizard F, Furman C, Delerive P, et al. Peroxisome proliferator-activated receptor activators inhibit oxidized low-density Hpoprotein-induced endothelin-1 secretion in endothelial cells. J Cardioyasc Pharmacol. 2002; 40: 822-831.
    [47] Han SH, Quon MJ, Koh KK. Beneficial vascular and metabolic effects of peroxisome proliferator-activated receptor-alpha activators. Hypertension. 2005; 46:1086-1092.
    [48] Goya K, Sumitani S, Xu X, et al. Peroxisome proliferator-activated receptor-α agonists increase nitric oxide synthase expression in vascular endothelial cells. Arterioscler Thromb Vase Biol.2004; 24: 658-653.
    [49] Diep QN, Amiri F, Touyz RM, et al. PPAR-α activator effects on Ang H-induced vascular oxidative stress and inflammation. Hypertension. 2002; 40: 866-871.
    [50] Okayasu T, Tomizawa A, Suzuki K,et al. PPARalpha activators upregulate eNOS activity and inhibit cytokine-induced NF-kappaB activation through AMP-activated protein kinase activation. Life Sci. 2008; 82(15-16): 884-891.
    [51] Yong QW, Thavintharan S, Cheng A, et al. The effect of fenofibrate on insulin sensitivity and plasma lipid profile in non-diabetic males with low high density lipoprotein/dyslipidaemic syndrome. Ann Acad Med Singapore. 1999; 28(6):778-782.
    [52] Marx N, Sukhova GK, Collins T, et al. PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation. 1999; 99: 3125-3131.
    [53] Xu X, Otsuki M, Saito H, et al. PPARalpha and GR differentially down-regulate the expression of nuclear factor-kappaB-responsive genes in vascular endothelial cells. Endocrinology. 2001; 142: 3332-3339.
    [54] Ahmed W, Orasanu G, Nehra V, et al. lipoprotein hydrolysis by endothelial lipase activates PPARalpha: a candidate mechanism for highdensity lipoprotein-mediated repression of leukocyte adhesion. Circ Res. 2006; 98:490-498.
    [55] Rosenson RS, Wolff DA, Huskin AL, et al. Fenofibrate therapy ameliorates fasting and postprandial lipoproteinemia, oxidative stress, and the inflammatory response in subjects with hypertriglyceridemia and the metabolic syndrome. Diabetes Care. 2007; 30(8): 1945-1951.
    [56] Fernandez AZ. Peroxisome proliferators-activated receptors in the modulation of the immune/inflammatory response in atherosclerosis. PPAR Res. 2008; 2008: 285842.
    [57] Stemme S, Faber B, Holm J, et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A. 1995; 92: 3893-3897.
    [58] Jones DC, Ding X, Daynes RA. Nuclear receptor peroxisome proliferator-activated receptor alpha(PPARalpha) is expressed in resting murine lymphocytes. The PPARalpha in T and B lymphocytes is both transactivation and transrepression competent. J Biol Chem. 2002; 277: 6838-6845.
    [59] Marx N, Kehrle B, Kohlhammer K, et al. PPARactivators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res. 2002; 90: 703-710.
    [60] Delayre-Orthez C, Becker J,et al. Suppression of allergen-induced airway inflammation and immune response by the peroxisome proliferator-activated receptor-alpha agonist fenofibrate. Eur J Pharmacol. 2008; 581(1-2): 177-184.
    [61] Okopien B, Krysiak R, Kowalski J, et al. The effect of statins and fibrates on interferon-gamma and interleukin-2 release in patients with primary type Ⅱ dyslipidemia. Atherosclerosis. 2004; 176(2): 327-335.
    [62] Staels B, Koenig W, Habib A, et al.Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators.Nature. 1998; 393: 790-793.
    [63] Verreth W, De Keyzer D, Pelat M, et al. Weight-loss-associated induction of peroxisome proliferator-activated receptor-alpha and peroxisome proliferator-activated receptor-gamma correlate with reduced atherosclerosis andimproved cardiovascular function in obese insulin-resistant mice. Circulation.2004; 110: 3259-3269.
    [64] Rozenberg O, Rosenblat M, Coleman R, et al. Paraoxonase (pon1) deficiency is associated with increased macrophage oxidative stress: studies in ponl-knockout mice. Free Radic Biol Med. 2003; 34(6): 774-784.
    [65] Gouedard C, Koum-Besson N, Barouki R, et al. Opposite regulation of the human paraoxonase gene PON1 by fenofibrate and statins.Mol Pharmacol. 2003; 63:945-956.
    [66] Kladna A, Aboul-Enein HY, Kruk I, et al. Scavenging of reactive oxygen species by some nonsteroidal anti-inflammatory drugs and fenofibrate.Biopolymers.2006; 82(2): 99-105
    [67] Teissier E, Nohara A, Chinetti G, et al. Peroxisome proliferator-activated receptor alpha induces NADPH oxidase activity in macrophages,leading to the generation of LDL with PPAR-alpha activation properties.Circ Res. 2004; 95:1174-1182.
    [68] Kunsch C, Medford RM. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res. 1999; 85: 753-766.
    [69] Fokko Zandbergenl, Jorge Plutzkyl. PPARa in atherosclerosis and inflammation Biochim Biophys Acta. 2007; 1771(8): 972-982.
    [70] Eberhardt W, Akool el S, Rebhan J, et al. Inhibition of cytokine-induced matrix metalloproteinase 9 expression by peroxisome proliferatoractivated receptor alpha agonists is indirect and due to a NO-mediated reduction of mRNA stability. JBiol Chem. 2002; 277: 33518-33528.
    [71] Lin R, Liu JT, Gan WJ, et al. Fenofibrate inhibits tumor necrosis factor-alpha-induced expression of CD40 and matrix metalloproteinase in human vascular endothelial cells. Nan Fang Yi Ke Da Xue Xue Bao. 2006;26(10):1383-1387.
    [72] Rival Y, Beneteau N, Chapuis V,et al. Cardiovascular drugs inhibit MMP-9 activity from human THP-1 macrophages. DNA Cell Biol. 2004; 23(5): 283-292.
    [73] Gizard F, Amant C, Barbier O, et al. PPAR alpha inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a. J Clin Invest. 2005; 115: 3228-3238.
    [74] Chinetti G, Griglio S, Antonucci M, et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem. 1998; 273: 25573-25580.
    [75] Jeanpierre E, Le Tourneau T, Zawadzki C, et al. Benefici al effects of fenofibrate on plaque thrombogenicity and plaque stability in atherosclerotic rabbits. Cardiovasc Pathol. 2008 Apr 22. [Epub ahead of print]
    [76] Golledge J, Mangan S, Clancy P. Effects of peroxisome proliferator-activated receptor ligands in modulating tissue factor and tissue factor pathway inhibitor in acutely symptomatic carotid atheromas. Stroke.2007;38(5):1501-1508.
    [77] Neve BP, Corseaux D, Chinetti G, et al. PPARalpha agonists inhibit tissue factor expression in human monocytes and macrophages.Circulation. 2001; 103(2): 207-212.
    [78] Dong C, Hu Y, Wang H, et al. Inhibitory effects of fenofibrate on plasminogen activator inhibitor-1 expression in human endothelial cells. J Huazhong Univ Sci Technolog Med Sci. 2006; 26(2): 192-3,198.
    [79] Ye P, He YL, Wang Q, et al. The alteration of plasminogen activator inhibitor-1 expression by linoleic acid and fenofibrate in HepG2 cells . Blood Coagul Fibrinolysis. 2007; 18(1): 15-19.
    [80]Okopie(?) B,Haberka M,Madej A,et al.Extralipid effects of micronized fenofibrate in dyslipidemic patients.Pharmacol Rep.2006;58(5):729-735.
    [81]Gillian M,Katherine F.Fenofibrate:a review of its use in primary dyslipidaemia,the metabolic syndrome and type 2 diabetes mellitus.Drugs.2007;67(1):121-153.
    [82]Gervois P,Vu2Dac N,Kleemann R,et al.Negative regulation of human fibrinogengene expression by peroxisome proliferators 2 activated receptor alpha agonists via inhibition of CCAATbox/enhancer-binding protein beta.J Biol Chem.2001;276:334712-33477.
    [83]姜妮,林金秀,苏津自.贝特类药物的非调脂作用.高血压杂志.2005;13:134-136.
    [84]Espinosa RA,Rodr(?)guez-Roa E,Nagy E,et al.Changes in serum lipids,plasma fibrinogen and other haemostatic parameters induced by ciprofibrate action in hyperlipidemic patients with and without coronary artery disease.Invest Clin.2006;47(1):35-48.
    [85]Ramjattan BR,Callaghan DJ,Theiss U.Efficacy and tolerability of a "suprabioavailable" formulation of fenofibrate in patients with dyslipidemia:a pooled analysis of two open-label trials.Clin Ther.2002;24(7):1105-1116.
    [86]Manninen V,Tenkanen L,Koskinen P,et al.Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study:Implications for treatment.Circulation.1992;85(1):37-45
    [87]Ruotolo G,Ericsson CG,Tettamanti C,et al.Treatment effects on serum lipoprotein lipids,apolipoproteins and low density lipoprotein particle size and relationships of lipoprotein variables to progression of coronary artery disease in the Bezafibrate Coronary Atherosclerosis Intervention Trial(BECAIT).J Am Coll Cardiol.1998;32(6):1648-1656.
    [88]The BIP Study group.Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease.The Bezafibrate Infarction Prevent.ion(BIP) study.Circulation.2000;102:21-27
    [89](LOCAT) Frick MH,Syv(a|¨)nne M,Nieminen MS,et al.Prevention of the angiographic progression of coronary and vein-grail atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol.Lopid Coronary Angiography Trial(LOCAT) Study Group.Circulation.1997;96(7): 2137-2143.
    [90] Saha SA, Kizhakepunnur LG, Bahekar A, et al.The role of fibrates in the prevention of cardiovascular disease-a pooled meta-analysis of long-term randomized placebo-controlled clinical trials. Am Heart J. 2007; 154(5): 943-253.
    [91] Steiner G. A new perspective in the treatment of dyslipidemia: can fenofibrate offer unique benefits in the treatment of type 2 diabetes mellitus? Treat Endocrinol. 2005; 4(5): 311-317.
    [92] A.S.Wierzbicki.Interpreting clinical trials of diabetic dyslipidaemia: new insights. Diabetes Obes Metab. 2007 Jul 21. [Epub ahead of print]
    [93] Diabetes Atherosclerosis Intervention Study Investigators. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet. 2001; 357(9260):905-910.
    [94] FIELD Study Investigators. Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study: baseline characteristics and short-term effects of fenofibrate. Cardiovasc Diabetol.2005; 4: 13.
    [95] Kilicarslan A, Yavuz B, Guven GS, et al.Fenofibrate improves endothelial function and decreases thrombin-activatable fibrinolysis inhibitor concentration in metabolic syndrome. Blood Coagul Fibrinolysis. 2008; 19(4): 310-314.
    [96] A C Keech,P Mitchell,P A Summanen, et al. Effect of fenofibrate on the need for laster treatment for diabetic retionopathy (FIELD study): a randomized controlled trial. Lancet. 2007; 370: 1687-1689.
    [97] Ansquer JC, Foucher C, Rattier S, et al. Fenofibrate reduces progression to microalbuminuria over 3 years in a placebo-controlled study in type 2 diabetes: results from the Diabetes Atherosclerosis Intervention Study (DAIS). Am J Kidney Dis. 2005;45(3): 485-493.
    [98] Staels B.PPAR agonists and the metabolic syndrome.Therapie. 2007; 62(4): 319-326.
    [99] Jorge Plutsky.Preventing type 2 diabetes and cardiovascular disease in metabolic syndrome the role of PPAR alpha. Diabetes Vasc Dis Res. 2007; 4(suppl 3): S12-S14
    [100] Wang TD, Chen WJ, Lin JW, et al. Efficacy of fenofibrate and simvastatin on endothelial function and inflammatory markers in patients with combined hyperlipidemia: relations with baseline lipid profiles. Atherosclerosis. 2003 ; 170(2): 315-323.
    [101] Arca M, Montali A, Pigna G, et al. Comparison of atorvastatin versus fenofibrate in reaching lipid targets and influencing biomarkers of endothelial damage in patients with familial combined hyperlipidemia. Metabolism. 2007; 56(11): 1534-1541.
    [102] Ryan KE, McCance DR, Powell L, et al. Fenofibrate and pioglitazone improve endothelial function and reduce arterial stiffness in obese glucose tolerant men.Atherosclerosis. 2007; 194(2): el 23-130.
    [103] Kilicarslan A, Yavuz B, Guven GS, et al. Fenofibrate improves endothelial function and decreases thrombin-activatable fibrinolysis inhibitor concentration in metabolic syndrome. Blood Coagul Fibrinolysis. 2008; 19(4): 310-314.
    [104] Hamilton SJ, Chew GT, Watts GF.Therapeutic regulation of endothelial dysfunction in type 2 diabetes mellitus. Diab Vasc Dis Res. 2007; 4(2): 89-102.
    [105] Ogino K, Igawa O, Hisatome I.Other antihyperuricemic agents.Nippon Rinsho. 2008; 66(4): 754-757.
    [106] Achimastos A, Liberopoulos E, Nikas S, et al.The effects of the addition of micronised fenofibrate on uric acid metabolism in patients receiving indapamide. Curr Med Res Opin. 2002; 18(2): 59-63
    [107] Feher MD, Hepburn AL, Hogarth MB, et al. Fenofibrate enhances urate reduction in men treated with allopurinol for hyperuricaemia and goutRheumatology (Oxford). 2003; 42(2): 321-325.
    [108] Noguchi Y, Tatsuno I, Suyama K, et al. Effect of fenofibrate on uric acid metabolism in Japanese hyperlipidemic patients. J Atheroscler Thromb. 2004; 11(6):335-340.
    [109] Zhu S, Su G, Meng QH.Inhibitory effects of micronized fenofibrate on carotid atherosclerosis in patients with essential hypertension. Clin Chem. 2006; 52(11): 2036-2042.
    [110] Bordet R, Ouk T, Petrault O, et al. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans.2006; 34(Pt 6): 1341-1346.
    [111] Cannon CP.Combination therapy in the management of mixed dyslipidaemia. J Intern Med. 2008; 263(4): 353-365.
    [112] Vega GL, Ma PT, Cater NB, et al. Effects of adding fenofibrate (200 mg/day) to simvastatin (10 mg/day) in patients with combined hyperlipidemia and metabolic syndrome.Am J Cardiol. 2003; 91(8): 956-960.
    [113] Derosa G, Cicero AE, Bertone G, et al. Comparison of fluvastatin + fenofibrate combination therapy and fluvastatin monotherapy in the treatment of combined hyperlipidemia, type 2 diabetes mellitus, and coronary heart disease: a 12-month, randomized, double-blind, controlled trial. Clin Ther. 2004; 26(10): 1599-1607.
    [114] Ginsberg HN, Bonds DE, Lovato LC, et al. Evolution of the lipid trial protocol of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial.Am J Cardiol. 2007; 99(12A): 56i-67i.
    [1] Marina C, Daniel J, Rader. Macrophage reverse cholesterol transport key to the regression of atherosclerosis? J Circulation.2006; 113: 2548-2555.
    [2] Lewis, G. F., and D. J. Rader. New insights into the regulation of HDL metabolism and reverse cholesterol transport.Circ. Res.2005; 96:1221-1232.
    [3] Xun Wang and Daniel J. Rader Molecular regulation of macrophage reverse cholesterol transport.Curr Opin Cardiol.2007; 22: 368-372.
    [4] Rader, D.J. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest. 2006; 116: 3090-3100.
    [5] Daniel J. Rader, Eric T. Alexander, Ginny L. Weibel, et al Role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 2008 Dec 8. [Epub ahead of print]
    [6] Adorni MP, Zimetti F, Billheimer JT, et al.The roles of different pathways in the release of cholesterol from macrophages.J Lipid Res. 2007; 48: 2453-2462.
    [7] Kielar D, Dietmaier W, Langmann T, et al. Rapid quantification of human ABCA1 mRNA in various cell types and tissues by real-time reverse transcription-PCR.Clin Chem. 2001; 47: 2089-2097.
    [8] Wendy Jessupa, Ingrid C. Gelissena, Katharina Gausa, et al. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages.Curr Opin Lipidol.2006; 17: 247-257.
    [9] Haghpassand M, Bourassa P-AK, Francone OL, et al.Monocyte/macrophage expression of ABC A1 has minimal contribution to plasma HDL levels. J Clin Invest.2001; 108: 1315-1320.
    [10] Van Eck M, Singaraja RR, Ye D, et al. Macrophage ATP-binding cassette transporter A1 overexpression inhibits atherosclerotic lesion progression in low-density lipoprotein receptor knockout mice.Arterioscler Thromb Vasc Biol. 2006;26: 929-934.
    [11] Wang, X., Collins, H.L., Ranalletta, M.,et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest.2007; 117: 2216-2224.
    [12]Ming-Dong Wang, Vivian Franklin, Yves L. Marcel. In vivo reverse cholesterol transport from macrophages lacking ABCA1 expression is impaired arterioscler.Thromb Vasc Biol. 2007; 27: 1837-1842.
    [13]Van Eck M, Singaraja RR, Ye D, et al. Macrophage ATP-binding cassette transporter Al overexpression inhibits atherosclerotic lesion progression in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol.2006;26: 929-934.
    [14] Tall AR.Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med. 2008; 263(3): 256-273.
    [15] Schmitz G, Langmann T. Transcriptional regulatory networks in lipid metabolism control ABCA1 expression.Biochim Biophys Acta. 2005; 1735: 1-19.
    [16] Thymiakou E, Zannis VI, Kardassis D. Physical and functional interactions between liver X receptor/retinoid X receptor and Spl modulate the transcriptional induction of the human ATP binding cassette transporter A1 gene by oxysterols and retinoids. Biochemistry. 2007; 46: 11473-11483.
    [17]Yan D, Mayranpaa MI, Wong J, et al. OSBP-related protein 8 (ORP8) suppresses ABCA1 expression and cholesterol efflux from macrophages.J Biol Chem.2008; 283: 332-340.
    [18] Tamehiro N, Shigemoto-Mogami Y, Kakeya T, et al. Sterol regulatory element binding protein-2- and liver X receptor-driven dual promoter regulation of hepatic ABC transporter A1 gene expression: mechanism underlying the unique response to cellular cholesterol status.J Biol Chem. 2007; 282: 21090-21099.
    [19]Iwamoto N, Abe-Dohmae S, Ayaori M, et al. ATP-binding cassette transporter A1 gene transcription is downregulated by activator protein 2alpha. Doxazosin inhibits activator protein 2alpha and increases high-density lipoprotein biogenesis independent of alphal-adrenoceptor blockade.Circ Res. 2007; 101: 156-165.
    [20] Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev. 2005; 85:1343-1372.
    [21] Yves L. Marcel, Mireille Ouimet, Ming-Dong Wang.Regulation of cholesterol efflux from macrophages.Curr Opin Lipidol. 2008; 9: 455-461
    [22] Martinez L, Agerholm-Larsen B, Wang N, et al. Phosporylation of a pest sequence in ABCA1 promotes calpain degradation and is reversed by APOA-I. J Biol Chem. 2003; 278: 37368-37374.
    [23] Haidar B, Kiss RS, Sarov-Blat L, et al. Cathepsin D, a lysosomal protease, regulates ABCA1 -mediated lipid efflux.J BiolChem. 2006; 281: 39971-39981.
    [24] Bowden K, Ridgway ND. Oxysterol binding protein (OSBP) negatively regulates ATP binding cassette transporter A1 (ABCA1) protein stability. J Biol Chem.2008; 283: 18210-18217.
    [25] Tang C, Vaughan AM, Oram JF. Janus kinase 2 modulates the apolipoprotein interactions with ABCA1 required for removing cellular cholesterol.J Biol Chem. 2004; 279: 7622-7628.
    [26] Ito J, Nagayasu Y, Ueno S, Yokoyama S. Apolipoprotein-mediated cellular lipid release requires replenishment of sphingomyelin in a phosphatidylcholine specific phospholipase C-dependent manner. J Biol Chem. 2002; 277: 44709-44714.
    [27] Yamauchi Y, Hayashi M, Abe-Dohmae S, Yokoyama S. ApoA-I activates PKCalpha signaling to phosphorylate and stabilize ABCA1 for the HDL assembly. J Biol Chem. 2003; 278: 47890-47897.
    [28] Wang Y, Oram JF. Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a phospholipase D2 pathway. J Biol Chem 2005; 280: 35896-35903.
    [29] Wang Y, Oram JF. Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a protein kinase C delta pathway.J Lipid Res. 2007; 48: 1062-1068.
    [30] Kiss RS, Marie J, Marcel YL. Lipid efflux in human and mouse macrophagic cells: evidence for differential regulation of phospholipid and cholesterol efflux.J Lipid Res. 2005; 46:1877-1887.
    [31] Haidar B, Denis M, Marcil M, et al. Apolipoprotein A-I activates cellular cAMP signaling through theABCAltransporter.J BiolChem.2004; 279: 9963-9969.
    [32] See RH, Caday-Malcolm RA, Singaraja RR, et al. Protein kinase A site-specific phosphorylation regulates ATP-binding cassette A1 (ABCA1)-mediated phospholipid efflux. J Biol Chem. 2002; 277: 41835-41842.
    [33] Roosbeek S, Peelman F, Verhee A, et al. Phosphorylation by protein kinase CK2 modulates the activity of the ATP binding cassette Al transporter. J Biol Chem.2004; 279: 37779-37788.
    [34] Tamehiro N, Zhou S, Okuhira K, et al. SPTLC1 binds ABCA1 to negatively regulate trafficking and cholesterol efflux activity of the transporter.Biochemistry. 2008; 47: 6138-6147.
    [35] Wang N, Ranalletta M, Matsuura F, et al. LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL.Arterioscler Thromb Vase Biol. 2006; 26: 1310-1316.
    [36] Kennedy MA, Barrera GC, Nakamura K, et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab.2005; 1:121-131.
    [37] WangM-D, KissRS, Franklin V, et al. Different intracellular trafficking of LDL- and acetylated LDL-derived cholesterol lead to distinct reverse cholesterol transport mechanisms.J Lipid Res. 2007; 48: 633-645.
    [38] Seres L, Cserepes J, Elkind NB,Functional ABCG1 expression induces apoptosis in macrophages and other cell types.Biochim Biophys Acta. 2008; 1778(10):2378-2387.
    [39] Mauldin JP, Nagelin MH, Wojcik AJ, et al. Reduced expression of ATP-binding cassette transporter Gl increases cholesterol accumulation in macrophages of patients with type 2 diabetes mellitus. Circulation.2008; 117:2785-2792.
    [40] Out R,Hoekstra M, Hildebrand RB, et al.MacrophageABCGl deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in LDL receptor-deficient mice.Arterioscler Thromb Vasc Biol. 2006; 26: 2295-2300.
    [41] Out R, Hoekstra M, Meurs I, et al. Total body ABCG1 expression protects against early atherosclerotic lesion development in mice.Arterioscler Thromb Vase Biol. 2007; 27: 594-599.
    [42] Baldan A, Pei L, Lee R, et al. Impaired development of atherosclerosis in hyperlipidemic Ldlr-/- and ApoE-/- mice transplanted with Abcgl-/- bonemarrow.Arterioscler Thromb Vase Biol. 2006; 26:2301-2307.
    [43] Ranalletta M, Wang N, Han S, et al. Decreased atherosclerosis in low-density lipoprotein receptor knockout mice transplanted with Abcg1-/- bone marrow.Arterioscler Thromb Vase Biol. 2006; 26: 2308-2315.
    [44] Yan D, Jauhiainen M, Hildebrand RB, et al. Expression of human OSBP related protein 1L in macrophages enhances atherosclerotic lesion development in LDL receptor-deficient mice.ArterioscIer Thromb Vasc Biol. 2007; 27:1618-1624.
    [45] Wang X, Collins HL, Ranalletta M, et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest. 2007; 117: 2216-2224.
    [46] Gelissen IC, Harris M, Rye KA, et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I.Arterioscler Thromb Vase Biol. 2006; 26:534-540.
    [47] Matsuura F, Wang N, Chen W, et al. HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE-and ABCG1-dependent pathway. J Clin Invest.2006; 116: 1435-1442.
    [48] Yvan-Charvet L, Ranalletta M, Wang N, et al. Combined deficiency of ABCA1and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest.2007; 117: 3900-3908.
    [49] Out R, Hoekstra M, Habets K, et al. Combined deletion of macrophage ABCA1 and ABCG1 leads to massive lipid accumulation in tissue macrophages and distinct atherosclerosis at relatively low plasma cholesterol levels.Arterioscler Thromb Vase Biol. 2008; 28: 258-264.
    [50] Connelly MA, Williams DL. Scavenger receptor BI: a scavenger receptor with a mission to transport high density lipoprotein lipids.Curr Opin Lipidol.2004; 15: 287-295.
    [51] Zhang Y, Da Silva JR, Reilly M, et al. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest.2005; 115: 2870-2874.
    [52] Ueda Y, Gong E, Royer L, et al. Relationship between expression levels and atherogenesis in scavenger receptor class B, type I transgenics. J Biol Chem. 2000; 275: 20368-20373.
    [53] Yesilaltay A, Morales MG, Amigo L, et al. Effects of hepatic expression of the high-density lipoprotein receptor SR-BI on lipoprotein metabolism and female fertility.Endocrinology. 2006; 147(4): 1577-1588
    [54] Zhang Y, Da Silva JR, Reilly M, et al. Hepatic expression of scavenger receptor class B type Ⅰ (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest.2005; 115: 2870-2874.
    [55] Chinetti G, Gbaguidi FG, Griglio S, et al. CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activatedreceptors.Circulation.2000; 101: 2411-2417.
    [56] Nakagawa-Toyama Y, Hirano K, Tsujii K, et al. Human scavenger receptor class B type I is expressed with cell-specific fashion in both initial and terminal site of reverse cholesterol transport.Atherosclerosis.2005; 183: 75-83.
    [57] Huang ZH, Gu D, Lange Y, Mazzone T. Expression of scavenger receptor BI facilitates sterol movement between the plasma membrane and the endoplasmic reticulum in macrophages.Biochemistry.2003; 42: 3949-3955.
    [58] Patricia G. Yancey,1, W. Gray Jerome,Hong Yu,et al. Severely altered cholesterol homeostasis in macrophages lacking apoE and SR-BI.J Lipid Res. 2007. 48:1140-1149.
    [59] Zhang W, Yancey PG, Su YR, et al. Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein E-deficientmice.Circulation.2003; 108: 2258-2263.
    [60] Yvan-Charvet L, Pagler TA, Wang N, et al.SR-BI inhibits ABCG1-stimulated net cholesterol efflux from cells to plasma HDL. J Lipid Res. 2008; 49(1): 107-14.
    [61] Yu L, Cao G, Repa J, Stangl H. Sterol regulation of scavenger receptor class B type I in macrophages.J Lipid Res. 2004; 45: 889-899.
    [62] Han J, Nicholson AC, Zhou X, et al. Oxidized low density lipoprotein decreases macrophage expression of scavenger receptor B-I. J Biol Chem. 2001; 276: 16567-16572.
    [63] Hirano K, Yamashita S, Nakagawa Y, et al. Expression of human scavenger receptor class B type I in cultured human monocyte-derived macrophages and atherosclerotic lesions.Circ Res. 1999; 85: 108-116.
    [64] Zanotti I, Poti F, Pedrelli M, Favari E, et al. The LXR agonist promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. Lipid Res. 2008; 49(5): 954-960.
    [65] Parhofer KG.Beyond LDL cholesterol: HDL cholesterol as target for atherosclerosis prevention.Exp clin End Diab. 2005; 113(8): 414-417.
    [66] Yancey PG, Kawashiri MA,Moore R, et al. In vivo modulation of HDL phospholipid has opposing effects on SR-BI and ABCA1 mediated cholesterol efflux.J Lipid Res. 2004; 45(2): 337-346.
    [67] Jessup W, Gelissen IC, Gaus K, Kritharides L. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages.Curr Opin Lipidol. 2006; 17: 247-257.
    [68] Thahnai ST, Lund Katz S, Dhanasekaran P, et al. Scavenger receptor BI mediated cholesterolesterylester selective up take and efflux of esterified cholesterol inference of high density lipoproteins size and structure. J Biol Chem. 2004;279(13): 12448-12455.
    [69] Bao Y, Yang Y, Wang L, et al.Identification of trichostatin A as a novel transcriptional up-regulator of scavenger receptor BI both in HepG2 and RAW 264.7 cells.Atherosclerosis.2008 Sep 11. [Epub ahead of print]
    [70] Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev. 2005; 85:1343-1372.
    [71] Vedhachalam C, Ghering AB, Davidson WS, et al. ABCA1-induced cell surface binding sites for ApoA-I.Arterioscler Thromb Vase Biol. 2007; 27: 1603-1609.
    [72] Vedhachalam C, Duong PT, Nickel M, et al. Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high density lipoprotein particles.J Biol Chem. 2007; 282: 25123-25130.
    [73] Zhu HL, Atkinson D. Conformation and lipid binding of a C-terminal (198-243) peptide of human apolipoprotein A-I. Biochemistry.2007; 46:1624-1634.
    [74] Mulya A, Lee JY, Gebre AK, et al. Minimal lipidation of prebeta HDL by ABCA1 results in reduced ability to interact with ABCA1.Arterioscler Thromb Vasc Biol. 2007; 27: 1828-1836.
    [75] Hassan HH, Bailey D, Lee DY, et al. Quantitative analysis of ABCA1-dependent compartmentalization and trafficking of apolipoprotein A-I: implications for determining cellular kinetics of nascent high density lipoprotein biogenesis. J Biol Chem. 2008; 283: 11164-11175.
    [76] Faulkner LE, Panagotopulos SE, Johnson JD, et al.An analysis of the role of a retroendocytosis pathway in ATP-binding cassette transporter (ABCA1)-mediated cholesterol efflux from macrophages.J Lipid Res.2008; 49:1322-1332.
    [77] Denis M, Landry YD, Zha X. ATP-binding cassette A1-mediated lipidation of apolipoprotein A-I occurs at the plasma membrane and not in the endocytic compartments. J Biol Chem. 2008; 283: 16178-16186.
    [78] Schmitz, G., H. Robenek, U. Lohmann, and G. Assmann. Interaction of high density lipoproteins with cholesteryl ester-laden macrophages: biochemical and morphological characterization of cell surface receptor binding, endocytosis and resecretion of high density lipoproteins by macrophages. EMBO J.1985; 4: 613-622.
    [79] Schifferer R, Liebisch G, Bandulik S,et al. ApoA-I induces a preferential efflux of monounsaturated phosphatidylcholine and medium chain sphingomyelin species from a cellular pool distinct from HDL(3) mediated phospholipid efflux. Biochim Biophys Acta. 2007; 1771(7): 853-863.
    [80] Tamara A. Pagler, Angelika Neuhofer,Hildegard Laggner, et al.Cholesterol efflux via HDL resecretion occurs when cholesterol transport out of the lysosome is impaired J. Lipid Res. 2007; 48: 2141-2150.
    [81] Pagler, T. A., S. Rhode, A. Neuhofer, et al. SR-BI-mediated high density lipoprotein (HDL) endocytosis leads to HDL resecretion facilitating cholesterol efflux.J. Biol. Chem.2006; 281: 11193-11204.
    [82] Olofsson SO, Bostrom P, Andersson L, et al. Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta. 2008 Aug 13. [Epub ahead of print]
    [83] Olofsson SO, Bostrom P, Andersson L, et al. Triglyceride containing lipid droplets and lipid droplet-associated proteins.Curr Opin Lipidol.2008 ;19(5): 441-447.
    [84] Rothblat, G. H., M. D. L. Llera-Moya, E. Favari, P. G. Yancey, et al. Cellular cholesterol flux studies: methodological considerations. Atherosclerosis. 2002; 163:1-8.
    [85] Zhao B, Fisher BJ, St Clair RW, Redistribution of macrophage cholesteryl ester hydrolase from cytoplasm to lipid droplets upon lipid loading. J Lipid Res. 2005;46(10): 2114-2121.
    [86] Zhao B, Song J, St Clair R, Ghosh S. Stable over-expression of human macrophage cholesteryl ester hydrolase (CEH) results in enhanced free cholesterol efflux from human THPl-macrophages. Am J Physiol Cell Physiol. 2007; 292:C405-C412.
    [87] Zhao B, Song J, Chow WN, et al. Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. J Clin Invest. 2007; 117: 2983-2992.
    [88] Ouimet M, Wang MD, Cadotte N, et al. Epoxycholesterol impairs cholesteryl ester hydrolysis in macrophage foam cells, resulting in decreased cholesterol efflux.Arterioscler Thromb Vasc Biol. 2008; 28:1144-1150.
    [89] Paul A, Chang BH, Li L, Yechoor VK, et al.Deficiency of adipose differentiation-related protein impairs foam cell formation and protects against atherosclerosis. Circ Res. 2008; 102(12): 1492-1501.
    [90] Martin S, Parton RG.Characterization of Rab 18, a lipid droplet-associated small GTPase. Methods Enzymol. 2008; 438: 109-129.
    [91] Hoeg JM, Santamarina-Fojo S, Berard AM, et al. Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc Natl Acad Sci USA. 1996; 93:11448-11453.
    [92] Mehlum A, Muri M, Hagve TA, et al. Mice overexpressing human lecithin:cholesterol acyltransferase are not protected against diet-induced atherosclerosis. Apmis. 1997; 105: 861-868.
    [93] Berard AM, Foger B, Remaley A, et al. High plasma HDL concentrations ssociated with enhanced atherosclerosis in transgenic mice overexpressing lecithinxholesteryl acyltransferase. Nat Med. 1997; 3: 744-749.
    [94] Foger, B., Chase, M., Amar, M.J., et al. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J Biol.Chem. 1999; 274: 36912-36920.
    [95] Rigotti A, Trigatti BL, Penman M, et al. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A. 1997; 94:12610-12615.
    [96] Wang N, Arai T, Ji Y, et al. Liver-specific overexpression of scavenger receptor BI decreases levels of very low density lipoprotein ApoB, low density lipoprotein ApoB, and high density lipoprotein in transgenic mice. J Biol Chem. 1998;273: 32920-32926.
    [97] Zhang Y, Da Silva JR, Reilly M, et al. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest. 2005; 115: 2870-2874.
    [98] Schwartz, C.C., VandenBroek, J.M., and Cooper, P.S. Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. J Lipid Res. 2004; 45: 1594-1607.
    [99] Zhang Z, Yamashita S, Hirano K, et al. Expression of cholesteryl ester transfer protein in human atherosclerotic lesions and its implication in reverse cholesterol transport. Atherosclerosis. 2001; 159: 67-75.
    [100] Tanigawa, H., Billheimer, J.T., Tohyama, J., et al. D.J. Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation. 2007; 116:1267-1273.
    [101] Plump AS, Masucci-Magoulas L, Bruce C, et al. Increased atherosclerosis in ApoE and LDL receptor gene knock-out mice as a result of human cholesteryl ester transfer protein transgene expression. Arterioscler Thromb Vasc Biol.1999; 19:1105-1110.
    [102] Brousseau ME, Schaefer EJ, Wolfe ML, et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med. 2004; 350: 1505-1515.
    [103] Tall AR, Yvan-Charvet L, Wang N. The failure of torcetrapib: was it the molecule or the mechanism?Arterioscler Thromb Vasc Biol. 2007; 27: 257-260.
    [104] Barter PJ, Caulfield M, Eriksson M, et al.Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007; 357:2109-2122
    [105] Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007; 356: 1304-1316.
    [106] Kastelein JJ, Van Leuven SI, Burgess L, et al.Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia.N Engl J Med.2007; 356:1620-1630.
    [107] Groen AK,Oude Elferink RP, Verkade HJ, et al. The ins and outs of reverse cholesterol transportAnn Med. 2004; 36: 135-145.
    [108] Sehayek E, Hazen SL.Cholesterol absorption from the intestine is a major determinant of reverse cholesterol transport from peripheral tissue macrophages. rterioscler Thromb Vasc Biol. 2008; 28(7): 1296-1297.
    [109] Garcia-Calvo M, Lisnock J, Bull HG, et al. The target of ezetimibe is Niemann-Pick Cl-Like 1 (NPC1L1). Proc Natl Acad Sci U S A. 2005; 102(23):8132-8137.
    [110] Yu L, Li-Hawkins J, Hammer RE, et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest. 2002 ; 110(5): 671-680.
    [111] Calpe-Berdiel L, Rotllan N, Fi(?)vet C, et al. Liver X receptor-mediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ABCG5/G8. J Lipid Res. 2008; 49(9): 1904-1911
    [112] YuZhen Zhang, Ilaria Zanotti, Muredach P. et al. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo.Circulation. 2003; 108; 661-663
    [113] Rader DJ, Alexander ET, Weibel GL, et al. Role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 2008 Dec 8. [Epub ahead of print]
    [114] Eriksson, M., Carlson, L.A., Miettinen, T.A., et al. Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I: Potential reverse cholesterol transport in humans.Circulation.1999; 100: 594-598.
    [115] deGoma, E.M., deGoma, R.L., and Rader, D.J. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J Am Coll Cardiol.2008; 51: 2199-2211.
    [116] Zhang Y, Zanotti I, Reilly MP, et al. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation. 2003; 108: 661-663.
    [117] Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial.JAMA.2003; 290: 2292-2300.
    [118] Verschuren L, de Vries-van der Weij J, Zadelaar S, et al.LXR agonist suppresses atherosclerotic lesion growth and promotes lesion regression in ApoE~*3Leiden mice: time course and potential mechanisms. J Lipid Res. 2008 Aug 30. [Epub ahead of print]
    [119] Naik SU, Wang X, Da Silva JS, et al. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation. 2006;113: 90-97.
    [120] Zanotti I, Poti F, Pedrelli M, Favari E, et al. The LXR agonist T0901317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. J Lipid Res. 2008; 49(5): 954-960.
    [121]Beltowski J.Liver X Receptors (LXR) as Therapeutic Targets in Dyslipidemia. Cardiovasc Ther. 2008; 26(4): 297-316.
    [122] Chinetti, S. Lestavel, J.-C. Fruchart, et al. Peroxisome proliferator-activated receptor-a reduces cholesterol esterification in Macrophages. Circ Res. 2003; 92: 212-217.
    [123] Chawla A, Boisvert WA, Lee CH, et al. A PPAR gamma-LXR-ABCAl pathway in macrophages is involved in cholesterol efflux and atherogenesis.Mol Cell.2001; 7: 161-71.
    [124] Oliver WR Jr, Shenk JL, Snaith MR, et al. A selective peroxisome proliferatoractivated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A. 2001; 98: 5306-5311.
    [125] Vu-Dac N, Chopin-Delannoy S, Gervois P, et al. The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates.J Biol Chem.1998; 273: 25713-25720.
    [126] Li AC, Binder CJ, Gutierrez A, et al. Differential inhibition of macrophage foamcell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest.2004; 114: 1564-576.
    [127] Babaev VR, Ishiguro H, Ding L, et al. Macrophage expression of peroxisome proliferator-activated receptor-alpha reduces atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2007; 116(12): 1404-412.
    [128] Kontush A, Chapman MJ. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 2006; 58: 342-374.
    [129] Rubic T, Trottmann M, Lorenz RL. Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette Al in monocytoid cells by niacin. Biochem Pharmacol. 2004; 67: 411- 419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700