用户名: 密码: 验证码:
短期电力负荷的智能化预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当电力系统进行在线控制时,应当用短期负荷预测来实现发、供电的合理调度。短期负荷预测是电力系统安全调度、经济运行的重要依据,负荷预测精度的高低直接影响到电力系统运行的可靠性、经济性和供电质量。本文在短期负荷预测方面所做的主要研究工作如下:
     1.通过对历史负荷数据进行垂直和水平预处理,使其更能体现电力负荷的变化趋势,为短期负荷预测模型利用这些历史数据奠定了基础:将自相关系数的概念应用于短期负荷预测模型的输入变量选择,提出采用近大远小原则和自相关理论相结合的方法进行输入变量的选取,找到一组合适的输入变量来有效地解释负荷的变化关系。该方法有明确的理论依据,并具有很强的可操作性,是一种比较科学系统的输入变量选择方法。通过该方法可以得到更小的输入变量集,采用的输入变量与预测点负荷相关性最强,预测结果更准确。
     2.将神经网络与模糊逻辑相结合建立了组合负荷预测模型,神经网络只处理历史负荷信息,既缩短了神经网络的学习时间,又避免了由于神经网络对其它信息的不敏感而造成的错误学习;而模糊逻辑则处理对负荷变化影响较大的气温、节假日等因素。根据负荷变化的具体特点,构造出这些因素的隶属函数和模糊规则库,从而用模糊逻辑实现对基本负荷分量的修正。与传统的神经网络预测模型相比,该组合模型充分利用了神经网络的学习能力,以及模糊逻辑对主观经验的吸收,能够充分考虑气温和节假日等因素对系统负荷造成的影响,在一定程度上可以提高负荷预测结果的准确性,特别是可以明显提高对周末和节假日负荷预测结果的准确性。
     3.结合电力负荷非线性变化的特点,提出了一个具有混沌机制的模糊神经网络预测模型。为了拓宽权的运动范围,引入权的混沌学习算法,将一个权的非线性自反馈项引入到模糊神经网络互联权空间学习算法的动力系统方程中,使模糊神经网络的学习动力学过程成为混沌动力学,使系统在学习过程中能够很快找到系统的全局最小或它的近似值;模糊推理和解模糊均通过神经网络来实现,选取的隶属函数使权值具有一定的知识表示,便于分析和理解;对该模型提出两种不同的模糊推理算法进行模糊推理,并确定出模糊相乘推理算法更优。在模糊推理运算中用简单的加权计算取代了传统的重心法,在不降低预测精度的情况下,大大减少了学习时间,提高了运行效率。该模型较好地解决了常规BP算法收敛性差,预测精度低的缺陷,对非线性负荷变化具有较好的预测性能。
     4.为了克服当预测日天气出现快速变化,预测误差也随之增加的问题,提出了一种新的具有反馈递归结构的在线实时负荷预测模型。在该预测模型中,预测
    
    短期电力负荷的智能化预测方法研究
    负荷是通过给预测日的类似日数据平均值加一个矫正值获得,神经网络只产生一
    个非常小的数据作矫正值,而不必学习所有的类似日数据,因此可以大大减少神
    经网络的节点数和训练时间,简化网络结构。由于该模型采用在线实时学习的算
    法,神经网络可以捕捉快速的天气变化和预测误差之间的关系,从而输出一个适
    当的负荷矫正值,这个矫正值与快速的温度变化相一致。在该模型中首次提出了
    动态类似日的概念,对于同一预测日的不同时刻,选出的类似日是随着时间的变
    化而动态变化的。这样较好地解决了特殊天气和节假日历史数据少,不易组成训
    练样本集的问题。该模型在天气条件发生较大变化时进行短时负荷预测有明显优
    势,并可用于超短时负荷预测。
     本文还指出在未来电力市场的环境下,电价因素也是一个必须在负荷预测模
    型中加以考虑的因素,对电价因素和电力市场对短期负荷预测的影响进行了分析,
    并讨论了负荷预测与电价预测的关系。
     最后对全文进行了总结,并对短期负荷预测的发展趋势进行了展望。
    关键词:神经网络模糊推理混沌非线性鲁棒性负荷预测
When the power systems are controlled on line, short-term load forecasting should be used for realizing reasonable distribution of generating and supplying electricity. Short-term load forecasting is important basis of safely assigning and economically running. The forecasting precision will directly affect the reliability, economy running and supplying power quality of power system. The primary work done in short-term load forecasting in the paper is as follows.Firstly, via vertical and horizontal pretreatment, the historical load data can furthermore show the load changing trend, which establishes the basis for short-term load forecasting model using these historical data. By using the autocorrelation function on input variables selection for short-term load forecasting model, the principle which effect is big at near place and is small at far place and autocorrelation function theory are combined to select input variables. Then a group of input variables selected can effectively explain load varying relation. This approach has clear theory foundation and very strong maneuverability, and it is a systemic and scientific method for input variables selection. By use of this method, we can get small input variables sets, the correlation of adopted input variables and forecasting hour load is most strong, and the forecasting effect is more exact.Secondly, a combined load forecasting model is presented by integrating neural networks and fuzzy logic. In the model, neural networks only settle historical load information. This not only shortens the learning time of neural networks, but also avoids improper study produced by slowness of neural networks to other information. Moreover, fuzzy logic deals with the factors which have great effect to load varying, such as air temperature and holidays, etc. According to the own characteristic of load varying, the memberships and fuzzy rules base are constructed, and the modifying of basic load heft is realized by fuzzy logic. Comparing with conventional neural networks forecasting models, the combined model adequately makes use of the neural network learning ability and absorbing of fuzzy logic to subjective experience. It fully considers the effect of factors such as air temperature and holidays to power load, which can enhance the load forecasting results veracity to a certain extent, especially weekends and holidays.Thirdly, in order to describe the non-linear relation of power load varying, a fuzzy neural networks short-term load forecasting model based on chaos mechanism is presented. For the sake of extending the scope of weight acting, the chaotic learning algorithm of weight values is introduced. The non-liner feedback item of weight value is employed in dynamic system equation of fuzzy neural networks weights space learning algorithm, which make the neural networks learning dynamics turn into chaos dynamics.
    
    So the system can find the global minimal point or its approximation quickly. The fuzzy inference and defuzzification of the model are both realized by neural networks. The selected membership function made neural network weight values have definite knowledge meaning, and it can be analyzed and understood. In the model, two different fuzzy inference algorithms are put forward to finish fuzzy inference, and it is confirmed that the fuzzy multiplication inference algorithm can get better forecasting effect. The conventional centroid method is replaced by sample adding authority calculation in fuzzy inference. Under not reducing forecasting precision, the learning time is shortened, and the running efficiency is increased. The model preferably settles the slow convergence speed and low forecasting precision limitation of general BP algorithm, and has preferable forecasting capability for non-linear load varying.Fourthly, in order to overcome the shortcomings that forecasting error will increase evidently while weather varies rapidly on the forecasting day, a new on line real time load forecasting model with feedback and recurrent structure is proposed. In the model, the fo
引文
[1] Alexandre P, Silva A D, Luciano S. Confidence Intervals for Neural Network Based Short-term Load Frecasting. IEEE Trans on Power Systems, 2000,15(4): 1191-1196.
    [2] Amjady N. Short-Term Hourly Load Forecasting Using Time-Series Modeling with Peak Load Estimation Capability. IEEE Trans on Power Systems, 2001,16(4):498-505.
    [3] Taylor J W,, Buizza R. Neural Network Load Forecasting with Weather Ensemble Predictions. IEEE Trans on Power Systems, 2002,17(3):626-632.
    [4] Alireza K, Reza A R, Dominic M. ANNSTLF-Artificial Neural Network Short-Term Load Forecaster Generation Three. IEEE Trans on Power Systems, 1998,13(4):1413-1422.
    [5] Kiartzis S J, Zoumas C E, Theocharis J B, et al. Short-Term Load Forecasting in an Autonomous Power System Using Artificial Neural Networks. IEEE Trans on Power Systems, 1997,12(4):1591-1596.
    [6] Huang S J, Shih K R. Short-Term Load Forecasting via ARMA Model Identification Including Non-Gaussian Process Considerations. IEEE Trans on Power Systems, 2003,18(2):673-679.
    [7] Melhem R, Mosse D, Elnozaby E B. The Interplay of Power Management and Fault Recovery in Real-Time Systems. IEEE Trans on Computers, 2004,53(2):217-231.
    [8] Nogales F, Contreras J, Conejo A. Forecasting Next-Day Electricity Prices by Time Series Models. IEEE Trans on Power Systems, 2002,17(2):342-348.
    [9] Park D C, El-Sharkawi M A, Marks R J, et al. Electric Load Forecasting Using an Artificial Network. IEEE Trans on Power Systems, 1991,6(2):442-449.
    [10] Yang H T, Huang C M. A New Short-Term Load Forecasting Approach Using Self-Organizing Fuzzy ARMAX Models. IEEE Trans on Power Systems, 1998,13(l):217-225.
    [11] Abid S, Fnaiech F, Najim M. A Fast Feedforword Training Algorithm Using a Modified Form of the Standard Backpropagation Algorithm. IEEE Trans on Neural Networks, 2001,12(2):424-430.
    [12] Duan J C, Chung F L. Cascaded Fuzzy Neural Network Model Based on Syllogistic Fuzzy Reasoning. IEEE Trans on Fuzzy Systems, 2001,9(2):293-306.
    [13] Koo T J. Stable Mode Reference Adaptive Fuzzy Control of a Class of Nonlinear Sustems. IEEE Trans on Fuzzy Systems, 2001,9(4):624-636.
    
    [14] Papadakis S E, Theocharis J B, Kiartzis S J, et al. A Novel Approach to Short-Term Load Forecasting Using Fuzzy Neural Networks. IEEE Trans on Power Systems, 1998,13(2):480-492.
    [15] Da F. Decentralized Sliding Mode Adaptive Controller Design Based on Fuzzy Neural Networks for Interconnected Uncertain Nonlinear Systems. IEEE Trans on Neural Networks, 2000,11(6): 1471-1480.
    [16] Charytoniuk W, Chen M S, Olinda P V. Nonparametric Regression Based Short-Term Load Forecasting. IEEE Trans on Power Systems, 1998,13(3):725-730.
    [17] Mangeas M, Muller C. An Automatic Search of Feedforward Neural Network Architecture Based on Genetic Algorithms: Application to the Short-term Load Forecasting. Proceeding of International Conference on Intelligent System Application to Power Systems, 1997:362-366.
    [18] Choueiki M H, Mount-Campbell C A, Ahalt S C. Building a Quasi Optimal Neural Network to Solve the Short-Term Load Forecasting Problem. IEEE Trans on Power Systems, 1997,12(4): 1432-1439.
    [19] Chow M Y, Tram H. Application of Fuzzy Logic Technology for Spatial Load Forecasting. IEEE Trans on Power Systems, 1997,12(3):1360-1366.
    [20] Dash P K, Satpathy H P, Liew A C, et al. A Real-Time Short-Term Load Forecasting System Using Functional Link Network. IEEE Trans on Power Systems, 1997,12(2):675-680.
    [21] Hippert H S, Pedreira C E, Souza R C. Neural Networks for Short-Term Load Forecasting: A Review and Evaluation. IEEE Trans on Power Systems, 2001,16():44-55.
    [22] Guo P, Lyu M R, Chen C L. Regularization Parameter Estimation for feedforword Neural Networks. IEEE Trans on Systems, Man, and Cybernetics-Part B: Cybernetics, 2003,33():35-44.
    [23] Piras A, Germond A, Buchenel B, et al. Heterogeneous Artificial Neural Networks for Short Tern Electrical Load Forecasting. IEEE Trans on Power Systems. 1996,11(1): 397-402.
    [24] Gestel T V, Suykens Johan A. Baestaens D E, et al. Financial Time Series Prediction Using Least Squares Support Vector Machines Within the Evidence Framework. IEEE Trans on Neural Networks, 2001,12(4): 809-821.
    [25] Peng T M, Hubele N F, Karady G G. Advancement in the Application of Neural Networks for Short-Term Load Forecasting. IEEE Trans on Power Systems, 1992, 7 (1): 250-257.
    
    [26] Fidalgo J N, Lopes J A. Load Forecasting Dealing with Medium Voltage Network Reconfiguration. Proceedings of European Symposium on Artificial Neural Networks, April 2000:407-412.
    [27] Matsui T, Iizaka T. Peak Load Forecasting Using Analyzable Structured Neural Network. IEEE PES 2001 Winter Meeting, 2001.
    [28] Zhang J H, Xiao X C. Predicting Chaotic Time Series Using Recurrent Neural Networks, Chin, Phys. Lett., 2000,17(2):88-90.
    [29] Campolucci P, Uncini A, Piazza F, et al. On-line Learning Algorithms for Locally Recurrent Neural Networks. IEEE Trans on Neural Networks, 1999,10(2):253-271.
    [30] Lee K Y, Cha Y T, Park J H. Short-term Load Forecasting Using an Artificial Neural Network. IEEE Trans on Power Systems, 1992,7(1): 124-132.
    [31] Matsui T, Iizaka T. Peak Load Forecasting Using Analyzable Structured Neural Network. Proceedings of IEEE PES 2001 Winter Meeting, Columbus, Ohio USA: 2001.
    [32] Lu C N, Wu H T, Vemuri S. Neural Network Based Short Term Load Forecasting. IEEE Trans on Power Systems, 1993, 8 (1): 336-342.
    [33] Papalexopoulos A D, Hao S, Peng T M. An Implementation of a Neural Network Based Load Forecasting Model for the EMS. IEEE Trans on Power Systems, 1994, 9(4): 1956-1962.
    [34] Huang Y L, Lou H H, Gong J P, et al. Fuzzy Model Predictive Control. IEEE Trans on Fuzzy Systems, 2000,8(6):665-678.
    [35] Lamedica R, Prudenzi A, Sforna M. A Neural Network Based Technique for Short-Term Forecasting of Anomalous Load Periods. IEEE Trans on Power Systems, 1996,11(4):1749-1756
    [36] Castro J L, Mantas C J, Benitez J M, et al. Interpretation of Artificial Neural Networks by Means of Fuzzy Rules. IEEE Trans on Neural Networks, 2002,13(1):101-116.
    [37] Lai J H, Lin C T. Application of Neural Fuzzy Network to Pyrometer Correction and Temperature Control in Rapid Thermal Processing. IEEE Trans on Fuzzy Systems, 1999,7(2): 160-175.
    [38] Darbellay G A, Slama M. Forecasting the Short-Term Demand for Electricity - Do Neural Networks Stand a Better Chance. Int. J. Forecast, 2000,vol.l6:71-83.
    [39] AlFuhaid A S, El-Sayed M A, Mahmoud M S. Cascaded Artificial Neural Networks for Short-Term Load Forecasting. IEEE Trans on Power Systems, 1997, 12(4):1524-1529.
    
    [40] Akhmetov D F, Dote Y, Ovaska S J. Fuzzy Neural Networks with General Parameter Adaptation for Modeling of Nonlinear Time-Series. IEEE Trans on Neural Networks, 2001,12(1):148-152.
    [41] Ho K L, Hsu Y Y, Yang C C. Short Term Load Forecasting Using a Multiplayer Neural Network with an Adaptive Learning Algorithm. IEEE Trans on Power Systems, 1992,7 (1):141-149.
    [42] Chen S T, Yu D C, Moghaddamjo A R. Weather Sensitive Short-Term Load Forecasting Using Nonfully Connected Artificial Neural Network. IEEE Trans on Power Systems, 1992,7 (3): 1098-1105.
    [43] Goodrich M A, Stirling W C, Frost R L. Model Predictive Satisficing Fuzzy Logic Control. IEEE Trans on Fuzzy Systems, 1999,7(3):329-332.
    [44] Cuesta F, Gordillo F, Aracil J, et al. Stability Analysis of Nonlinear Multivariable Takagi-Sugeno Fuzzy Control Systems. IEEE Trans on Fuzzy Systems, 1999,7(5):508-520.
    [45] Senjyu T, Takara H, Funabashi T. One-Hour-Ahead Load Forecasting Using Neural Network [J]. IEEE Trans on Power Systems, 2002,17(1):113-118.
    [46] Phua P K, Ming D. Parallel Nonlinear Optimization Techniques for Training Neural Networks. IEEE Trans on Neural Networks, 2003,14(6): 1460-1468.
    [47] Setiono R, Leow W K, Zurada J M. Extraction of Rules from Artificial Neural Networks for Nonlinear Regression. IEEE Trans on Neural Networks, 2002,13(3):564-577.
    [48] Vermaak J, Botha E C. Recurrent Neural Networks for Short-term Load Forecasting. IEEE Trans on Power Systems.1998 13(1):126-132.
    [49] Srinivasan D, Tan S S, Chang C S S, et al. Parallel Neural Network-Fuzzy Expert System Strategy for Short-term Load Forecasting: System Implementation an Performance Evaluation. IEEE Trans on Power Systems, 1999,14(3):1100-1106.
    [50] Srinivasan D, Liew A C, Chang C S. Forecasting Daily Load Curves Using a Hybrid Fuzzy-Neural Approach. IEE Proc.-Gener. Transm. Distrib,1994, 141(6): 561-567.
    [51] Mohammmed O, Park D, Merchant R, et al. Practical Experiences with an Adaptive Neural Network Short-Term Load Forecasting System. IEEE Trans on Power Systems, 1995,10 (1): 254-265.
    [52] Kasabov N K, Song Q. Dynamic Evolving Neural-Fuzzy Inference System and Its Application for Time-Series Prediction. IEEE Trans on Fuzzy Systems, 2002,10(2):144-154.
    
    [53] Drezga I, Rahman S. Input Variable Selection for ANN-Based Short-Term Load Forecasting. IEEE Trans on Power Systems, 1998,13(4):1238-1244.
    [54] Vila J P, Wagner V, Neveu P. Bayesian Nonlinear Model Selection and Neural Networks: A Conjugate Prior Approach. IEEE Trans on neural networks, 2000,11(2):265-278.
    [55] Drezga I, Rahman S. Short-Term Load Forecasting with Local ANN Predictors. IEEE Trans on Power Systems, 1999,14(3): 844-850.
    [56] Kehagias A, Petridis V. Predictive Modular Neural Networks for Unsupervised Segmentation of Switching Time Series: The Data Allocation Problem. IEEE Trans on Neural Networks, 2002,13(6): 1432-1449.
    [57] Connor J T. A Robust Neural Network Filter for Electricity Demand Prediction, J Forecast, 1996,15 (6):437-458.
    [58] Davidson V J, Ryks J, Chu T. Fuzzy Models to Predict Consumer Ratings for Biscuits Based on Digital Image Features. IEEE Trans on Fuzzy Systems, 2001,9(1):62-67.
    [59] Daneshdoost M, Lotfalian M, Bumroonggit G Neural Network with Fuzzy Set-Based Classification for Short-Term Load Forecasting. IEEE Trans on Power Systems, 1998, 13(4): 1386-1391.
    [60] Doulamis A D, Doulamis N D, Kollias S D. An Adaptable Neural-Networks Model for Recursive Nonlinear Traffic Prediction and Modeling of MPEG Video Sources. IEEE Trans on Neural Networks, 2003,14(1):150-166.
    [61] Mori H, Kobayashi H. Optimal Fuzzy Inference for Short-term Load Forecasting. IEEE Trans on Power Systems, 1996,11(1): 390-396.
    [62] Hiroyubi Mori and Shourichi Vrano. Short-term Load Forecasting with Chaos Time Series Analysis. Proceeding of International Conference on Intelligent System Application to Power Systems, 1996: 133-137.
    [63] Adya M, Collopy F. How Effective are Neural Networks at Forecasting and Prediction? A review and Evaluation. J Forecast, 1998, vol. 17:481-495.
    [64] Stutz C, Runkler T A. Classification and Prediction of Road Traffic Using Application-Specific Fuzzy Clustering. IEEE Trans on Fuzzy Systems, 2002,10(3):297-308.
    [65] McMenamin J S, Monforte F A. Short-Term Energy Forecasting with Neural Networks. Energy J, 1998,19 (4): 43-61.
    
    [66] Choueiki M H, Mount-Campbell C A, Ahalt S C, Implementing a Weighted Least Squares Procedure in Training a Neural Network to Solve the Short-Term Load Forecasting Problem. IEEE Trans on Power Systems, 1997,12(4): 1689-1694.
    [67] Wong H S, Guan L. A neural Learning Approach for Adaptive Image Restoration Using a Fuzzy Model-Based Network Architecture. IEEE Trans on Neural Networks, 2001,12(3):516-531.
    [68] Bhattachary A, Parlos A G, Atiya A F. Prediction of MPEG-Coded Video Source Traffic Using Recurrent Neural Networks. IEEE Trans on Signal Processing, 2003,51(8):2177-2190.
    [69] Qiao H, Peng J, Xu Z B. A Reference Model Approach to Stability Analysis of Neural Networks. IEEE Trans on Systems, Man, and Cybernetics-Part B: Cybernetics, 2003,33(6):925-936.
    [70] Connor J T. A Robust Neural Network Filter for Electricity Demand Prediction, J Forecast, 1996,15 (6):437-458.
    [71] Chow T W S, Leung C T. Neural Network Based Short-Term Load Forecasting Using Weather Compensation, IEEE Trans on Power Systems, 1996,11(4): 1736-1742
    [72] Han C C, Shin K G. A Fault-Tolerant Scheduling Algorithm for Real-Time Periodic Tasks with Possible Software Faults. IEEE Trans on Computers, 2003,52(3):362-372.
    [73] Stan O, Kanmen E. A Local Linearized Least Squares Algorithm for Training Feedforward Neural Networks. IEEE Trans on Neural Networks, 2000,11(2):487-495.
    [74] Zhang D, Pal S K. A Fuzzy Clustering Neural Networks (FCNs)System Design Methodology. IEEE Trans on Neural Networks, 2000,11 (5): 1174-1177.
    [75] Knapp B, Strasscr H, Yurtscver K. Chaos-Theortic Methods for Load Forecasting in the Field of Energy Management Systems. Proceedings of Power System Computation Conference, 1996:224-230.
    [76] Liang X B. On the Analysis of a Recurrent Neural Network for Solving Nonlinear Monotone Variational Inequality Problems. IEEE Trans on Neural Networks, 2002,13(2):481-486.
    [77] Leung H, Lo T, Wang S. Prediction of Noisy Chaotic Time Series Using an Optimal Radial Basis Function Neural Network. IEEE Trans on Neural Networks, 2001,12(5):1163-1172.
    [78] Lu S, Chon K H. Nonlinear Autoregressive and Nonlinear Aotoregressive Moving Average Model Parameter Estimation by Minimizing Hypersurface Distance. IEEE Trans on Signal Processing, 2003,51(12):3020-3026.
    
    [79] Asari V K. Training of a Feedforward Multiple-Valued Neural Network by Error Backpropagation with a Multilevel Threshold Function. IEEE Trans on Neural Networks, 2001,12(6):1519-1525.
    [80] Cocchi G, Uncini A. Subband Neural Networks Prediction for On-Line Audio Signal Recovery. IEEE Trans on Neural Networks, 2002,13(4):867-876.
    [81] Shaibon H, Zin A M, Baki S R. Kalman-Fuzzy Application to Power System Load Forecasting. Proceedings of the International Power Engineering Conference. 1997, Vol 2: 827-830.
    [82] Tambouratzis T. A Novel Artificial Neural Network. IEEE Trans on Systems, Man, and Cybernetics-Part B: Cybernetics, 1999,29(2):271-275.
    [83] Seshagiri S, Khalil H. Output Feedback Control of Nonlinear System Using RBF Neural Networks. IEEE Trans on Neural Networks, 2000,11(1):69-79.
    [84] Liu K, Subbarayan S. Comparison of Very Short-term Load Forecasting Techniques. IEEE Trans on Power Systems. 1996,11(2):882-887.
    [85] Tsang E C, Lee J W, Yeung D S. Tuning Certainty Factor and Local Weight of Fuzzy Production Rules by Using Fuzzy Neural Networks. IEEE Trans on Systems, Man, and Cybernetics-Part B: Cybernetics, 2002,32(1 ):91-98.
    [86] Kassaei H R, Keyhani A, Woung T, et al. A Hybrid Fuzzy Neural network Bus Load Modeling and Predication. IEEE Trans on Power Systems, 1999,14(2): 718-724.
    [87] Lamedica R, Prudenzi A, Sforna M, et al. A Neural Network Based Technique for Short-Term Forecasting of Anomalous Load Periods. IEEE Trans on Power Systems, 1996,11 (4):1749-1756.
    [88] Mori H, Vrano S. Short-Term Load Forecasting with Chaos Time Series Analysis. Proceeding of International Conference on Intelligent System Application to Power Systems, 1996: 133-137.
    [89] Liu K, Subbarayan S, Shoults R R, et al. Comparison of Very Short-Term Load Forecasting Techniques. IEEE Trans on Power Systems, 1996,11 (2): 877-882.
    [90] Castillo O, Melin P. Hybrid Intelligent Systems for Time Series Prediction Using Neural Networks, Fuzzy Logic, and Fractal Theory. IEEE Trans on Neural Networks, 2002,13(6):1395-1408.
    [91] Khotanzad A, Hwang R C, Abaye A, et al. An Adaptive Modular Artificial Neural Network Hourly Load Forecaster and Its Implementation at Electric Utilities. IEEE Trans on Power Systems, 1995,10 (3):1716-1722
    
    [92] Khotanzad A, Afkhami-Rohani R, Lu T L. ANNSTLF - A Neural-Network-Based Electric Load Forecasting System. IEEE T. Neural Nets, 1997, 8 (4): 835-846.
    [93] Grassberger P, Procaccia I. Characterization of strange attractors. Phys. Rev. Lett, 1983,50(5):346-349.
    [94] Kim K H, Youn H S, Kang Y C. Short-Term Load Forecasting for Special Days in Anomalous Load Conditions Using Neural Networks and Fuzzy Inference Method. IEEE Trans on Power Systems, 2000,15(2):559-565.
    [95] Dash P K, Satpathy H P, Liew A C. A Real-Time Short-Term Peak and Average Load Forecasting System Using a Self-Organising Fuzzy Neural Network. Engineering Applications of Artificial Intelligence, 1998, 11(2):307-316.
    [96] Choi J G, Park J K.A Daily Peak Load Forecasting System Using a Chaotic Time Series. Proceeding of International Conference on Intelligent System Application to Power Systems, 1996: 283-287.
    [97] Hyde O, Hodnett P F. An Adaptable Automated Procedure for Short-Term Electricity Load Forecasting. IEEE Trans on Power Systems, 1997,12(1):84-93.
    [98] Kasabov N. Evolving Fuzzy Neural Networks for Supervised/Unsupervised Online Knowledge-Based Learning. IEEE Trans on Systems, Man, and Cybernetics-Part B: Cybernetics, 2001,31(6):902-918.
    [99] Mastorocostas P A, Theocharis J B, Bakirtzis A G Fuzzy Modeling for Short Term Load Forecasting Using the Orthogonal Least Squares Method. IEEE Trans on Power Systems, 1999,14(1):29-36.
    [100] Chen L, Chen G R. Fuzzy Predictive Control of Uncertain Chaotic Systems Using Time Series. International Journal of Bifurcation and Chaos. 1999,9(4): 757-767.
    [101] Er M J, Liao J, Lin J. Fuzzy Neural Networks-Based Quality Prediction System for Sintering Process. IEEE Trans on Fuzzy Systems, 2000,8(3):314-324.
    [102] Chow T W, Leung C T. Neural Network Base Short-term Load Forecasting Using Weather Compensation. IEEE Trans on Power Systems. 1996,11(4) 1736-1742.
    [103] Srinivasan D, Chang C S, Tan S S. One-day Ahead Electric Load Forecasting with Hybrid Fuzzy-Neural Networks. Proceedings of Biennial Conference of the North American Fuzzy Information Processing Society, 1996:160-163.
    [104] Pang C T, Guu S M. Sufficient Conditions for the Stability of Linear Takagi-Sugeno Free Fuzzy Systems. IEEE Trans on Fuzzy Systems, 2003,11(5):695-700.
    [105] Khotanzad A, Davis M H. An Artificial Neural Networks Hourly Temperature Forecaster with Applications in Load Forcasting. IEEE Trans on Power Systems. 1996,11(2): 870-876.
    
    [106] Atiya A F, El-Shour S M, Shaheen S I, et al. A Comparison Between Neural-Network Forecasting Techniques-Case Study: River Flow Forecasting. IEEE Trans on Neural Networks, 1999,10(2) :402-409.
    [107] Mangeas M., Muller C. An Automatic Search of Feedforward Neural Network Architecture Based on Genetic Algorithms: Application to the Short-term Load Forecasting. Proceeding of International Conference on Intelligent System Application to Power Systems, 1997:362-366.
    [108] Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov Exponents form a Time Series. Physica D, 1985,16:285-317.
    [109] Lee C H, Teng C C. Identification and Control of Dynamic Systems Using Recurrent Fuzzy Neural Networks. IEEE Trans on Fuzzy Systems, 2000,8(4):349-366.
    [110] Chung F L, Duan J C. On Multistage Fuzzy Neural Network Modeling. IEEE Trans on Fuzzy Systems, 2000,8(2): 125-141.
    [111] Srinivasan D, Liew A C, Chang C S. Forecasting Daily Load Curves Using a Hybrid Fuzzy-Neural Approach. IEE Proc. Gener. Transm. Distrib, 1994, 141(6): 561-567.
    [112] Chen S M, Hwang J R. Temperature Prediction Using Fuzzy Time Serves. IEEE Trans on Systems, Man, and Cybernetics-Part B: Cybernetics, 2000,30(2):263-275.
    [113] Kang S J, Woo C H, Hwang H S, et al. Evolutionary Design of Fuzzy Rule Base for Nonlinear System Modeling and Control. IEEE Trans on Fuzzy Systems, 2000,8(1):37-45.
    [114] Kim K H, Park J K, Hwang K J, et al. Implementation of Hybrid Short-Term Load Forecasting System Using Artificial Neural Networks and Fuzzy Expert Systems. IEEE Trans on Power Systems, 1995,10 (3): 1534-1539.
    [115] Zhang Q Patuwo B E, Hu M Y. Forecasting with Artificial Neural Networks: The State of the Art. Int J Forecast, 1998, vol.14:35-62.
    [116] Khotanzad A, Afkhami-Rohani R, Lu T L, et al. ANNSTLF - A Neural-Network-Based Electric Load Forecasting System. IEEE T Neural Nets, 1997, 8 (4): 835-846.
    [117] Huang S J, Shih K R. Short-term Load Forecasting via ARMA Model Identification Including Non-Gaussian Process Considerations. IEEE Trans on Power Systems, 2003,18 (2):673-679.
    
    [118] Emilio S O, Jose M G, Gustavo C V, et al. A Low-Complexity Fuzzy Activation Function for Artificial Neural Networks. IEEE Trans on Neural Networks, 2003,14(6):1576-1581.
    [119] Goh W Y, Lim C P, Peh K K. Predicting Drug Dissolution Profiles With an Ensemble of Boosted Neural Networks: A Time Series Approach. IEEE Trans on Neural Networks, 2003,14(2):459-463.
    [120] Ding A A. Neural-Network Prediction with Noisy Predictors. IEEE Trans on Neural Networks, 1999,10(5): 1196-1203.
    [121] Staszewski W J, Worden K. Wavelet Analysis of Time Series: Coherent Structures, Chaos and Noise. International Journal of Bifurcation and Chaos, 1999, 9(3):455-471.
    [122] Bakirtzis A G, Petridis V, Kiartzis S J, et al. A Neural Network Short-Term Load Forecasting Model for the Greek Power System. IEEE Trans on Power System, 1996,11 (2): 858-863.
    [123] Wang A, Ramsay B. Prediction of System Marginal Price in the UK Power Pool Neural Networks. Proceedings of IEEE International Conference on Neural Networks, 1997, Vol 4:2116-2120.
    [124] Dhar V Chou D. A Comparison of Nonlinear Methods for Predicting Earnings Surprises and Returns. IEEE Trans on Neural Networks, 2001,12(4):907-921.
    [125] Szkuta B R, Sanabria L A, Dillon T S. Electric Price Short-Term Forecasting Using Artificial Neural Networks. IEEE Trans on Power Systems, 1999,14(3):851-857.
    [126] Kim C I, Yu I K, Song Y H. Prediction of System Marginal Price of Electricity Using Wavelet Transform Analysis. Energy Conversion and Management, 2002, 43(14):1839-1851.
    [127] Abdel-Aal R E. Short-Term Hourly Load Forecasting Using Abductive Networks. IEEE Trans on Power Systems, 2004,19 (1): 164-173.
    [128] Zheng Y, Zhang C, Evans R J. A Differential Vector Space Approach to Nonlinear System Regulation. IEEE Trans on Automatic Control, 2000,45(11):1997-2010.
    [129] Stamlkovic V, Hamzaoui R, Saupe D. Fast Algorithm for Rated-Based Optimal Error Protection of Embedded Codes. IEEE Trans on Communications, 2003,51(11):1788-1795.
    [130] Ramot D, Friedman M, Langholz G, et al. Complex Fuzzy Logic. IEEE Trans on Fuzzy Systems, 2003,11(4):450-461.
    [131] Zhang L, Luh P B, Kasiviswanathan K. Energy Clearing Price Prediction and Confidence Interval Estimation with Cascaded Neural Networks. IEEE Trans on Power Systems, 2003, 18 (1): 99-105.
    [1
    
    [132] Wang D, Huang J. A Neural-Network-Based Approximation Method for Discrete-Time Nonlinear Servomechanism Problem. IEEE Trans on Neural Networks, 2001, 12(3): 591-597.
    [133] Diao Y, Passino K M. Adaptive Neural/Fuzzy Control for Interpolated Nonlinear Systems. IEEE Trans on Fuzzy Systems, 2002, 10(5): 583-595.
    [134] Slobodan R, Aca V, Nikola N. Weather Sensitive Mothod for Short Term Load Forecasting in Electric Power Utility of Serbia. IEEE Trans on Power Systems, 2003, 18(4): 1581-1586.
    [135] Hong Y S, Jin H, Park C K. New Electrosensitive Traffic Light Using Fuzzy Neural Networks. IEEE Trans on Fuzzy Systems, 1999, 7(6): 759-770.
    [136] Duch W, Adamczak R, Grabczewski K. A New Methodology of Extraction Optimization and Application of Crisp and Fuzzy Logical Rules. IEEE Trans on Neural Networks, 2001, 12(2): 277-305.
    [137] Contreras J, Espinola R, Nogales F J, et al. ARIMA Model to Predict Next-Day Electricity Prices. IEEE Trans on Power Systems, 2003, 18 (3): 1014-1020.
    [138] Kuihe Yang, Jinjun Zhu, Baoshu Wang. Design of Short-Term Load Forecasting Model Based on Fuzzy Neural Networks. Proceedings of the Fifth Word Congress on Intelligent Control and Automation, 2004, Vol. 3: 2038-2041.
    [139] Yang Kuihe, Zhu Jinjun, Zhao Lingling. The Improved Short-Term Load Forecasting Method Based on Artificial Neural Network. Proceedings of the Sixth International Conference on Electronic Measurement and Instruments, 2002, Vol. 1: 828-830.
    [140] Yang Kuihe, Wang Baoshu, Zhu Jinjun. Study on Load Information Forecasting Based on Artificial Neural Network. Proceedings of North-East Asia IT Symposium, 2002: 612-615.
    [141] Yang Kuihe, Wang Baoshu, Zhu Jinjun. Application of Fuzzy Inference Algorithm in Artificial Neural Networks Forecasting. Proceedings of the Third International Symposium on Instrumentation Science and Technology. 2004, Vol 1: 445-450.
    [142] 尤勇,盛万兴,王孙安.基于人工免疫网络的短期负荷预测模型.中国电机工程学报,2003,23(3):26-29.
    [143] 周佃民,管晓宏,孙婕.基于神经网络的电力系统短期负荷预测研究.电网技术,2002,26(2):10-14.
    [144] 张智晟,孙雅明,王兆峰.优化相空间近邻点与递归神经网络融合的短期负 荷预测.中国电机工程学报,2003,23(8):44-49.
    [1
    
    [145] 谢宏,陈志业,牛东晓.短期负荷预测的数据主成分分析.电网技术,2000,24(1):43-46.
    [146] 李云天,刘自发.电力系统负荷的混沌特性及预测.中国电机工程学报,2000,20(11):36-40.
    [147] 陶小虎,黄民翔.一种基于模糊规则和神经网络的负荷预测方法.电力系统及其自动化学报,2000,12(5):37-54.
    [148] 莫维仁,张伯明,孙宏斌.扩展短期负荷预测的原理与方法.中国电机工程学报,2003,23(3):1-4.
    [149] 周佃民,赖菲,刘亚安.电力系统负荷预测与电价预测.继电器,2000,28(10):31-33.
    [150] 吕金虎,占勇,陆君安.电力系统短期负荷的非线性混沌改进模型.中国电机工程学报,2000,20(12):80-83.
    [151] 丁军威,孙雅明.基于混沌学习算法的神经网络短期负荷预测.电力系统自动化,2000,24(2):32-35.
    [152] 李元诚,放挺健,于尔铿.短期负荷预测的支持向量机方法研究.中国电机工程学报,2003,23(6):55-59.
    [153] 严华,吴捷,马志强.模糊集理论在电力系统短期负荷预测系统中的应用.电力系统自动化,2000,24(11):67-71.
    [154] 赖晓平,周鸿兴,田发中.电力系统短期负荷预测的混合模型神经元网络方法.电网技术,2000,24(1):47-51.
    [155] 杨奎河,王宝树,赵玲玲.基于神经网络的预测模型中输入变量选择.计算机科学,2003,30(8):139-143
    [156] 杨奎河,王宝树,赵玲玲.神经网络短期负荷预测的输入变量选择研究.电子测量与仪器学报,2004.18(3):13-17.
    [157] 杨奎河,王宝树,赵玲玲.基于神经网络矫正的非线性短时负荷预测模型.系统工程与电子技术.2004,26(11).
    [158] 杨奎河,王宝树,赵玲玲.模糊神经网络在非线性短期负荷预测中的应用.控制理论与应用,2004,21(5):791-794.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700