用户名: 密码: 验证码:
孤儿核受体NR4A1在多囊卵巢综合征病理生理机制中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:多囊卵巢综合征(polycystic ovary syndrome,PCOS)是生育期妇女常见的内分泌紊乱性疾病,以持续性无排卵和高雄激素的临床表现为主要特征,其病因和病理机制至今尚未完全阐明。在前期研究工作中,我们通过基因芯片杂交技术筛选出正常人和PCOS患者卵巢组织中290个差异表达的基因,NR4A1是该差异表达谱内代表性基因之一,在PCOS患者卵巢中表达下调(正常/PCOS=0.4)。既往研究表明,NR4A1在许多重要组织中均有表达,其功能涉及甾体激素代谢、细胞凋亡/增殖、胰岛素抵抗等诸多方面。因此,我们提出NR4A1可能与PCOS一系列病理生理改变相关的科研假说。为了探讨NR4A1在PCOS发生、发展过程中的作用,本研究分为两大部分:第一部分首先在蛋白水平证实了NR4A1在小鼠卵巢中的表达与定位,通过构建小鼠NR4A1重组腺病毒载体Ad-CMV-NR4A1及Ad-H1-SiRNA/NR4A1,分别实现NR4A1在小鼠卵泡膜细胞内的超表达和表达沉默,从而观察NR4A1在卵泡膜细胞内对雄激素合成的影响;第二部分探讨高雄激素作用下NR4A1的表达变化及小鼠未成熟卵泡颗粒细胞增殖、凋亡的情况,分别观察NR4A1超表达和表达沉默后,对颗粒细胞增殖、凋亡的影响。通过该研究,阐明NR4A1在PCOS病理生理机制中的作用,为多囊卵巢综合征研究提供新的思路。
     研究方法
     第一部分:NR4A1在小鼠卵巢中的表达及其对卵泡膜细胞雄激素生成的影响
     1.通过免疫组化方法研究NR4A1蛋白在小鼠卵巢中的表达和定位。
     2.构建小鼠NR4A1超表达重组腺病毒载体AdCMV-NR4A1及表达NR4A1基因的小分子干扰RNA(small interfering RNA , siRNA)重组腺病毒载体AdH1-NR4A1,重组病毒感染体外培养的小鼠卵泡24 h后,Western印迹验证NR4A1在卵泡膜细胞中的超表达及干涉效果。
     3. Real-time RT-PCR检测NR4A1超表达及干涉后对雄激素生成酶(StAR、CYP11A1、CYP17A1、HSD3B2)的转录调节,放射免疫法测定培养液中睾酮的浓度。
     4.用福斯高林(Forskolin,cAMP/PKA通路激动剂)分别处理小鼠卵泡1小时、2小时、4小时、6小时后,Realtime PCR检测NR4A1及雄激素生成相关酶的表达水平。
     第二部分:高雄激素作用下NR4A1的表达及其对颗粒细胞增殖、凋亡的影响
     1.用10~(-4)mol/L、10~(-5)mol/L、10~(-6)mol/L睾酮分别处理小鼠窦前卵泡后,观察卵泡的形态变化;通过MTT、流式细胞仪测定细胞周期、AnnexinV/PI及Caspase-3活性检测等方法分别观察雄激素作用后颗粒细胞的增殖与凋亡情况。
     2.通过Real-time RT-PCR、免疫组化、Western blot检测NR4A1在正常大鼠及PCOS大鼠模型卵巢组织中的表达。
     3.用不同浓度的睾酮分别处理体外培养的小鼠窦前卵泡,Real-time RT-PCR、Western blot检测NR4A1的表达变化。
     4.用睾酮及LY294002处理未成熟小鼠卵巢颗粒细胞后,Western blot检测Akt的蛋白磷酸化水平及NR4A1的表达。
     5.用Ad-CMV-NR4A1及Ad-H1-SiRNA/NR4A1重组腺病毒载体感染小鼠卵巢颗粒细胞48h后,检测NR4A1超表达及表达沉默后对颗粒细胞增殖、凋亡的影响。
     研究结果
     第一部分:NR4A1在小鼠卵巢中的表达及其对卵泡膜细胞雄激素生成的影响
     1. NR4A1蛋白在小鼠卵巢各级卵泡和间质内均有表达,其主要定位于卵泡膜细胞和颗粒细胞的细胞核。
     2.重组病毒Ad-CMV-NR4A1感染卵泡膜细胞后,与对照组相比,NR4A1超表达组NR4A1蛋白的表达水平显著升高,两组间差异显著(p<0.05)。NR4A1在卵泡膜细胞内超表达后明显促进了卵泡膜细胞雄激素生成相关酶(StAR、CYP11A1、CYP17A1、HSD3B2)mRNA的转录,增加睾酮合成。相反,重组病毒Ad-H1-siRNA/NR4A1感染卵泡膜细胞后,与对照组相比,NR4A1干涉组NR4A1蛋白的表达水平显著降低(p<0.05)。NR4A1在卵泡膜细胞内干涉后明显地抑制了StAR、CYP11A1、CYP17A1、HSD3B2 mRNA的表达,降低睾酮合成。
     3.在卵泡培养液中加入福斯高林后,NR4A1的表达迅速增加,随后StAR、CYP11A1、CYP17A1、HSD3B2的表达增加。
     第二部分:高雄激素作用下NR4A1的表达及其对颗粒细胞增殖、凋亡的影响
     1.在小鼠窦前卵泡体外培养的过程中,10~(-4)mol/L和10~(-5)mol/L睾酮能够显著促进卵泡体积的增加(p<0.05);在10~(-5)mol/L睾酮的作用下,小鼠卵巢颗粒细胞的增殖增加,凋亡减少(p<0.05)。
     2. Real-time RT-PCR及Western blot结果显示NR4A1在PCOS大鼠模型卵巢中的表达明显低于其在正常大鼠卵巢中的表达(p<0.05)。
     3.用10~(-5) mol/L和10~(-4) mol/L睾酮处理卵泡24h及48h后均明显抑制NR4A1的表达(p<0.05)。
     4.用10~(-5)mol/L睾酮处理颗粒细胞10min至30min,Akt蛋白磷酸化水平显著升高(p<0.05); LY294002预处理后,明显抑制睾酮作用下的Akt的磷酸化(p<0.05),增加NR41的表达(p<0.05)。
     5. NR4A1在颗粒细胞内超表达后促进颗粒细胞的凋亡,抑制其增殖(p<0.05);相反,NR4A1在颗粒细胞内表达沉默后抑制颗粒细胞的凋亡,促进其增殖(p<0.05)。
     结论
     1. NR4A1在小鼠卵巢的卵泡膜细胞和颗粒细胞内表达,提示NR4A1参与卵泡膜细胞和颗粒细胞内某种(些)生物学过程的调控。
     2.在cAMP/PKA信号通路作用下,NR4A1在卵泡膜细胞内促进雄激素生成酶的转录,进而促进雄激素生成。
     3.高雄激素促进颗粒细胞增殖、抑制颗粒细胞凋亡,从而促进早期卵泡发育。体内体外实验证明,高雄激素降低卵巢颗粒细胞中NR4A1的表达,可能与此相关。
     4.高雄激素作用下,通过PI3-K/Akt通路下调颗粒细胞内NR4A1的表达,NR4A1表达下调参与了颗粒细胞的增殖、凋亡调控过程,从而影响未成熟卵泡发育。
     5.本研究部分阐明了NR4A1在PCOS病理生理机制中的作用。
Objective: Polycystic ovary syndrome is the most common endocrine disorder affecting women of reproductive age. It is characterized by chronic anovulation and hyperandrogenism. The underlying etiology and the pathophysiology have yet to be determined. By differential cDNA microarray hybridization in our laboratory, we identify 290 gene differentially expressed between normal and PCOS ovaries, and among this group the most interesting gene is NR4A1, which is down-regulated in PCOS ovary. Numerial studies indicate NR4A1 are expressed in many tissues and involved in various biologic functions, such as cell apoptosis and proliferation, steroid hormone production, insulin resistance and so on. Therefore, we put forward the hypothesis that the downexpression of NR4A1 in PCOS ovary may result in a series of pathophysiological changes in PCOS. To explore the effect of NR4A1 on the pathophysiology of PCOS, this study is divided into two parts. In the first part, we examined the localization of NR4A1 protein in mouse ovary. By construct mouse NR4A1 recombinant adenovirus Ad-CMV-NR4A1 and Ad-H1-SiRNA/NR4A1 to enhance or knockdown the expression of NR4A1 in mouse theca cells. Fundamentally investigate the effect of NR4A1 on testosterone production in theca cells. In the second part, we investigate the effect of androgen on the expression of NR4A1 and the proliferation and apoptosis of immature mouse ovarian granulosa cells. By recombinant adenovirus Ad-CMV-NR4A1 and Ad-H1-SiRNA/NR4A1 to enhance or knockdown the expression of NR4A1 in ovarian granulosa cells, respectively. To explore the effect of androgen induced abnormal expression of NR4A1 on the proliferation and apoptosis of mouse ovarian granulosa cells. This study provide basis for us to further explore the mechanism of NR4A1 on the pathophysiology development of PCOS.
     Methods
     Part One: The Expression of NR4A1 in Mouse Ovary and its Effect on Theca Cell Androgen Production
     1. Examine the localization of NR4A1 protein in mouse ovary by immunochemical.
     2. Constructe recombinant adenovirus Ad-CMV-NR4A1 and Ad-H1-SiRNA/NR4A1 to enhance or knockdown the expression of NR4A1 in theca cells, respectively.
     3. The expression patterns of StAR, CYP11A1, CYP17A1 and HSD3B2 were subse- quently analyzed by real-time RT-PCR. Moreover, concentrations of testosterone in the spent medium were measured by radioimmunoassay.
     4. Mouse follicles were treated with Forskolin (an activator of cAMP/PKA pathway) for 1, 2, 4, 6 hours separately, the expression of NR4A1 and androgen producing enzymes was detected by Realtime PCR.
     Part Two: Effects of Testosterone on the Expression of NR4A1 and the Proliferation and Apoptosis of Ovarian Granulosa Cells
     1. A histological analysis was performed after mouse preantral follicles were treated with different concentrations of testosterone. To observe androgen induced granulosa cell proliferation and apoptosis by MTT, cell cycle determine, AnnexinV/PI and Caspase-3 activity detection.
     2. Examine the expression of NR4A1 in normal and PCOS rat model ovarian by real-time RT-PCR, immunochemical and Western blot.
     3. Mouse preantral follicles were treated with different concentrations of testosterone, the expression of NR4A1 was detected by real-time RT-PCR and Western blot.
     4. Mouse ovarian granulosa cells were treated with testosterone and LY294002 separately, the expression of P-Akt and NR4A1 were detected by Western blot.
     5. After mouse ovarian granulosa cells infected with recombinant adenovirus Ad-CMV-NR4A1 or Ad-H1-SiRNA/NR4A1 for 48 h, the effects of NR4A1 over-expression and down-expression on granulosa cell proliferation and apoptosis were subsequently analyzed.
     Results
     Part One: The Expression of NR4A1 in Mouse Ovary and its Effect on Theca Cell Androgen Production
     1. NR4A1 protein was expressed in all stages of follicles and stroma, it mainly expressed in the nucleus of thecal cells and granulosa cells.
     2. The expression of NR4A1 protein in the mouse theca cells of follicles infected with Ad-CMV-NR4A1 was significantly increased compared with the control groups. Overexpression of NR4A1 in theca cells stimulates the expression of StAR, CYP11A1, CYP17A1 and HSD3B2, leading to increased testosterone production. Conversely,the expression of NR4A1 in the theca cells of follicles infected with recombinant adenovirus Ad-H1-SiRNA/NR4A1 was significantly decreased compared with the control groups. Knockdown of the endogenous NR4A1 exhibits a significant decrease in StAR, CYP11A1, CYP17A1 and HSD3B2 expression and testosterone production.
     3. FSK rapidly increases the NR4A1 mRNA levels followed by an increase in StAR, CYP11A1, CYP17A1 and HSD3B2.
     Part Two: Effects of Testosterone on the Expression of NR4A1 and the Proliferation and Apoptosis of Ovarian Granulosa Cells
     1. After ovarian granulosa cells treated with 10~(-5) mol/L testosterone for 10 min to 30 min, the level of P-Akt was increased obviously(p<0.05). However, when pre-treated with LY294002, the expression of androgen induced P-Akt was significantly inhibited and the expression of NR4A1 notably raised.
     2. Cultured mouse preantral follicle treated with 10~(-4)mol/L or 10~(-5)mol/L testosterone result in increased follicle size. When treated with 10~(-5)mol/L testosterone, the ovarian granulosa cell proliferation added and apoptosis decreased.
     3. The results of real-time RT-PCR and Western blot indicate the expression of NR4A1 in PCOS rat model ovarian was significantly decreased compared with the normal rats(p<0.05).
     4. After mouse follicles treated with 10~(-5) mol/L and 10~(-4) mol/L testosterone for 24 h and 48 h, the expression of NR4A1 was significantly inhibited(p<0.05).
     5. Overexpression of NR4A1 in ovarian granulosa cells stimulates cell apoptosis and decreased cell proliferation(p<0.05). Conversely, knockdown of the endogenous NR4A1 exhibits a significant decrease in granulosa cell apoptosis and promote cell proliferation(p<0.05).
     Conclusion
     1. NR4A1 protein was expressed in the nucleus of thecal cells and granulosa cells, which implied NR4A1 may regulate biological process of these cells.
     2. NR4A1 might be involved in theca cell steroidogenic enzymes transcription and androgen synthesis through cAMP/PKA signaling pathway.
     3. Over-dose testosterone can promote the growth of immature follicles, and its effects of promoting proliferation and inhibiting apoptosis in granulosa cells may influence the follicle development. In vitro and in vivo experiments demonstrated that over-dose androgen decreased the expression of NR4A1 in ovarian granulosa cells, which may involve in follicular development.
     4. Over-dose testosterone down-regulated the expression of NR4A1 through PI3-K/Akt signaling pathway in granulosa cells. Hyperandrogen induced down-regulation of NR4A1 might be involved in the process of proliferation and apoptosis in immature follicular granulosa cells, and thus, influence the development of immature follicles.
     5. This study partly illustrated the effect of NR4A1 on the pathophysiology of PCOS.
引文
[1] Hart R, Hickey M, Franks S. Definitions, prevalence and symptoms of polycystic ovaries and polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004, 18: 671-683.
    [2] Suhail AR, Philip AT, Christopher JS, Kamal AS. PCOS: an ovarian disorder that leads to dysregulation in the hypothalamic-pituitary-adrenal axis? Euro J Obstet Gynecol Reprod Biol. 2005, 118: 4-16.
    [3] Aradhana MV, Andrea D, Anne C. Insulin resistance in polycystic ovary syndrome: progress and paradoxes. Recent Prog Horm Res, 2001, 56: 295-308.
    [4] Franks S, McCarthy MI, Hardy K. Development of polycystic ovary syndrome: involvement of genetic and environmental factors. Inter J Andro, 2006, 29: 278-285.
    [5] Gilling-Smith C, Story EH, Franks S. Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystie ovary syndrome. Clin Endocrinol, 1997, 47: 93-99.
    [6] Diao FY, Xu M, Hu YQ, Liu JY. The molecular characteristics of Polycystic ovary syndrome ovary defined by human ovary cDNA microarray. J Mol Endocrinol, 2004, 33:59-72.
    [7] Escriva H, Delauanry F, Laudet V. Ligand binding and nuclear receptor evolution. BioEsaays, 2000, 22(8):717-727.
    [8] Maxwell MA, Muscat GE. The NR4A subgroup: immediate early response genes with pleiotropic physiological roles. Nucl Recept Signal, 2006, 4: e002.
    [9] Lin B, Kolluri SK, Lin F. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell, 2004, 116(4): 527-540.
    [10] Zetterstrom RH, Solomin L, Jansson L, et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science, 1997, 276(5310): 248-250.
    [11] Pei L, Castrillo A, Tontonoz P. Regulation of macrophage inflammatory gene expression by the orphan nuclear receptor Nur77. Mol Endocrinol, 2006, 20: 786-794.
    [12] Arkenbout EK, de Waard V, van Bragt M, et al. Protective function of transcription factor TR3 orphan receptor in atherogenesis: decreased lesion formation in carotid artery ligation model in TR3 transgenic mice. Circulation, 2002, 106(12): 1530-1535.
    [13] Pei L, Waki H, Vaitheesvaran B, et al. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat Med, 2006, 12(9): 1048-1055.
    [14] Chao LC, Zhang Z, Pei L, et al. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle. Mol Endocrinol, 2007, 21(9): 2152-2163.
    [15] Fu Y, Luo L, Luo N, et al. NR4A orphan nuclear receptors modulate insulin action and the glucose transport system: potential role in insulin resistance. J Biol Chem, 2007, 282(43): 31525-31533.
    [16] Chao LC, Bensinger SJ, Villanueva CJ, et al. Inhibition of adipocyte differentiation by Nur77, Nurr1 and Nor1. Mol Endocrinol, 2008, 22(12): 2596-2608.
    [17] Murphy EP, Conneely OM. Neuroendocrine regulation of the hypothalamic pituitary adrenal axis by the nurr1/nur77 subfamily of nuclear receptors. Mol Endocrinol, 1997, 11(1): 39-47.
    [18] Kelly SN,McKenna TJ, Young LS. Modulation of steroidogenic enzymes by orphan nuclear transcriptional regulation may control diverse production of cortisol and androgens in the human adrenal. J Endocrinol, 2004, 181(2): 355-365.
    [19] Bassett MH, Suzuki T, Sasano H, et al. The orphan nuclear receptor NGFIB regulates transcription of 3beta-hydroxysteroid dehydrogenase: implications for the control of adrenal functional zonation. J Biol Chem, 2004, 279(36): 37622-37630.
    [20] Bassett MH, Suzuki T, Sasano H, et al. The orphan nuclear receptors NURR1 and NGFIB regulate adrenal aldosterone production. Mol Endocrinol, 2004, 18(2): 279-290.
    [21] Szekeres, M, G. Turu, et al. Mechanisms of angiotensin II-mediated regulation of aldosterone synthase expression in H295R human adrenocortical and rat adrenal glomerulosa cells. Mol Cell Endocrinol, 2009, 302(2): 244-53.
    [22] Nogueira, EF, Y. Xing, et al. Role of angiotensin II-induced rapid response genes in the regulation of enzymes needed for aldosterone synthesis. J Mol Endocrinol ,2009,42(4): 319-30.
    [23] Martin LJ, Tremblay JJ. The human 3beta-hydroxysteroid dehydrogenase/ Delta5-Delta4 isomerase type 2 promoter is a novel target for the immediate early orphan nuclear receptor Nur77 in steroidogenic cells. Endocrinology, 2005, 146(2): 861-869.
    [24] Zhang P, Mellon SH. Multiple orphan nuclear receptors converge to regulate rat P450c17 gene transcription: novel mechanisms for orphan nuclear receptor action. Mol Endocrinol, 1997, 11(7): 891-904.
    [25] Martin LJ, Boucher N, Brousseau C, et al. The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin- dependent protein kinase I. Mol Endocrinol, 2008, 22(8): 2021-2037.
    [26] Martin, LJ, Tremblay, JJ. The nuclear receptors NUR77 and SF1 play additive roles with c-JUN through distinct elements on the mouse Star promoter. J Mol Endocrinol, 2009, 42, 119-129.
    [27] Wu Y,Ghosh S,Nishi Y,et al. The orphan nuclear receptors NURR1 and NGFI-B modulate aromatase gene expression in ovarian granulosa cells: a possible mechanism for repression of aromatase expression upon luteinizing hormone surge. Endocrinology, 2005, 146(1): 237-246.
    [28] Smith AG, Lim W, Pearen M, Muscat GE, and Sturm RA. Regulation of NR4A nuclear receptor expression by oncogenic BRAF in melanoma cells. Pigment Cell Melanoma Res. 2011,Mar 1, Epub ahead of print.
    [29] Camacho CP, Latini FR, Oler G, Hojaij FC, Maciel RM, Riggins GJ, and Cerutti JM. Down-regulation of NR4A1 in follicular thyroid carcinomas is restored following lithium treatment. Clin Endocrinol, 2009, 70, 475-483.
    [30] Liu PY, Sheu JJ, Lin PC, Lin CT, Liu YJ, Ho LI, Chang LF, Wu WC, Chen SR, Chen J, et al. Expression of Nur77 induced by an n-butylidenephthalide derivative promotes apoptosis and inhibits cell growth in oral squamous cell carcinoma. Invest New Drugs. 2011, Epub ahead of print.
    [31] Yoon K, Lee SO, Cho SD, Kim K, Khan S, and Safe S. Activation of Nuclear TR3 (Nr4a1) by A Diindolylmethane Analog Induces Apoptosis and Proapoptotic Genes in Pancreatic Cancer Cells and Tumors. Carcinogenesis. 2011, Epub ahead of print.
    [32] No H, Bang Y, Lim J, Kim SS, Choi HS, and Choi HJ. Involvement of induction and mitochondrial targeting of orphan nuclear receptor Nur77 in 6-OHDA-induced SH-SY5Y cell death. Neurochem Int, 2010, 56: 620-626.
    [33] Chao LC, Wroblewski K, Zhang Z, et al. Insulin resistance and altered systemic glucose metabolism in mice lacking Nur77. Diabetes, 2009, 58:2788-2796.
    [34] Lily C, Chao ZZ, Liming P. Nur77 Coordinately Regulates Expression of Genes Linked to Glucose Metabolism in Skeletal Muscle. Endocrinol,2007,21(9): 2152–2163.
    [35] Yuchang F, Liehong L, Nanlan L. NR4A Orphan Nuclear Receptors Modulate Insulin Action and the Glucose Transport System: Potential Role in Insulin Resistance. JBC, 2007, (5):38452–38463.
    [36].李萍,李奕。多囊卵巢综合征高雄激素血症的成因研究进展.国外医学计划生育/生殖健康分册,2006,(25)2: 101-104.
    [37] Schuring AN, Schulte N, Sonntag B, Kiesel L. Androgens and insulin--two key players in polycystic ovary syndrome. Recent concepts in the pathophysiology and genetics of polycystic ovary syndrome. Gynakol Geburtshilfliche Rundsch, 2008,48, 9-15.
    [38] Stocco CO, Zhong L, Sugimoto Y, et al. Prostaglandin F2alpha-induced expression of 20alpha-hydroxysteroid dehydrogenase involves the transcription factor NUR77. J Biol Chem, 2000, 275(47): 37202-37211.
    [39] Hsu HC, ZhouT, Mountz JD. Nur77 family of nuclear hormone receptors. Curr Drug Targets Inflamm Allergy, 2004, 3(2): 413-423.
    [40] Havelock JC, Smith AL, Seely JB, et al. The NGFI-B family of transcription factors regulates expression of 3beta-hydroxysteroid dehydrogenase type 2 in the human ovary. Mol Hum Reprod, 2005, 11(1): 79-85.
    [41] McKenna NJ, Lanz RB, O'Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev, 1999, 20(3): 321-344.
    [42] Martin LJ, Tremblay JJ. Glucocorticoids antagonize cAMP-induced Star transcription in Leydig cells through the orphan nuclear receptor NR4A1. J Mol Endocrinol, 2008, 41(3): 165-175.
    [43] Carletti MZ, Christenson LK. Rapid effects of LH on gene expression in the mural granulosa cells of mouse periovulatory follicles. Reproduction, 2009, 137(5): 843-855.
    [44] Park JI, Kim SG, Chun JS, et al. Activation of protein kinase Czeta mediates luteinizing hormone- or forskolin-induced NGFI-B expression in preovulatory granulosa cells of rat ovary. Mol Cell Endocrinol, 2007, 270(1/2): 79-86.
    [45] Jansen E, Laven JS, Dommerholt HB,et al. Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol, 2004, 18(12): 3050-3063.
    [46] Lily C, Chao ZZ, Liming P. Nur77 Coordinately Regulates Expression of Genes Linked to Glucose Metabolism in Skeletal Muscle. Endocrinol, 2007, 21(9): 2152–2163.
    [47] Nilsson EE, Doraiswamy V, Skinner MK. Transforming growth factor-beta isoform expression during bovine ovarian antral follicle development. Mol Reprod Dev, 2003, 66(3): 237-246.
    [48] Valve E, Penttila TL, Paranko J, Harkonen P. FGF-8 is expressed during specific phases of rodent oocyte and spermatogonium development. Biochem Biophys Res Commun, 1997, 232(1):173-177.
    [49] Orisaka M, Jiang JY, Orisaka S, Kotsuji F, and Tsang BK. Growth differentiation factor 9 promotes rat preantral follicle growth by up-regulating follicular androgen biosynthesis. Endocrinol, 2009, 150: 2740-2748.
    [50] Otsuka F, Moore RK, Shimasaki S. Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. J Biol Chem,2001, 276(35):32889-32895.
    [51] Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, Galloway SM. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod, 2004, 70(4):900-909.
    [52] McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev, 2000, 21: 200-214.
    [53] Fortune JE. The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim Reprod Sci, 2003, 78: 135-163.
    [54] Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required forovarian follicle maturation but not male fertility. Nat Genet, 1997, 15: 201-204.
    [55].Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev, 1996, 17:121-155.
    [56] Maciel GA, Baracat EC, Benda JA, Markham SM, Hensinger K, Chang RJ, Erickson GF. Stockpiling of transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J Clin Endocrinol Metab, 2004, 89(11):5321-5327.
    [57] Das M, Djahanbakhch O, Hacihanefioglu B, Saridogan E, Ikram M, Ghali L, Raveendran M, and Storey A. Granulosa cell survival and proliferation are altered in polycystic ovary syndrome. J Clin Endocrinol Metab, 2008, 93: 881-887.
    [58] Salvetti NR, Panzani CG, Gimeno EJ, Neme LG, Alfaro NS, and Ortega HH. An imbalance between apoptosis and proliferation contributes to follicular persistence in polycystic ovaries in rats. Reprod Biol Endocrinol, 2009, 7: 68.
    [59] Jansen E, Laven JS., Dommerholt HB, Polman J and Fauser BC. Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol, 2004, 18: 3050-3063
    [60] Franks S, Stark J, and Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update, 2008, 14: 367-378.
    [61] Stubbs SA, Stark J, Dilworth SM, Franks S, Hardy K. Abnormal preantral folliculogenesis in polycystic ovaries is associated with increased granulosa cell division. J Clin Endocrinol Metab, 2007, 92:4418-26.
    [62] Webber LJ, Stubbs S, Stark J, Trew GH, Margara R, and Franks S. Formation and early development of follicles in the polycystic ovary. Lancet, 2003, 362:1017-1021.
    [63] Vendola KA, Zhou J, Adesanya OO, et a1. Androgens stimulate early stages of follicular growth in the primate ovary. J Clin Invest, 1998, 101: 262-269.
    [64] Rachel AF, Kate H, Lauren B, et al. Disordered follicle development in ovaries of prenatally androgenized ewes. J Endocrinol, 2007, 192: 421-428.
    [65] Peter S, Teresa L. Developmental programming: differential effects of prenatal testosterone and dihydrotestosterone on follicular recruitment, depletion of follicular reserve, and ovarian morphology in sheep. Biol Reprod, 2009, 80: 726-736.
    [66] Hickey TE, Marrocco DL, Amato F, Ritter LJ, Norman RJ, Gilchrist RB, et al. Androgens augment the mitogenic effects of oocyte-secreted factors and growth differentiation factor 9 on porcine granulosa cells. Biol Reprod, 2005, 73: 825-32.
    [67] Steckler T, Wang J, Bartol FF, Roy SK, Padmanabhan V. Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve andincreases ovarian follicular recruitment. Endocrinol, 2005, 146:3185-93.
    [68] Weil SJ, Vendola K, Zhou J, el a1. Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional corrections. J Clin Endocrinol Memb, l998, 2479-2485.
    [69] Vendola KA, Zhou J, Wang J, et a1. Androgens promote the IGF-I and IGF-I receptor gene expression in the primate ovary. Hum Reprod, 1999, 14: 2328-2332.
    [70] Louhio H, Hovatta O, Sjoberg J, Tuuri T. The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Mol Hum Reprod, 2000, 6: 694–698.
    [71] Jonard S, Dewailly D. The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum Reprod Update, 2004, 10: 107-117.
    [72] Franks S, Hardy K. Aberrant follicle development and anovulation in polycystic ovary syndrome S. Annales d’Endocrinologie, 2010, 71: 228–230.
    [73] Huo J, Xu S, and Lam KP. Fas apoptosis inhibitory molecule regulates T cell receptor-mediated apoptosis of thymocytes by modulating Akt activation and Nur77 expression. J Biol Chem, 2010, 285, 11827-11835.
    [74] Thompson J, Burger ML, Whang H, and Winoto A. Protein kinase C regulates mitochondrial targeting of Nur77 and its family member Nor-1 in thymocytes undergoing apoptosis. Eur J Immunol, 2010, 40: 2041-2049.
    [75] Qureshi AI, Nussey SS, Bano G, Musonda P, Whitehead SA, Mason HD. Testosterone selectively increases primary follicles in ovarian cortex grafted onto embryonic chick membranes: relevance to polycystic ovaries. Reproduction, 2008, 136:187-194.
    [76] Sir-Petermann T, Codner E, Maliqueo M, Echiburu B, Hitschfeld C, Crisosto N, Perez-Bravo F, Recabarren SE, Cassorla F. Increased anti-Mullerian hormone serum concentrations in prepubertal daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab, 2006, 91:3105–3109.
    [77] Pradeep PK, Li X, Peegel H, and Menon KM. Dihydrotestosterone inhibits granulosa cell proliferation by decreasing the cyclin D2 mRNA expression and cell cycle arrest at G1 phase. Endocrinol, 2002, 143:2930-2935.
    [78] Honnma H, Endo T, Henmi H, Nagasawa K, Baba T, Yamazaki K, Kitajima Y, Hayashi T. Altered expression of Fas/Fas ligand/caspase 8 and membrane type 1-matrix metalloproteinase in atretic follicles within dehydroepiandrosterone-induced polycystic ovaries in rats.Apoptosis, 2006, 11: 1525-1533.
    [79] Walters KA, Allan CM, and Handelsman DG. Androgen Actions and the Ovary Biology of Reproduction, 2008, 78: 380–389.
    [80] Norman R J, Dewailly D, Legro RS, et a1. Polycystic ovary syndrome. Lancet, 2007, 370: 685-697.
    [81].Chin YR, Toker A.Function of Akt/PKB signaling to cell motility, invasion andthe tumor stroma in cancer. Cell signed, 2009, 21(4): 470-476.
    [82] Kang HY, Cho CL, Huang KL, Wang JC, Hu YC, Lin HK, Chang C, Huang KE. Nongenomic androgen activation of phosphatidylinositol 3-kinase/Akt signaling pathway in MC3T3-E1 osteoblasts. J Bone Miner Res, 2004, 19:1181–1190.
    [83] Cinar B, Mukhopadhyay NK, Meng G, Freeman MR. Phosphoinositide 3-kinase- independent non-genomic signals transit from the androgen receptor to Akt1 in membrane raft microdomains. J Biol Chem, 2007, 282: 29584–29593.
    [84] Yang JL, Zhang CP, Li L, et al. Testosterone induces redistribution of forkhead box-3a and down-regulation of growth and differentiation factor 9 messenger ribonucleic acid expression at early stage of mouse folliculogenesis. Endocrinology, 2010, 151: 774-782.
    [85] Qu F, Wang FF, Lu XE, Dong MY, Sheng JZ, Lv PP, Ding GL, Shi BW, Zhang D, Huang HF. Altered aquaporin expression in women with polycystic ovary syndrome: hyperandrogenism in follicular fluid inhibits aquaporin-9 in granulosa cells through the phosphatidylinositol 3-kinase pathway. Hum Reprod, 2010, 25(6):1441-50.
    [86] Cheng Z, Volkers M, Din S, et al. Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. Eur Heart J, 2011, Epub ahead of print.
    [87] Li QX, Ke N, Sundaram R, et al. NR4A1, 2, 3-an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis. Histol Histopathol, 2006, 21(5): 533-540.
    [88] Xiaokun Z. Targeting Nur77 translocation. Ther Targets, 2007, 11 (1): 69-79.
    [89] Hussein MR. Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update, 2005, 11: 161-177.
    [90] Manabe N, Matsuda-Minehata F, Goto Y, et al. Role of cell death ligand and receptor system on regulation of follicular atresia in pig ovaries. Reprod Domest Anim, 43 Suppl, 2008, 2: 268-272.
    [91] Petra K, Gaby H, Primus E. Pioglitazone Inhibits Androgen Production in NCI-H295R Cells by Regulating Gene Expression of CYP17 and HSD3B2. Molecular Pharmacology, 2007, (71):4215–4223.
    [1] Yasuhiro K, Yoko H, Jeffrey M. Differential Regulation of the Transcriptional Activity of the Orphan Nuclear Receptor NGFI-B by M ization and Nerve Growth Factor [J]. The Journal of Biological Chemistry, 1997, 272(50): 31278–31284.
    [2] Maglich JM, Sluder A, Guan X, et al. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes [J]. Genome Biol, 2001, 2: 10-29.
    [3] Vincent GR, Orphan Nuclear Receptors: From Gene to Function [J]. Endocrine Reviews, 1999, 20(5): 689–725.
    [4] Megan A, Maxwell, George EO. The NR4A subgroup: immediate early response genes with pleiotropic physiological roles [J]. Nuclear Recept or Signaling, 2005, (4): 1- 8.
    [5] Aranda A, Pascual A. Nuclear hormone receptor and gene Expression [J]. Physiol Rev, 2001, (81): 1269-1304.
    [6] Milbrandt J. Nerve growth factor induces a gene homologous to the gluco corticoid receptor gene [J]. Neuron, 1988, (1): 183–188.
    [7] Hazel TG, Nathans D, Lau LF. A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily [J]. Proc Natl Acad Sci, 1988, 85: 8444–8448.
    [8] Escriva H, Delauanry F, Laudet V. Ligand binding and nuclear receptor evolution [J]. BioEsaays, 2000, 22(8):717-727.
    [9] Robinson RM, Escriva GH.The nuclear receptor superfamily [J]. J Cell Sci, 2003, 116(4) : 585 - 586.
    [10] Wickert L, Selbig J. Structur analysis of the DNA-binding domain of alternatively spliced steroid receptors [J]. J Endocrinol, 2002, 173: 429- 436.
    [11] Katagiri H, Tong Z, John D. Nur77 Family of Nuclear Hormone Receptor [J]. Current Drug Targets, 2004, (3):413-423.
    [12] Egea PF, Rochel N, Birck C, et al. Effects of ligand binding on the association properties and conformation in solution of retinoic acid rece- ptors RXR and RAR [J]. J Mol Biol, 2001, 307: Trends Biochem Sci, 2001, 26: 384-390. c-Src family tyrosine kinases [J]. Mol Cell, ol Chem, 2002, 275: 5308-5317. edeacetylase [J]. Cell, 1997, 89: 373–380. sion [J]. Nature, 1997, 387: 43–48. rphan nuclear receptor NGFI-B by membrane depolarization and nerve growth factor [J]. lear receptor [J]. J Biol Chem, 1993, 268: 24808-24812. 557-576.
    [13] Khorasanizadeh S, Rastinejad F, et al.Nuclear-receptor interactions on DNA-response elements.
    [14] Mckennac NJ, Malleyb W. Combinatorial control of gene expression by nuclear receptors and coregulators [J]. Cell, 2002, 108(15): 465-474.
    [15] Scott MP, Ribon V, Sherman L. Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates 2001, 8: 269–280.
    [16] Caira F, Antonson P. Cloning and characterization of RAP250, a novel nuclear receptor coactivator [J]. J Bi
    [17] LaMorte VJ, Nelson MC, Evans RM. Role of CBP/p300 in nuclear receptor signaling [J]. Nature, 1996, 383:99–103.
    [18] Nagy L, Kao HY, Lin RJ. Nuclear receptor repressionmediated by a complex containing SMRT, mSin3A, and histon
    [19] Chen JD, Evans RM.A transcriptional co-repressorthat interacts with nuclear hormone receptors [J]. Nature, 1995, 377:454-457.
    [20] Heinzel T, Lavinsky RM, Mullen TM. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repres
    [21] Jepsen K, Hermanson O, Onami TM. Combinatorial roles of the nuclear receptor corepressor in transcription and development [J]. Cell, 1998, 102: 753–763.
    [22] Hunter T, Karin M. The regulation of transcription by phosphorylation [J]. Cell, 1992, 70: 375-387.
    [23] Winoto A, Littman DR. Nuclear hormone receptors in T lymphocytes [J]. Cell, 2002, 109: 57-66.
    [24] Katagiri Y, Hirata Y, Milbrandt J, et al. Differential regulation of the transcriptional activity of the oJ Biol Chem, 1997, 272: 31278-31284.
    [25] Hirata Y, Kiuchi K, Chen HC, et al. The phosphorylation and DNA binding of the DNA-binding domain of the orphan nuc
    [26] Gay F, Barath P, Desbois LP, et al. Multiple phosphorylation events control chickenovalbumin upstream promoter transcription factor I orphan nuclear receptor activity[J].Mol phosphorylation [J]. Endo, 1997, 138 (10): 4138-4146. kinase A, and MAPK pathways : 32799-32 805. e nur77 [J].Nature, 1994, 367 (6460): of T2cell hybridomas [J]. Nature, 1994, 367 (6460): 277-281. iol Chem, 1999, 274(16): human lung cancer cell lines[J]. Mol Cell Biol, 1998, 18 (8): 4719-4731. crinol, 2000, 162 ria for cell death induction [J]. Oncogene, 2006, 25: 4725-4743. 1159-1164. Endocrinol, 2002, 16: 1332-1351.
    [27] Li YZ , Lau L F. Adrenocorticotropic hormone regulates the activities of the orphan nuclear receptor Nur77 through modulation of
    [28] Katagiri Y, Takeda K, Yu ZX , et al . Modulation of retinoid signaling through NGF-induced nuclear export of NGFI-B [J]. Nat Cell Biol, 2000, 2: 435-440.
    [29] Kovalovsky D, Refojo D, Liberman A, et al. Activation and inducti- on of Nur77/ Nurr1 in corticotrophs by CRH/ cAMP: involvement of calcium, protein [J] . Mol Endo, 2002, 16 (7): 1638-1651.
    [30] Masuyama N, Oishi K, et al . Akt inhibits the orphan nuclear receptor Nur77 and T cell apoptosis [J]. J Biol Chem, 2001, 276 (35)
    [31] Liu ZG, Smith SW, McLaughlin KA, et al. Apoptotic signals delivered through the T cell receptor of a T cell hybrid require the immediate early gen281-284.
    [32] Woronicz JD, Calnan B, et al. Requirement for the orphan steroid receptor Nur77 in apoptosis
    [33] Youn HD, Sun L, Prywes R, et al. Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2 [J]. Science, 1999, 286(5440): 790-793.
    [34] Vanden Brink MR, Kapeller R, Pratt JC, et al. The extracellular signal regulated kinase pathway is required for activation induced cell death of T cells [J]. J B11178-11185.
    [35] Li Y, Lin B, Agadir A. Molecular determinants of AHPN (CD437 ) induced growth arrest and apoptosis in
    [36]Uemura H, Chang C. Antisense TR3 orphan receptor can increase Prostate cancer cell viability with etoposide treatment [J]. Endocrinology, 1998, 139 (5):2329-2334.
    [37] Ohkubo T, Ohkura N, Maruyama K. Early induction of the orphan nuclear receptor NOR-1 during cell death of the human breast cancer cell line MCF27 [J]. Mol Cell Endo(1-2): 151-156.
    [38] UM Moll1, N Marchenko1, Xk Zhang. p53 and Nur77/TR3 transcription factors that directly target mitochond
    [39] Ke N, Classen G, Yu DH. Nuclear hormone receptor NR4A2 is involved in cell transformation and apoptosis [J]. Cancer Res, 2004, 64(22): 8208-8212.
    [40] Li H, Kolluri SK, Gu J. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3 [J]. Science, 2000, 289 (5482):
    [41] Marchenko ND, Zaika A, Moll UM. Death signal induced localization of p53 protein to mitochondria: A potential role in apoptotic signaling. J Biol Chem, 2000, 275(21): 16202-16212. 727-730. urr1 and Nor1 [J]. oxylase in neural progenitor cells derived from the adult pical and atypical antipsychotics in the mouse brain: implication [J]. Endocrinology, on may control diverse production of cortisol and androgens in the human ient mice [J]. Mol Cell Biol, 1995, 15: 4331-16. li [J]. J Biol Chem, 2005, 280: 29256-62. human
    [42] Xiaokun Z. Targeting Nur77 translocation [J]. Ther Targets, 2007, 11(1): 69-79.
    [43] Lin B, Kolluri S, Lin F, et al. Conversion of Bcl-2 from protector to killer by interaction withnuclear orphan receptor Nur77/TR3 [J]. Cell, 2004, 116: 527-540.
    [44] Wei MC, Zong WX, Cheng EH. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death [J]. Science, 2001, 292(5517):
    [45] Zetterstrom RH, Solomin L, Mitsiadis T. Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, NMol Endocrinol, 2006, 10: 165 6-66.
    [46] Sakurada K, Ohshima M, Palmer TD.Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydrbrain Development [J]. End ocrinol, 1999, 126: 4017-26.
    [47] Le WD, Xu P, Jankovic J. Mutations in NR4A2 associated with familial Parkinson disease [J].Nat Genet, 2003, 33: 85-9.
    [48] Maheux J, Ethier I, Rouillard C. Induction patterns of transcription factors of the nur family (nurr1, nur77, and nor-1) by tyfor their mechanism of action [J]. J Pharmacol Exp Ther, 2005, 313: 460-73.
    [49] Fernandez PM, Brunel F, Jimenez MA, et al. Nuclear receptors Nor1 and NGFI-B/Nur77 play similar, albeit distinct, roles in the hypothalamo-pituitary-adrenal axis 2000, 141, 2392-400.
    [50] Kelly SN, McKenna TJ, Young LS. Modulation of steroidogenic enzymes by orphan nuclear transcriptional regulatiadrenal [J]. J Endocrin, 2004, 181: 355–365.
    [51] Crawford PA, Sadovsky Y, Woodson K, et al. Adrenocortical function and regulation of the steroid 21-hydroxylase gene in NGFI-B-defic
    [52] Barish GD, Downes M, Alaynick WA, et al. A Nuclear Receptor Atlas: Macrophage Activation [J].Mol Endocrinol, 2005, 11: 43-6.
    [53] Pei L, Castrillo A, Chen M, et al. Induction of NR4A orphan nuclear receptor expression in macrophages in response to inflammatory stimu
    [54] Murphy E P, McEvoy A, Conneely OM, et al. Involvement of the nu clear orphan receptor NURR1 in the regulation of corticotropin-releasing ing hormone expression and actions ininflammatory arthritis [J]. Arthritis Rheum, 2001, 44: 782-93.
    [55] Li QX, Ke N, Sundaram R, et al. NR4A1, 2, 3-an orphan nuclear hormone receptor familyinvolved in cell apoptosis and carcinogenesis [J]. Histol Histopathol, 2006, 21(5): 533-540. 2006, 12(1): s, 2003, 63: 5401-7. ase of apoptosis induced by synthetic chenodeoxycholic acid ancer with an increase in the level of ion of NR4A1 in follicular thyroid carcinomas is restored following lithium oma cells [J]. Pigment Cell Melanoma Res, [J]. Mol Endocrinol, 2006, 20: 786-794. atory responses [J]. uces macrophage accumulation and matrix ls [J]. Am J Pathol, 2006, 168:
    [56] Kolluri SK, Cao X, Bruey N, et al. Mitogenic effect of orphan receptor TR3 and its regulation by MEKK1 in lung cancercells [J]. Mol Cell Biol, 2003, (23):8651-8667.
    [57] Kroger N, Milde K, Riethdorf S, et al. Prognostic and predictive effects of immunohis- tochemical factors in high-risk primary breast cancer patients [J]. Clin Cancer Res, 159-168.
    [58] Wilson AJ, Arango D, Mariadason JM, et al. TR3/Nur77 in colon cancer cell apoptosis [J]. Cancer Re
    [59] Jeong JH, Park JS, Moon B, et al. Orphan nuclear receptor Nur77 translocates to mitochondria in the early phderivatives in human stomach cancer cell line [J]. Ann NY Acad Sci, 2003, 1010: 171-177.
    [60] Yoon K, Lee SO, Cho SD, Kim K, Khan S, and Safe S. Activation of Nuclear TR3 (Nr4a1) by A Diindolylmethane Analog Induces Apoptosis and Proapoptotic Genes in Pancreatic CCells and Tumors [J]. Carcinogenesis, 2011, Epub ahead of print.
    [61] Sibayama-Imazu T, Fujisawa Y, Masuda Y, Aiuchi T, Nakajo S, Itabe H et al. Induction of apoptosis in PA-1 ovarian cancer cells by vitamin K2 is associatedTR3/Nur77 and its accumulation in mitochondria and nuclei [J]. J Cancer Res Clin Oncol, 2008, 134: 803-12.
    [62] Camacho CP, Latini FR, Oler G, Hojaij FC, Maciel RM, Riggins GJ, and Cerutti JM. Down-regulattreatment [J]. Clin Endocrinol, 2009, 70, 475-483.
    [63] Smith AG, Lim W, Pearen M, Muscat GE, and Sturm RA. Regulation of NR4A nuclear receptor expression by oncogenic BRAF in melan2011, Mar 1, Epub ahead of print.
    [64] Pei L, Castrillo A, Tontonoz P. Regulation of macrophage inflammatory gene expression by the orphan nuclear receptor Nur77
    [65] Bonta PI, van Tiel CM, Vos M. Nuclear receptors Nur77, Nurr1, and NOR-1 expressed in atherosclerotic lesion macrophages reduce lipid loading and inflammArterioscler Thromb Vasc Biol 2006; 26:2288–2294.
    [66] Bonta PI, Matlung HL, Vos M, Peters SL, Pannekoek H, Bakker EN. Nuclear receptor Nur77 inhibits vascular outward remodelling and redmetalloproteinase levels [J]. Cardiovasc Res, 2010, 87:561-8.
    [67] Waard V, Arkenbout EK, Vos M, et al. TR3 nuclear orphan receptor prevents cyclic stretch-induced proliferation of venous smooth muscle cel2027-2035.
    [68] Bonta PI, Pols TW. NR4A nuclear receptors in atherosclerosis and vein-graft disease [J]. Trends Cardiovasc Med, 2007, 17: 105- 111. oter regulates TNFα-induced PAI-1 expression etabolism [J]. Nature, 2006, 13: 1038-71. crinology, 2007, 21(9): pathways in human skeletal muscle [J]. En- docrinol, 2007, 3: 5–17. ]. JBC, 2007, ignaling in skeletal muscle [J]. Endocrinol, 2006, 147: 5217-5227. entiation in 3T3-L1 cell by promoting mitotic clonal expansion [J]. J nduced NGFI-B expression in preovula tory granulosa cells of rat ovary [J]. : a possible mechanism for repression of aromatase expression upon luteinizing hormone surge [J]. Endocrinol, 2005, 146(1): 237-46.
    [81] Song KH, Park YY, Kee HJ. Orphan Nuclear Receptor Nur77 Induces Zinc Finger Protein
    [69] Gruber F, Hufnagl P, Hofer Warbinek R, et al. Direct binding of Nur77/NAK-1 to the plasminogen activator inhibitor 1 (PAI-1) prom[J]. Blood, 2003, 101: 3042-8.
    [70] Liming P, Hironori W, Bhavapriya V. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose m
    [71] Lily C, Zidong Z, Liming P, et al. Nur77 Coordinately Regulates Expression of Genes Linked to Glucose Metabolism in Skeletal Muscle [J]. Molecular Endo2152-2163.
    [72] Xuxia W, Jelai W, Xiangqin C, et al. The effect of insulin on expression of genes and biochemical
    [73] Yuchang F, Liehong L, Nanlan L. NR4A Orphan Nuclear Receptors Modulate Insulin Action and the Glucose Transport System: Potential role in Insulin Resistance [J(5):38452–38463.
    [74] Pearen MA, Ryall JG, Maxwell MA, et al. The orphan nuclear receptor, NOR-1, is a target of beta-adrenergic s
    [75] Megan A, Maxwel E. Nur77 Regulates Lipolysis in Skeletal Muscle Cells [J]. JBC, 2005, 280, (13): 12573-12584.
    [76] Fumoto T, Yamaguchi T, Hirose F. Orphan nuclear receptor Nur77 accelerates the initial phase of adipocyte differBio chem, 2007, 141: 181-92.
    [77]柳海珍,张晓东,刘以训。孤儿受体TR3 mRNA在大鼠卵泡中的表达和定位[J].科学通报, 2000, 45 (3 ): 11-17.
    [78]马红梅,刘嘉茵。核受体激素NR4A1在人卵巢周期中的表达[J].江苏医药,2007, 5(33): 439-441.
    [79] Jae Park, Jang-Soo Chunb. Activation of protein kinase C mediates luteinizing hormone or forskolin-iMolecular and Cellular Endocrinol, 2007, 270: 79-86.
    [80] Wu Y, Ghosh S, Nishi Y, et al.The orphan nuclear receptors NURR1 and NGFI-B modulate aromatase gene expression in ovarian granulosa cellsGIOT-1 Gene Expression, and GIOT-1 Acts as a Novel Corepressor of Orphan Nuclear Receptor SF-1 via Recruitment of HDAC2 [J].The Journal of Biolo Chemist, 2006, ( 23): 15605–15614.
    [82] Song KH, Park JL, Lee MO, et al. LH induces orphan nuclear receptor Nur77 gene expression in testicular Leydig cells [J]. Endocrinol, 2001, 142: 5116-5123.
    [83] Jacques J, Nicholas M. Role of Nuclear Receptors in INSL3 Gene Transcription in Leydig Cells [J]. Ann Acad Sci, 2005, 1061: 183-189.
    [84] Cheng LE, Chan FK, Cado D, et al. Functional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis [J]. Embo J, 1997, 16: 1865-75.
    [1] Chang RJ, Coffler MS. Polycystic Ovary Syndrome: Early detection in the adolescent [J]. Clin Obstet Gynecol, 2007, 50(1): 178–187.
    [2] Arends NJ, Boonstra VH, Duivenvoorden HJ. Reduced insulin sensitivity and the presence of cardiovascular risk factors in short prepubertal children born small for gestational age (SGA) [J]. Clin Endocrinol, 2005, 62(1): 44-50.
    [3] Ibanez L, Potau N, Ferrer A, et al. Reduced ovulation rate in adolescent girls Born small for gestational age [J]. J Clin Endocrinol Metab, 2002, 87(7): 3391-3393.
    [4] Ibanez L, Ong K, Valls C. Metformin therapy during puberty delays menarche, prolongs pubertal growth, and augments adult height: a randomized study in low-birth-weight girls with early-normal onset of puberty [J]. J Clin Endocrinol Metab, 2006, 91(8): 2888-2891.
    [5] Homburg R, Lambalk CB. Polycystic ovary syndrome in adolescence: a therapeutic conundrum [J]. Hum Reprod, 2004, 19(5): 1039-1042.
    [6] van Hooff MH, Voorhorst FJ, Kaptein MB, et al. Predictive value of menstrual cycle pattern, body mass index, hormone levels and polycystic ovaries at age 15 years for oligo-amenorrhoea at age 18 years [J]. Hum Reprod, 2004, 19(2):383–392.
    [7] Yoo RY, Dewan A, Basu R, et al. Common alterations of increased LH pulse frequency in obese oligomenorrheic girls without hyperandroge -nism and age- and weight-matched girls with adolescent PCOS [J]. Fertil Steril, 2006, 85(4):1049-1056.
    [8] Trimeche S, Thuan Dit Dieudonne JF, Jeandel C, et al. Polycystic ovary syndrome in pubertal period: clinical, biological, metabolic and genetic polymorphism [J]. Gynecol Obstet Fertil, 2004, 32(1):3-17.
    [9] Warren-Ulanch J, Arslanian S. Treatment of PCOS in adolescence [J]. Best Prac Res Clin Endocrinol Metab, 2006, 20(2) :311-330.
    [10] Trent M, Austin SB, Rich M, et al. Overweight status of adolescent girls with polycystic ovary syndrome:body mass index as mediator of quality of life [J]. Ambul Pediatr, 2005, 5(2):107-111.
    [11] Hoeger KM. Obesity and Lifestyle Management in Polycystic Ovary Syndrome. Clin Obstet Gynecol [J], 2007, 50(1):277–294.
    [12] Reinehr T, de Sousa G, Roth CL, et al. Androgens before and after weight loss in obese children [J]. J Clin Endocrinol Metab, 2005, 90(10):5588-5595.
    [13] Dokras A, Jagasia DH, Maifeld M. Obesity and insulin resistance but not hyperandrogenism mediates vascular dysfunction in women with polycystic ovary syndrome [J]. Fertil Steril, 2006, 86(6):1702-1709.
    [14] Littlejohn EE, Weiss RE, Eeplewski D. Intractable early childhood obesity as the initial sign of insulin resistant hyperinsulinism and precursor of polycystic ovary syndrome [J]. J Pediatr Endocrinol Metab, 2007, 20(1):41-51.
    [15] Fulghesu AM, Ciampelli M, Belosi C, et al. A new ultrasound criterion for the diagnosis of polycystic ovary syndrome: the ovarian stroma/total area ratio [J]. Fertil Steril, 2001, 76(2): 326-331.
    [16] Palmert MR, Gordon CM, Kartashov AI, et al. Screening for abnormal glucose tolerance in adolescents with polycystic ovary syndrome [J]. J Clin Endocrinol Metab, 2002, 87(3): 1017–1023.
    [17] Essah PA, Wickham EP, Nestler JE. The Metabolic Syndrome in Polycystic Ovary Syndrome [J]. Clin Obstet Gynecol, 2007, 50(1):205-25.
    [18] Yilmaz M, Biri A, Bukan N, et al. Levels of lipoprotein and homocysteine in non-obese and obese patients with polycystic ovary syndrome [J]. Gynecol Endocrinol, 2005, 20(5): 258-263.
    [19] Meyer C, McGrath BP, Teede HJ. Overweight women with polycystic ovary syndrome have evidence of subclinical cardiovascular disease [J]. J Clin Endocrinol Metab, 2005, 90(10): 5711-5716.
    [20] Christian RC, Dumesic DA, Behrenbeck T, et al. Prevalence and predictors of coronary artery calcif ication in women with polycystic ovary syndrome[J]. J Clin Endocrinol Metab, 2003, 88(6): 2562-2568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700